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Abstract: We present a framework for electroencephalography (EEG)-based classification between
patients with Alzheimer’s Disease (AD) and robust normal elderly (RNE) via a graph theory approach
using visibility graphs (VGs). This EEG VG approach is motivated by research that has demonstrated
differences between patients with early stage AD and RNE using various features of EEG oscillations
or cognitive event-related potentials (ERPs). In the present study, EEG signals recorded during a
word repetition experiment were wavelet decomposed into 5 sub-bands (δ, θ, α, β, γ). The raw and
band-specific signals were then converted to VGs for analysis. Twelve graph features were tested for
differences between the AD and RNE groups, and t-tests employed for feature selection. The selected
features were then tested for classification using traditional machine learning and deep learning
algorithms, achieving a classification accuracy of 100% with linear and non-linear classifiers. We
further demonstrated that the same features can be generalized to the classification of mild cognitive
impairment (MCI) converters, i.e., prodromal AD, against RNE with a maximum accuracy of 92.5%.
Code is released online to allow others to test and reuse this framework.

Keywords: machine learning; Alzheimer’s Disease; EEG; visibility graph; event-related potential;
mild cognitive impairment; prodromal; electroencephalography

1. Introduction

There is mounting evidence suggesting that AD may be primarily a synaptic disor-
der [1] and synaptic abnormalities occur before any clinical symptoms. EEG measures
instantaneous excitatory and inhibitory postsynaptic potentials [2], and thus provides a
powerful non-invasive tool to capture synaptic dysfunction underlying very early cognitive
changes in AD. The superior temporal resolution of EEG makes it especially advantageous
in detecting changes in complex multi-stage cognitive processes such as memory, a key
indicator of early AD [3]. A large number of studies have demonstrated that EEG measures,
including event-related potentials (ERPs) and oscillations, are sensitive to subtle brain
changes in early AD [4–6]. Applying a word repetition paradigm, designed to elicit brain
activity related to language and memory processing, our laboratory has identified several
ERP/oscillatory measures that reliably distinguish mild cognitive impairment (MCI) and
early-stage AD patients from healthy elderly controls [7–12]. For example, our ERP studies
revealed that the N400 component, sensitive to semantic processing and integration, and
the P600 (or ‘Late Positive Component’, LPC), sensitive to explicit verbal memory, can be
reliably elicited in healthy elderly but not in MCI or AD patients [7–9,13]. In mild AD,
both the N400 and the P600 word repetition effects are diminished [13], whereas MCI and
preclinical AD patients show compromised P600 but relatively preserved N400 effects [7–9].
Similarly, our EEG oscillatory analyses revealed a power suppression in the alpha range
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(9–11 Hz) that is attenuated for repeated relative to new words in healthy elderly [10]. This
alpha word repetition effect is also compromised in amnestic MCI and correlated with
verbal memory measures [10].

A limitation of traditional ERP/oscillatory analyses is that they usually focus on the
timing and the magnitude of pre-defined components at the expense of the overall pattern
and complexity of EEG data. Some prior works convert EEG signals to visibility graphs
(VGs) [14], which preserve many features of the original EEG signal. Converting resting
state EEG signals to VGs allows for discriminative graph features to be discovered [15] and
utilized in high-accuracy neural network based classification (98%) between AD patients
and normal elderly [16].

Other studies which have applied neural networks or other machine learning algo-
rithms to resting state EEG in AD include Morabito et al. [17], who used convolutional
neural networks on 19 channel EEG and achieved a three-class AD/MCI/cognitively
normal (CN) classification accuracy of 82% [17,18]. Zhao and He [19] combined deep
belief networks with support vector machines on 16 channel EEG signals and achieved
92% accuracy classifying AD vs. CN [18,19]. Duan et al. [20] quantified between-channel
connectivity of resting-state EEG signals in MCI and mild AD patients using coherence
measures; they used the Resnet-18 model [21] to classify between MCI and controls, and
AD and controls with an average 93% and 98.5% accuracy, respectively.

Despite the promise of the above studies and other machine learning algorithms which
have used biomarkers of AD to improve diagnostic accuracy [22], there are still to date
no widely used machine learning algorithms for the clinical diagnosis of AD. Historically,
clinical diagnosis of possible and probable AD (generally found to be between 80 and 90%
accurate in clinicopathological studies) was based on recognizing the typical cognitive
and behavioral symptoms of this dementia and the exclusion of other possible causes of
dementia, whereas a “definite AD” diagnosis was only possible via invasive brain measures
from a biopsy or autopsy providing histopathological evidence of AD [23]. Currently, the
International Working Group (IWG) recommends that the clinical diagnosis of AD be
restricted to those with positive biomarkers together with specific AD phenotypes [24].
While purely biological definitions of AD (e.g., [25]) have become more widely used for
research purposes in recent years, the IWG considers the present limitations of biomarkers
sufficient that they should not be used for the diagnosis of disease in the cognitively
unimpaired [24]. Thus, the “gold standard” for the clinical diagnosis of AD is criteria
(e.g., [23,26]) which incorporate multiple biomarkers (including markers of amyloid-β
(Aβ) and tau pathology, neuronal injury and neurodegeneration) along with the clinical
phenotype. With the rapid emergence of machine learning algorithms into medical research,
this could, however, change rapidly in upcoming years [27].

Our hypothesis is that word repetition tasks, which have been shown sensitive to
detect MCI-to-AD conversion and even preclinical AD using ERPs [7,8,11], can also be used
to discriminate AD from normal elderly with high accuracy using a VG-based machine
learning approach. Compared to resting state EEG, word repetition task signals are expected
to yield better discriminative features given that verbal memory impairments are the best
predictors of MCI to AD conversion [28]. Combining these two lines of past work, we
converted EEG signals recorded during word repetition experiments to visibility graphs.
We operated under the assumption that the ERP components of interest will be preserved
after conversion to graphs and features extracted from these graphs will encode the ERP
components while reducing variance across subject data for better downstream machine
learning classification performance.

Therefore, this work focuses on the analysis of EEG signals and extracting features
from them that are useful in discriminating between AD and RNE in a variety of machine
learning algorithms. To demonstrate the generalizability of those features, we tested
whether they can also effectively discriminate between prodromal Alzheimer’s (pAD, MCI
patients who converted to Alzheimer’s Dementia within 3 years) and robust normal elderly
(RNE, normal elderly persons who have remained cognitively normal for the duration of
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follow-up). We apply a similar approach to that of Ahmadlou et al. [16], although extracting
many more features (including many novel ones in this context) from word repetition task
EEG signals (instead of resting state as in Ahmadlou et al. [16]).

In our framework, pictured in Figure 1, we first collect EEG data from word repetition
tasks. We then perform pre-processing of this data and then convert the EEG signals to
visibility graphs. From these VGs we extract 12 features and perform statistical tests for
feature selection, keeping the discovered statistically significant predictors as inputs for
machine learning algorithms. Finally, the dimensionality of this feature space is reduced
with principal component analysis and we use the resulting reduced feature space as inputs
to machine learning algorithms.

Figure 1. Flowchart of entire analytic process.

In summary, the intended contributions of this work are threefold:

1. We demonstrate the effectiveness of EEG analysis on word repetition tasks for dementia
classification (AD vs. RNE) across various machine learning algorithms (support
vector machines, logistic regression, linear discriminant analysis, neural networks);

2. We select a new set of high performing features under a framework for EEG visibility
graph analysis that, when combined with existing features from the literature, detect
even earlier stage AD (i.e., discriminates pAD vs. RNE);

3. We open source our code so that it can be adapted for other datasets and tasks (e.g.,
resting state EEG data or discriminating other types of dementia).

2. Methods

Figure 1 details the framework. Open-sourced code for our method is available
online at https://github.com/jesbu1/ML-Visibility-Graphs-for-Alzheimers (accessed on
19 March 2023).

2.1. Participants

EEG and behavioral data were taken from 15 patients with probable AD (mean age
78.5 years, range 67–91) [23] recruited primarily through the Alzheimer’s Disease Research
Centers at the University of California, San Diego and the University of California, Davis.
Additional data were taken from 15 patients with amnestic MCI (mean age 74.6 years,
range 60–84) [29] who later converted to dementia and 11 healthy elderly controls (mean
age 74.1 years, range 57–79) who were recruited in a previous published longitudinal
study [8]. See Table 1 for participant details. All participants were screened for treatable
causes of cognitive impairments such as vitamin B12 deficiency and thyroid dysfunction,
and underwent a brain scan (generally MRI) prior to enrollment. The exclusion criteria
included stroke, epilepsy and psychiatric conditions, as well as several classes of central
nervous system (CNS) active medications.

https://github.com/jesbu1/ML-Visibility-Graphs-for-Alzheimers
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Table 1. Mean ± SD values of demographics and MMSE (Mini Mental State Examination) scores in
the three groups. Note: 3 AD patients had no MMSE scores; Montreal Cognitive Assessment (MoCA)
scores were converted to MMSE [30] for these 3 patients.

RNE pAD AD

N 11 15 11
Age (yrs) 74.1± 6.8 74.6± 6.9 78.5± 7.5

Sex 7F, 4M 5F, 10M 4F, 7M
Education (yrs) 15.8± 2.8 16.8± 2.8 14.6± 2.6

MMSE 29.7± 0.5 26.9± 2.0 * 22.9± 2.8 #

* p < 0.05: RNE vs. pAD, # p < 0.05: pAD vs. AD.

The patients were tested with an EEG word repetition paradigm and clinical assess-
ments. At the initial baseline recording session, the 15 MCI patients all met Petersen Criteria
for amnestic MCI [31] but not for dementia [32]. Probable AD was diagnosed according to
criteria set out by the National Institute of Neurological and Communicative Disorders and
Stroke–Alzheimer’s Disease and Related Disorders Association [23]. The 15 MCI patients
subsequently converted to AD within 3 years of their initial baseline session (mean number
of years 1.62 ± 0.7). In the present study we focus on the initial baseline ERP data in order
to investigate neural activity associated with AD and prodromal AD (pAD, MCI to AD
conversion within 3 years). For more information about participant demographics and
their neurocognitive test results please refer to [7,10].

2.2. Word Repetition Paradigm

For each trial, participants were presented with an auditory phrase describing a
category (e.g., “a type of wood”, “a breakfast food”) followed by a visually presented
target word ∼1 s later (presentation duration = 0.3 s, visual angle ∼= 0.4◦). The target
words were nouns, which were either congruous (e.g., ‘cedar’) or incongruous with the
preceding category phrase with a probability of 0.5. Congruous and incongruous words
were matched on the frequency of usage (mean = 32, SD = 48; [33]) and word length (mean
of 5.8 characters, SD = 1.6) [12]. Participants were instructed to wait for 3s after the onset of
each target word, read the word aloud and then give a yes/no decision indicating whether
the word fit the preceding category. No time limit was imposed on making responses. Of
all the category–word pairs, 1/3 only appeared once, 1/3 appeared twice and the other
1/3 appeared 3 times (congruous and incongruous pairs were counterbalanced). For those
items that appeared twice, the lag between the first and the second presentation was short
(0–3 intervening trials, spanning ∼10–40 s). For those items that appeared 3 times, the
lags between presentations were longer (10–13 intervening trials, spanning ∼100–140 s). A
total of 432 trials were performed in 3 blocks. The six word conditions tested include All
New (AN), New Congruous (NC), New Incongruous (NI), All Old (AO), Old Congruous
(OC) and Old Incongruous (OI). Further details of the experimental paradigm have been
published previously [8,12].

2.3. EEG Signal Preparation

Across participants, EEG was recorded from 19 to 32 channels including midline (Fz,
Cz, Pz) and lateral (F7/F8, T5/T6, O1/O2) sites in the International 10–20 System and
additional sites approximate Broca area (Bl/Br), Wernicke area (Wl/Wr) and Brodmann area
41 (L41/R41). EEG signals were recorded with a 250 Hz sampling rate, bandpassed between
0.016 and 100 Hz, and re-referenced offline to averaged mastoids. Data preprocessing and
artifact rejection were performed using MATLAB [34] with EEGLAB [35] and Fieldtrip [36]
toolboxes. EEG epochs were extracted and time-locked to the onset of target words,
2 s before and 2 s after the word onset, and visually inspected for non-physiological
artifacts. Independent component analysis [37] was then applied to isolate and remove eye
movement artifacts. Artifact-removed EEG epochs were then mirror-padded to 8 s (2 s to
the beginning and 2 s to the end) and bandpass filtered into five frequency bands (δ 1–4 Hz,
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θ 4–8 Hz, α 8–13 Hz, β 13–30 Hz, γ 30–45 Hz), using zero-phase Hamming-windowed
sync finite impulse response filters as implemented in the EEGLAB (pop_eegfiltnew).
This function automatically selects the optimal filter order and transition bandwidth to
minimize filter distortions and maximize time precision. For each of the five frequency
bands of interest, a high-pass filter was first applied and then a low-pass filter. Transition
bandwidths were set to be 25% of the passband edge for passband edges >4 Hz, with
−6 dB cutoff frequency at the center of the transition band. For the 4 Hz passband we used
a transition bandwidth of 2 Hz and for the 1 Hz passband (δ band) we used a transition
bandwidth of 1 Hz. Finally, raw and bandpass filtered EEG segments were extracted 1 s
before and 2 s after the word onset for further analyses.

2.4. Time Series to Visibility Graph Conversion

For every patient, we obtained multiple word repetition trials for each experimental
condition. To reduce the noise in the EEG signal and extract event-related information, we
averaged across trials in each condition so that there was one averaged EEG time series per
condition, frequency band and channel combination for each patient. Each time series was
then averaged into 80 ms non-overlapping epochs (the values of every 20 timesteps were
averaged together). This was done for three reasons:

1. Reduce the amount of computing time required for data analysis.
2. Reduce the amount of variance within the individual EEG signals to prevent the

machine learning models overfitting to the data. We can think of this process acting
like a low-pass filter, helping reduce signal noise from muscle artifacts commonly
present in frequencies above 12 Hz.

3. Reduce the variance across participants’ data when performing hypothesis testing as
a result of reducing the variance within their signals.

All time series were finally shortened to 1 s pre-stimulus to 2 s post-stimulus.

2.5. Visibility Graphs (VG)

Visibility graphs (VG), first proposed by Lacasa et al. [14], inherit many properties of
the time series they represent. For example, a VG corresponding to a periodic series will be
regular and one corresponding to a random series will be random. VGs were first utilized
in EEG analysis in a paper by Ahmadlou et al. [16] in order to classify Alzheimer’s patients
against RNE with a classification accuracy of 97.8%.

Intuitively, a visibility graph of a time series x is created by considering each i’th point
of the time series and determining which other time points are visible from it. The i’th node
of the VG is connected with an undirected edge to any nodes visible from it. Formally, two
nodes of the VG, am and an, are connected with an undirected, weight 1 edge if and only if:

xm+j < xn + (
n− (m + j)

n−m
)(xm − xn) ∀j ∈ Z+ : j < n−m

Figure 2 demonstrates the creation of a VG. The top graph represents the original time
series, while the graph underneath represents the corresponding nodes and edges of the
visibility graph. There is a line connecting points in the time series (and an undirected
edge in the corresponding VG) if and only if those two points are visible from each other.
Visibility graphs allow for features to be extracted which can encode temporal locality
(as a node is always connected to its direct neighbors in the original EEG signal) but also
features which capture information from nodes that are farther away, as nodes that are
visible from each other will be connected, even if they are far away in time in the original
signal. In general, VGs are biased towards creating local edges that capture information
about the signal over short periods of time, with the exception of peaks in the signal. VGs
can also only be extracted per electrode; however, we compensate for this by also extracting
a cross-channel feature, as detailed below.
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Figure 2. The top graph represents a time series and the edges between points signify which points
can see each other. The bottom graph represents the VG of the time series, with nodes corresponding
to timepoints and edges corresponding to lines of visibility. χi EEG Voltage at time i, ai VG node for
timepoint i.

2.6. Feature Extraction

In total, we used 12 features to classify the Alzheimer’s (AD) and the robust normal
elderly (RNE) groups. Six of these features have been tested in previous EEG graph theory
studies of AD, namely clustering coefficient sequence similarity [15], average clustering
coefficient [38,39], global efficiency [15,38,40], local efficiency [15,41], small-worldness [15]
and graph index complexity [15,16]. The other six are graph features heavily studied in the
field of computer science that, to the best of our knowledge, have not yet been considered
in EEG graph theory studies. In general, the new features we introduce come from classic,
well-studied problems in graph theory and are targeted towards extracting information
specifically about VG structure (e.g., visibility of vertices induced by the time series struc-
ture). Every feature is extracted from each condition, band and channel combination,
and then compared across groups with a two-tailed t-test. The entire feature extraction
process was performed in Python 3 using Numpy [42], Scipy [43] and NetworkX [44], three
open source packages that were essential for data formatting, t-testing and graph analysis,
respectively. In all definitions below, |V| denotes the number of vertices in the graph and
|E| denotes the number of edges.

2.6.1. Clustering Coefficient Sequence Similarity (CCSS)

All visibility graphs are constructed from a single time series (a single-channel EEG
signal), making it easy to compare individual time series across groups. Visibility graph
similarity, proposed by Ahmadlou et al. [45] and modified for EEG VG analysis by
Wang et al. [15], is a method of comparing the similarity of multiple time series across
groups by measuring the similarity of the nodes’ degree sequences in the VGs. As sug-
gested by Wang et al. [15], the similarity of clustering coefficients is utilized instead of
degree sequences to generate connections between the visibility graphs of different chan-
nels under a single band-condition combination [15]. Networks are generated by making
each channel a node and connecting an edge between two nodes if the CCSS between their
VGs is above a certain threshold, θ, which was chosen to be 0.25 based on Wang’s results
and our own empirical data. We note that this is the only all-channel comparison measure
and employs the functional network concept, while all subsequent features are based on
single-channel visibility graph features. CCSS between two VGs X and Y is calculated as
follows:

CCSS = | cov(CCS(X), CCS(Y))
σCCS(X)σCCS(Y)

| (1)
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where CCS is the “clustering coefficient sequence,” or sequence of clustering coefficients
where each clustering coefficient measures how close the vertex’s neighbors are to becoming
a complete graph (clique) [46]. The clustering coefficient C of a node i is defined as:

Ci =
2|Ei|

|Ki|(|Ki| − 1)
(2)

where |Ei| denotes the number of edges of the neighbors of a node i, |Ki| indicates the
number of neighbors of node i and |Ki |(|Ki |−1)

2 represents the number of possible connections
in a complete graph consisting of node i’s neighbors. During t-testing, we compared the
average number of edges per person between the two groups.

2.6.2. Average Clustering Coefficient

The average clustering coefficient is defined as simply the average of clustering coeffi-
cients defined in Equation (2).

C =
1
|V|

|V|

∑
i=1

Ci (3)

The average clustering coefficient measures the average tendency of neighbors of
nodes to become complete graphs. In context, it denotes the likelihood of our EEG signals
to be shaped in a way that allows for close interconnectedness in the VG.

2.6.3. Global Efficiency

Global efficiency is defined as the average of the inverse shortest path lengths between
all nodes. The shortest path length dij between two nodes in our VG construction, i and j,
is defined to be the minimum number of edges needed to traverse from i to j or j to i. Thus,
global efficiency, Eglobal , is defined as

Eglobal =
1

|V|(|V| − 1) ∑
i,j,i 6=j

1
dij

(4)

It is interpreted as sum of all inverse shortest path distances divided by the number of
shortest path distances counted. A higher global efficiency corresponds to a network that
is more efficient at transmitting/combining information and relates to the small-worldness
of the network [15,38,47–50]. In context, a higher global efficiency in a VG means that there
are likely more EEG time points that are visible from other points which are relatively
farther away in time.

2.6.4. Local Efficiency

The local efficiency of a graph is the average of the global efficiencies of each subgraph
composed of every vertex’s direct neighbors. It is similar to the average clustering coeffi-
cient; however, during its calculation vertices outside of each subgraph can be taken into
account in the shortest path between two nodes [15]. Local efficiency, Elocal , is defined as

Elocal =
1
|V|∑i

1
|Vgi |(|Vgi | − 1) ∑

j,k,j 6=k

1
djk

(5)

where |Vgi | represents the number of vertices in the subgraph of vertex i (composed only of
its direct neighbors) and |V| represents the number of vertices of the entire graph [47]. As
each edge in our VG is of weight one, a higher local efficiency corresponds to more direct
edges on average in each subgraph, indicating EEG signals with variations in voltage that
allow for a greater number of direct connections between points close in time.



Brain Sci. 2023, 13, 770 8 of 21

2.6.5. Small-Worldness

Small-worldness is a measure of how much a graph acts like a small-world network.
Small-world networks have the property that the typical distance between any two ran-
domly chosen vertices grows logarithmically in terms of total number of vertices of a
graph [47]. As logarithmic functions grow very slowly, this correlates with low average
shortest path lengths and high global efficiencies and clustering coefficients. A measure of
small-worldness, S was defined by Humphries and Gurney [51] as

S =
C/Cr

L/Lr

where C, Cr are the average clustering coefficients of the graph in question and a random
graph, respectively, and L, Lr are the average shortest paths lengths between all pairs of
vertices in the graph in question and the random graph, respectively. Our random graphs
were generated with the Erdös–Rényi method [52], and the same random graph was used
to compare all VGs.

2.6.6. Graph Index Complexity (GIC)

GIC, proposed by Kim and Wilhelm [53], is a measure of graph complexity. It is
defined as

GIC = 4c(1− c) (6)

where

c =
λmax − 2 cos(π/(|V|+ 1))
|V| − 1− 2 cos(π/(|V|+ 1))

(7)

λmax represents the largest eigenvalue of the adjacency matrix of the graph. This eigenvalue
lies somewhere between the average and max node degree. Therefore, a larger GIC may
correspond to a more complex signal structure resulting from, for example, more frequent
signal voltage fluctuations.

2.6.7. Size of Max Clique

A clique is a subset of vertices of a graph such that they form a complete subgraph—all
vertices have direct edges to each other [54]. Therefore a maximum clique is just the clique
with the largest number of vertices in the graph. As clique-finding in graph theory is
known to be in a class of problems that may always take exponential time to solve, a fast
deterministic approximation algorithm that, in the worst case, overestimates by a factor
proportional to |V|/(log |V|)2 was used [55]. Max clique was selected by the authors as a
feature because it can account for a specific cluster of time points in the EEG signal that are
shaped differently across groups, leading to a complete subgraph in the VG of differing
numbers of vertices.

2.6.8. Cost of Traveling Salesman Problem (TSP)

The traveling salesman problem asks the question: what is the shortest cost tour in a
graph that starts from a vertex, visits all other vertices in the graph and then returns to the
starting vertex [54]? This problem is also difficult for computers to solve efficiently [56];
therefore, a deterministic approximation algorithm that overestimates by at most a factor
of 2 was implemented [54]. As all edge weights in our VGs are 1, this essentially amounts
to the shortest length tour that visits all vertices, starting and ending at the vertex that
corresponds to the first time point of the EEG. The TSP path cost provides another measure
of graph complexity that can signify significant differences in EEG wave structure across
groups.
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2.6.9. Density

Graph density is a measure of how close a graph is to having the maximum number of
edges. It is simply the actual number of edges divided by the maximum possible number
of edges [57]. Density, D, for an undirected graph is defined as

D =
2|E|

|V|(|V| − 1)
(8)

as it can have at most |V|(|V|−1)
2 edges. Density can highlight differences in the number of

edges of VGs across groups.

2.6.10. Independence Number

The independence number is the size of the largest independent set of a graph, which
is the largest set of vertices such that no two vertices share an edge [58]. This can be reduced
to the max clique problem [55]; therefore, a similar approximation algorithm was used to
determine the independence number. A higher independence number could indicate an
EEG signal shape that allows for more, or different, timepoints to be invisible from each
other.

2.6.11. Size of Minimum Cut

In this context, the minimum cut is defined to be a partition of the vertices into two
disjoint sets such that the number of edges across the cut is minimized. This feature was
analyzed because a difference in minimum cut size across the two groups could indicate
timepoints in the EEG signal that are on average more or less visible (therefore having
differing numbers of edges) from other vertices.

2.6.12. Vertex Coloring Number

Vertex coloring describes the problem of finding the minimum number of colors
required to color a graph such that no two vertices that share an edge have the same color.
We used a deterministic approximation algorithm that colors vertices in order from largest
to smallest degree as the problem is extremely difficult to exactly solve computationally [59].
The number of colors required to color a graph is likely to be different between two graphs
if there is a significant difference in EEG signal structure.

3. Statistical Analysis and Feature Selection

As stated in Feature Extraction, we utilize a two-tailed t-test, as implemented in the
open-source library Scipy [43], to determine statistical significance in graph features be-
tween groups. A p-value of 0.01 was determined as the threshold for significance.

PCA

We select all features with a p-value of less than 0.01. A high number of feature
combinations combined with a false positive rate of 1% lead us to use principal component
analysis (PCA), a method of linearly mapping features from a higher dimensional space
onto a lower dimensional subspace spanned by the eigenvectors that account for the
directions of highest variance. As suggested by Ahmadlou et al. [16], we apply PCA to
reduce the dimensionality of the feature space to about 10% of its original dimensionality.
At a high level, PCA can be interpreted as a way to linearly project the vector onto a
lower-dimensional latent space such that the distance between the original and projected
latent datapoints is minimized.

Specifically, the “principal components” of PCA are calculated by performing an
eigendecomposition of the covariance matrix of the data. Consider an n× d matrix X where
n is the number of datapoints (number of patients in our study) and d is the dimensionality
of the feature space (the statistically significant features discovered by t-testing). The input
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matrix X is first normalized, and then the principal components and their weights can be
discovered by the following eigendecomposition:

1
n− 1

XXT = P︸︷︷︸
components

D︸︷︷︸
component magnitudes

PT︸︷︷︸
components

. (9)

Assuming the prinicpal component vectors and their magnitudes are sorted in descending
order of magnitude, then feature reduction to k features is performed by taking the first
k components. These k components thereby intuitively correspond to the k directions of
highest variance in the data. In our study we use PCA to reduce the data dimensionality to
11, selected from cross-validation of values around 10% of the number of original features.

4. Machine Learning Classifiers

We test a variety of machine learning algorithms for classification: linear logistic
regression, linear soft-margin support vector machines (SVM), linear discriminant analysis
(LDA) and a fully connected artificial neural network (ANN). The first three algorithms
are chosen to test linear separability; logistic regression and support vector machines are
widely used in the literature, and LDA operates under intuitive statistical assumptions
about the class distributions being Gaussian and having the same covariance matrices. The
neural network is chosen to approximate more complicated decision boundaries. We utilize
a simple, two-layer, fully connected neural network with ReLU activations because, after
feature extraction, the input is no longer temporally or spatially dependent (this excludes
the use of recurrent networks or convolutional networks).

We detail each class of machine learning algorithms below:

• Logistic regression: logistic regression is a commonly used, simple classifier that
learns a linear decision boundary by learning a single feature vector through gradient
descent.

• Support vector machines: SVMs learn a decision boundary with a “margin” away
from datapoints from either class that is maximized. This can result in better testing
error as the decision boundary should not lie too close to points of either class.

• Linear discriminant analysis: LDA models the data distributions of both classes as
Gaussians with equal covariances and draws a linear decision boundary between the
means of the two Gaussians. LDA can perform very well if the input data follows
these assumptions.

• Artificial neural network: the ANN can linearize non-linear decision boundaries in
the feature space of the input data. It has the potential to overfit more easily to the
data but also to learn better-fit decision boundaries if the true decision boundary must
be non-linear.

For all algorithms and all comparisons (AD vs. RNE, pAD vs. RNE), the features
extracted come from the AD vs. RNE comparison.

5. Results

We found 72 statistically significant (p < 0.01) features. The total number of features
tested was 5976 (resulting in 60 features that are expected to be false positives). The total
5976 is derived from 15 channels × ((5 bands + 1 raw) × 11 single-channel features × 6
conditions) + ((5 bands + 1 raw) × 1 all-channel feature (CCSS) × 6 conditions)). We utilize
PCA to reduce the number of features down to 11, close to the number of features expected
to be true positives, in order to combat the high number of expected false positives.

5.1. Statistical Analysis

All features except for CCSS showed up at least once as a significant discriminator
between our subject groups. Furthermore, every band (δ, θ, α, β, γ) and the raw signal
produced discriminating features. Table 2 compares the number of features produced by
each condition (the number of expected false positives for each condition is 10) and band
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combination. The word conditions are defined in the Word Repetition Paradigm subsection.
Additionally, Table 3 displays the number of features produced by each channel for all
conditions.

Table 2. Comparing the number of features produced by each band. Global Table Key: AN: All New,
NC: New Congruous, NI: New Incongruous, AO: All Old, OC: Old Congruous, OI: Old Incongruous.

Category AN NC NI AO OC OI Total

raw 2 2 0 2 3 3 12
delta δ 0 1 5 6 7 2 21
theta θ 2 0 0 0 1 0 3
alpha α 0 11 0 3 4 0 18
beta β 0 0 5 0 4 1 10

gamma γ 0 3 0 4 1 0 8

Total 4 18 5 19 20 6 72

Table 3. Number of features produced by each channel for all conditions.

Channel AN NC NI AO OC OI Total

Fz 0 7 0 3 0 0 10
Pz 0 2 0 1 2 2 7
Cz 0 0 0 0 1 1 2
F7 1 0 0 0 1 0 2
F8 0 1 4 0 5 0 10
Bl 0 1 0 0 0 0 1
Br 2 0 1 0 4 0 7

L41 0 0 0 1 0 0 1
R41 0 4 0 1 1 2 8
Wl 0 0 0 6 0 0 6
Wr 1 1 0 1 0 1 4
T5 0 1 0 1 0 0 2
T6 0 0 0 2 1 0 3
O1 0 0 0 1 4 0 5
O2 0 1 0 2 1 0 4

While all sub-bands and the raw signal produced at least one significant result, the
δ and α sub-bands and raw signal seems to be the most effective in discriminating across
groups. As an example, Figure 3 demonstrates the mapping from the average EEG time
series for each group for the raw signal in electrode R41 under the condition Old Congruous
to averaged node degree time series (i.e., the number of other timepoints visible from each
timepoint in the voltage graph).

Finally, we visualize the separation of patient classes by projecting the 72 features
down to 2 dimensions in Figure 4. In the comparison of all patient classes against each
other (top), we see three clear clusters of points for each class. Notably, the pAD group lies
in between the AD and RNE groups in the top subfigure. This may be because the features
extracted from the AD vs. RNE comparison are likely less significant for the pAD patients,
although they are still general enough to create clear separation between the three groups.
In the AD vs. RNE projection plot (bottom right), we see that all classifiers are able to
perfectly separate the two groups, even in two dimensions. The pAD vs. RNE plot (bottom
left) also demonstrates very good separability between the two groups in two dimensions,
although the two sets of points are closer together than in the AD vs. RNE comparison.

The 10 most important features for each two-dimensional PCA projection comparison
from Figure 4 are listed in Table 4. The feature–band–electrode combinations that were
shared across at least two PCA comparisons are bolded and numbered in the tables. The
α and δ bands produced the largest number of these shared combinations, and the most
common features in these were global efficiency, density, TSP and GIC in electrodes F8, Fz,
O1 and R41. In every single shared combination, the value of the feature increased in the
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groups with dementia. The increase in these feature values generally indicates an increase
in the number of edges between nodes, indicating significantly different ERP structure that
results in the change in their VGs.
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Figure 3. The raw band averaged voltage time series on the left, corresponding averaged degree
sequences on the right. Each timepoint (represented by a unique node in the VG) in the left graph is
represented by the average EEG voltage for each group; in the right graph it is represented by the
average degree for its associated node in each group.

Figure 4. Two-dimensional PCA projections of data with associated decision boundaries for all
classifiers, datapoints and comparisons. For each plot, the PCA components were computed with
only the data in the plot to see the actual input to the ML algorithms. Top: Comparison of all classes,
using the 72 extracted features from AD vs. RNE. The datapoints from all classes are projected
together down to 2 dimensions for a 3-way comparison. pAD patients are intermediate to the RNE
and AD patients, as expected. Bottom Left: pAD and RNE are also distinctly separated, resulting in
excellent performance in our results by all classifiers. Bottom Right: In two dimensions, we easily
see that AD and RNE are linearly separable with the features we extracted.



Brain Sci. 2023, 13, 770 13 of 21

Table 4. Top 10 PCA Loading Table. The top 10 magnitude features for each of the two components
and comparisons in Figure 4. Any feature–band–electrode combination that was shared across at
least two of these comparisons is bolded and shares the same superscript number in the table. The
α and δ bands exclusively produce combinations shared across multiple PCA components in each
comparison, and the features that appear the most across those shared are global efficiency, density,
TSP and GIC. The conditions and electrodes that produce these shared features are Old Congruous,
New Incongruous and New Congruous in electrodes F8, Fz, O1 and R41.

All Class Electrode/Condition Magnitude

Component 1 NI: F8: Global Efficiency δ1 0.191
NC: Fz: Max Clique α2 0.178

NI: F8: Density δ3 0.173
NC: Fz: Clustering Coeff α4 0.168
NC: Fz: Local Efficiency α5 0.168
NC: Fz: Small Worldness α 0.168
OC: Br: Local Efficiency β 0.166
OC: Br: Clustering Coeff β 0.166

NI: F8: TSP δ6 0.160
OC: Br: Small Worldness β 0.156

Component 2 OC: F8: Density δ7 0.278
OC: F8: GIC δ8 0.278
OC: F8: TSP δ9 0.251

OC: F8: Global Efficiency δ10 0.250
OI: Pz: Global Efficiency Raw 0.232

NC: Fz: Min Cut Size γ 0.210
OC: O1: Density α11 0.209

OI: R41: Global Efficiency δ12 0.202
NC: O2: Density δ 0.189
OC: O1: GIC α13 0.187

pAD vs. RNE Electrode/Condition Magnitude

Component 1 OC: O2: TSP α 0.209
NI: F8: Density δ3 0.205

AN: Wr: Global Efficiency θ 0.203
NI: F8: Global Efficiency δ1 0.201

NI: F8: GIC δ 0.196
AO: Fz: Max Clique δ 0.192

NI: F8: TSP δ6 0.186
OC: O1: Density α11 0.183

OC: O1: GIC α13 0.182
OI: R41: Global Efficiency δ12 0.182

Component 2 OC: F8: TSP δ9 0.246
OC: R41: TSP δ 0.222
OC: F8: GIC δ8 0.208

OC: F8: Density δ7 0.207
OC: F8: Max Clique δ 0.206

NC: Pz: Density γ 0.176
AO: Fz: Clustering Coeff δ 0.170
AO: Fz: Local Efficiency δ 0.170

NC: R41: GIC α 0.165
OI: R41: GIC δ14 0.162

AD vs. RNE Electrode/Condition Magnitude

Component 1 NI: F8: Global Efficiency δ1 0.160
NC: Fz: Max Clique α2 0.154
AO: L41: Max Clique α 0.152

OC: T6: TSP γ 0.151
OC: F8: Density δ7 0.151

OC: O1: Global Efficiency α 0.146
NI: F8: Density δ3 0.144

NC: Fz: Local Efficiency α5 0.144
NC: Fz: Clustering Coeff α4 0.144

OI: R41: GIC δ14 0.143

Component 2 AO: Wl: Clustering Coeff β 0.271
AO: Wl: Local Efficiency β 0.271
AO: Wl: Small Worldness β 0.252

OC: F8: Global Efficiency δ10 0.230
AO: O1: Independence Number α 0.221

OC: F8: Density δ7 0.209
OC: F8: GIC δ8 0.206

NC: Wr: Independence Number Raw 0.205
OC: F7: Global Efficiency Raw 0.200

AO: Wl: Independence Number β 0.191
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5.2. Classification

All models are trained and evaluated 100 times, each time randomly splitting the
dataset into a training set of 85% of the patients and a testing set composed of the remaining
15%. We report classification metrics on the 15% testing set, where the metrics are averaged
across all 100 trials for each model. The PCA feature reduction step is performed each
time only on the features for the patients in the training set. The best results across all
classifiers are obtained by reducing the dimension of the feature vector to 11 via PCA.
On the AD vs. RNE comparison, we utilize the features extracted on the full dataset for
classification to test the ability of the features discovered and analyzed in Section 5.1. To
test the generalization of these features, we use only the 72 discovered AD vs. RNE features
for classification of the pAD patient group.

In summary, the accuracy for AD vs. RNE was 100% across all classifiers and the best
discrimination of pAD vs. RNE—using the 72 discovered AD vs. RNE features to measure
generalization—was 92.5% with the ANN. Notably, AD vs. RNE was perfectly solved with
linear classifiers and pAD vs. RNE classification performance with the same classifiers was
also excellent. Logistic regression achieved perfect precision and a very high AUC score
(0.99); however, the ANN provided even higher accuracy (92.5 %) and very similar AUC
and precision scores. Table 5 presents the classification metrics (accuracy, precision, recall,
AUC).

Table 5. Classification Statistics. Mean classification statistics and standard deviations for all classifiers
on both classification tasks. The rounded best performance across each column for each classification
type is bolded. AUC = Area Under (the ROC) Curve.

Type Classifier Accuracy (%) Precision Recall AUC

AD vs. RNE Logistic Regression 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00± 0.00
SVM 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
LDA 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ANN 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

pAD vs. RNE Logistic Regression 88.50 ± 12.9 1.00 ± 0.00 0.80 ± 0.22 0.99 ± 0.04
SVM 87.50 ± 13.4 0.95 ± 0.14 0.82 ± 0.20 0.95 ± 0.08
LDA 91.50 ± 13.1 0.98 ± 0.10 0.86 ± 0.20 0.97 ± 0.06
ANN 92.50 ± 12.5 0.99 ± 0.07 0.88 ± 0.20 0.99 ± 0.05

We perform an additional comparison with K-fold cross-validation in Appendix A,
with similar classification results across the board. We also examine the effect of the six
novel features we introduce by reporting classification results using only the six VG features
from prior work as input to the machine learning models; accuracy on the pAD vs. RNE
comparison drops for every model, demonstrating the importance of the new VG features
we introduce. See Appendix A for more details.

6. Discussion and Conclusions

This EEG/ERP word repetition paradigm has been shown to be sensitive to MCI and
the conversion from MCI to AD [7,8,10]. The recent development of VGs for EEG allows
for a more holistic measure of EEG time series using graph features. By combining VGs
with the EEG word repetition paradigm, we are able to discriminate AD from RNE with
a perfect accuracy of 100% using linear classifiers and generalize these same features for
pAD vs. RNE classification with an accuracy of 92.5%—on par with previous work directly
comparing pAD and RNE [60–66]. Our analysis demonstrates the effectiveness of looking
at word repetition EEG tasks for the features we selected for this visibility graph approach.

A number of graph features including GIC, global efficiency, clustering coefficient,
small-worldness and local efficiency were already confirmed to be significant in some
band–electrode combinations in resting state EEG VG studies comparing Alzheimer’s
to RNE [15,16]. Our results extend these findings by showing that these features also
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discriminate AD from RNE using a word repetition task EEG paradigm. Novel features
introduced in this paper have been shown to encode more differences between AD and RNE
in word repetition trials. To minimize type I error, we utilized PCA to reduce the number of
input metrics used for classification. Both novel and previously studied features appeared
in the top two components of our PCA loading table (Table 4). The most common features
were global efficiency, density, TSP cost and GIC. Two of these features, namely TSP and
density, are from the six novel ones we introduced. The presence of these features generally
points to a difference in EEG time series structure between groups, especially with regards
to voltage differences and overall structure differences in the waveforms. We note that min
cut size, max clique size and independence number also appear in Table 4, indicating that
five out of six of the novel features we introduced are important for prediction.

Learned graph features, representing group differences in the morphology of EEG
time series, may reflect AD pathological changes in the neural generators of ERPs, including
N400 and P600. Putative N400 generators have been found in the anterior fusiform gyri and
other temporal cortical regions [67,68]. The primary neural generators of the P600 word
repetition effect were localized by functional MRI to the hippocampus, parahippocampal
gyrus, cingulate, left inferior parietal cortex and inferior frontal gyrus [69,70]. Extended
synaptic failure in these regions due to AD pathology may account for the N400 and P600
abnormalities in AD and prodromal AD patients. For example, abnormal memory-related
P600 may be associated with tau load in the medial temporal lobe (MTL), including the
hippocampus, entorhinal and perirhinal cortices, based on the evidence that early tau
accumulation in these regions correlates with lower memory performance and reductions
in functional connectivity between the MTL and cortical memory systems [71].

Using raw and bandpass filtered EEG data, we find that the δ band produced the
largest number of features, closely followed by the α band. Neural oscillations in differ-
ent frequency bands are thought to carry different spatial and temporal dimensions of
brain integration. Spatially, slow oscillations integrate large neural networks whereas
fast oscillations synchronize local networks [72]. Temporally, slow neural fluctuations are
related to the accumulation of information over long timescales across higher order cortical
regions [73]. In line with these hypotheses, empirical evidence has indicated that slow
oscillations in the delta range are important for higher cognitive functions that require
large-scale information integration (see Güntekin and Başar [74] for a review). Delta activity
has been shown to play important roles in language comprehension such as chunking
words into meaningful syntactic phrases [75]. Slow wave activity (SWA) also facilitates
memory consolidation during sleep by orchestrating fast oscillations across multiple brain
regions [76]. It may therefore be hypothesized that cognitive impairments in AD are re-
lated to alterations in slow oscillatory activity. Accumulating evidence has supported this
hypothesis, showing that decreased delta responses following cognitive stimulation may
serve as a general electrophysiological marker of cognitive dysfunction including MCI and
AD [74]. The present findings add to this line of research showing that the patterns of slow
EEG fluctuations, as characterized by VG features, reflect neural/cognitive abnormalities
in AD. Specific to this word repetition paradigm, Xia et al. [77] has shown that the vast
majority of the memory-related P600 word repetition effect is mediated by slow oscillations
in the delta band. Modulation of alpha band power, in comparison, is associated with se-
mantic processing of congruous and incongruous words. Alpha suppression was found to
be greater for New than for Old words [10]. The P600 (delta activity) and alpha suppression
effects reflect different aspects of verbal memory processing, and each uniquely contributes
to predicting individual verbal memory performance [77].

An interesting finding in the present study is that the Old Congruous condition (words
that are semantically congruous to the preceding category statements on repeated trials)
produces the highest number of features. Our previous ERP studies and many behavioral
studies have shown that old words are processed very differently from new words in
normal elderly, due to their intact memory function, but much less so in AD patients. EEG
channels producing the highest number of features were Fz, F8, R41, Pz, Br, Wl and O1. In
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the PCA comparision in Figure 4 and Table 4, we see this trend continue across even the
different comparisons (all classes, pAD vs. RNE, AD vs. RNE). Several of these channels
are known to be sensitive to word repetition and congruity manipulations in pAD patients.
For example, the N400 brain potential usually becomes smaller when an incongruous word
is repeated, i.e., the N400 repetition effect, and the effect is typically largest over midline
and right posterior channels including Cz, Pz, Wr, R41 and T6 [7,8,13]. The P600 ERP
usually becomes smaller when a congruous word is repeated, i.e., the P600 congruous
repetition effect, and the effect is widespread and largest over the midline channels with a
peak typically near Pz [7,8,13]. These ERP repetition effects are consistently found to be
reduced or abnormal in MCI patients [7,8], and severely diminished in AD patients [13]
compared to RNE, although they still appear in our comparison. The consistency across
studies in channel locations where group differences were found suggests that the VG
features may capture the underlying brain mechanisms related to the ERP repetition effects.

We now list strengths and limitations of our study. One of the strengths of our study is
our 100% accuracy with all classifiers on AD vs. RNE which demonstrates the effectiveness
of the features our method extracts. Linear separability after PCA implies that, even before
dimension reduction, AD vs. RNE is still a linearly separable comparison; indeed, Figure 4
explicitly demonstrates this. Additionally, classification accuracy of 92.5% on pAD vs.
RNE with non-linear neural networks and similar accuracies with linear classifiers using
only the features extracted from AD vs. RNE highlights how these generalizable features
alone may be sufficient for high-accuracy, near-linear classification of these two groups
that remains competitive with other EEG-based published work which explicitly extract
features for pAD vs. RNE classification [60–66]. This strength also likely comes from
looking at word repetition EEG tasks which have been shown to be sensitive to detecting
MCI-to-AD conversion and preclinical AD using ERPs [7,8,11]. Furthermore, our code is
open source and linked in the paper so that future work can build upon our strong results
and apply it to other datasets and tasks.

A potential limitation of the present study is the down-sampling procedure used
for data reduction. Averaging EEG data across non-overlapping 80 ms time windows is
effectively similar to lowpass filtering the data to 12.5 Hz, which would have reduced
the amount of information in higher frequencies including beta band and above. This
procedure most likely limited our ability to find discriminative VG features in these higher
frequency bands. It is also worth noting that, in the present study, we used EEG time series
averaged across trials for VG conversion. Cross-trial averaging is commonly used in ERP
analyses to increase the signal-to-noise ratio in EEG data and extract activity that is evoked
by, and phase-locked to, experimental stimuli. This averaging procedure, although highly
effective as demonstrated in the present study, ignores EEG activity that is related, but
not phase-locked, to the stimuli. With greater computing power, it would be valuable for
future studies to identify discriminative VG features from higher frequency bands and
non-phase-locked activity.

Another limitation is the small sample size used in our classification tests, feature
extraction and statistical analysis (15 AD, 15 pAD, 11 RNE). We mitigate this issue in two
ways: (1) we report classification scores as an average of 100 trials of training on 85% of
the data and testing on 15% (and only reporting the testing accuracy), and (2) we verify
the feature extraction step by only using AD vs. RNE features to classify pAD patients,
demonstrating generalization of those features. Despite this, further replication of these
results on larger datasets would be beneficial to the field. In such studies, it could be useful
to perform data augmentation, reduce model bias by imposing some penalties during
training (e.g., weight decay, dropout, etc.) or try different network architectures (such
as graph neural networks) to achieve even better generalization results. An additional
limitation is that we did not require amyloid biomarker studies in the definition of our
clinically defined subject groups, who were well-characterized by expert clinicians and
longitudinal cognitive testing.
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In summary, this paper extends the results of prior studies on the use of visibility
graphs for finding distinguishing features between and classifying Alzheimer’s and RNE
groups [15,16] to word repetition tasks on both AD and pAD with a novel set of features.
Distinguishing between pAD and RNE groups has historically produced poorer classifica-
tion accuracy in the literature; however, this paper provides novel features for this type of
classification that discriminates between pAD and RNE with competitive accuracy on our
dataset (92.5%) simply by generalizing AD vs. RNE features. Although we achieve perfect
100% accuracy on the AD vs. RNE task and demonstrate its generalization, a larger study
with a much larger sample size is still required to verify the efficacy of our framework.
Because all of the code is open source, this experiment can be readily applied to much
larger datasets; future applications could include predictors of conversion in MCI and
discriminate between different dementia pathologies. In future work, we plan to apply
our framework to larger AD and MCI datasets, and also to test similar frameworks in
preclinical AD.
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Appendix A. Additional Classification Results

Here we present additional results. In Table A1, we list K-fold (K = 8) cross-validation
results on the same data and features as in the main text. We achieve similar results across
the board to the setup in the main text, with 100% average accuracy on the AD vs. RNE
comparison and a best accuracy of 95.83% by the neural network on the pAD vs. RNE
comparison using only the features extracted from the AD vs. RNE patients.

In Table A2, we list K-fold (K = 8) cross-validation results on the same data but with
only the six features in prior work (none of the novel features we have introduced) extracted
from the patient visiblity graphs. While accuracy on the AD vs. RNE comparison remains
the same at 100%, accuracies dropped on every single classifier on the independent pAD vs.
RNE classification comparison with only the old features. For example, the ANN achieves
95.83% accuracy in Table A1 but, with only the old features, that accuracy drops to 80.21%
in Table A2. The ANN suffering the largest performance drop indicates that the six features
from prior work may be easier to overfit to as the ANN is the only non-linear classifier and
also the most expressive model class with the most learnable parameters.
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Table A1. Eight-Fold CV Classification Statistics. Mean classification statistics and standard devi-
ations for all classifiers on both classification tasks. Results are averaged over validation accuracies
across all 8 folds. The rounded best performance across each column for each classification type is
bolded. AUC = Area Under (the ROC) Curve.

Type Classifier Accuracy (%) Precision Recall AUC

AD vs. RNE Logistic Regression 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SVM 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
LDA 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ANN 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

pAD vs. RNE Logistic Regression 89.58 ± 13.7 1.00 ± 0.00 0.81 ± 0.24 1.00 ± 0.00
SVM 89.58 ± 13.7 1.00 ± 0.00 0.81 ± 0.24 1.00 ± 0.00
LDA 86.46 ± 18.6 0.94 ± 0.17 0.88 ± 0.22 0.88 ± 0.33
ANN 95.83 ± 11.0 1.00 ± 0.0 0.94 ± 0.17 1.00 ± 0.00

Table A2. Eight-Fold Classification Results with only Features from Prior Work. Mean classification
statistics and standard deviations for all classifiers on both classification tasks, with only the six
features from prior work: CCSS, clustering coefficient, global efficiency, local efficiency, small-
worldness and GIC. Results are averaged over validation accuracies across all 8 folds. The rounded
best performance across each column for each classification type is bolded. AUC = Area Under (the
ROC) Curve.

Type Classifier Accuracy (%) Precision Recall AUC

AD vs. RNE Logistic Regression 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SVM 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
LDA 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
ANN 100 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

pAD vs. RNE Logistic Regression 83.33 ± 18.2 0.88 ± 0.33 0.69 ± 0.35 0.91 ± 0.17
SVM 87.50 ± 17.7 0.83 ± 0.33 0.81 ± 0.35 1.00 ± 0.00
LDA 83.33 ± 18.2 0.88 ± 0.33 0.69 ± 0.35 0.91 ± 0.17
ANN 80.21 ± 17.1 0.83 ± 0.33 0.69 ± 0.35 0.97 ± 0.08
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