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Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that progressively
affects bulbar and limb function. Despite increasing recognition of the disease as a multinetwork
disorder characterized by aberrant structural and functional connectivity, its integrity agreement and
its predictive value for disease diagnosis remain to be fully elucidated. In this study, we recruited
37 ALS patients and 25 healthy controls (HCs). High-resolution 3D T1-weighted imaging and resting-
state functional magnetic resonance imaging were, respectively, applied to construct multimodal
connectomes. Following strict neuroimaging selection criteria, 18 ALS and 25 HC patients were
included. Network-based statistic (NBS) and the coupling of grey matter structural–functional
connectivity (SC–FC coupling) were performed. Finally, the support vector machine (SVM) method
was used to distinguish the ALS patients from HCs. Results showed that, compared with HCs, ALS
individuals exhibited a significantly increased functional network, predominantly encompassing
the connections between the default mode network (DMN) and the frontoparietal network (FPN).
The increased structural connections predominantly involved the inter-regional connections between
the limbic network (LN) and the DMN, the salience/ventral attention network (SVAN) and FPN,
while the decreased structural connections mainly involved connections between the LN and the
subcortical network (SN). We also found increased SC–FC coupling in DMN-related brain regions
and decoupling in LN-related brain regions in ALS, which could differentiate ALS from HCs with
promising capacity based on SVM. Our findings highlight that DMN and LN may play a vital role
in the pathophysiological mechanism of ALS. Additionally, SC–FC coupling could be regarded
as a promising neuroimaging biomarker for ALS and shows important clinical potential for early
recognition of ALS individuals.

Keywords: amyotrophic lateral sclerosis; brain network; SC–FC coupling; network-based statistic

1. Introduction

Amyotrophic lateral sclerosis (ALS) is an idiopathic, progressive neurodegenerative
disorder that mainly impairs human multimotor systems [1]. Because it begins insidiously
with focal weakness but progressively spreads to involve most muscles, early diagnosis is
difficult, and the mechanisms underlying the genesis and progression of ALS are poorly
understood [1].
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With the development and application of multimodal neuroimaging, magnetic reso-
nance imaging (MRI) has enhanced our understanding of disease progression and provided
candidate biomarkers for early diagnosis in ALS-related studies [2]. Grey matter-based
research has revealed that ALS patients showed focal or widespread atrophy in the mo-
tor cortex (e.g., precentral gyrus) and frontal and temporal regions [3–5]. White matter
microstructural impairments of the corticospinal tract and corpus callosum were also doc-
umented in ALS based on diffusion tensor imaging (DTI) [6,7]. Functional connectivity
changes in the frontoparietal network (FPN), the subcortical network (SN), and especially
the default mode network (DMN) can be used to evaluate cognitive performance and motor
function and predict the progression of the disease in ALS patients [8–11]. Compared to
unimodal neuroimaging, multimodal neuroimaging provides more information on the
occurrence and progression of ALS. A multimodal imaging study found that by combining
white matter microstructural properties, grey matter volume and functional connectivity
(FC) helped to discriminate ALS patients from healthy controls (HCs) [12].

Connectomics is a promising method of detecting brain structural and functional
connections by modeling multimodal networks [13]. Human brain function is constrained
by anatomical interconnections, and the coupling of grey matter structural connectivity
(SC) and FC (i.e., SC–FC coupling) can be used to predict FC from its corresponding SC [14].
SC–FC coupling strength can be measured by the correlation between the two networks and
provides more sensitive and specific measures of individual functioning than any single
modality [14,15], which may lead to the development of better biomarkers. Recent studies
have found aberrant SC–FC coupling in patients with attention-deficit/hyperactivity dis-
order [16], schizophrenia [17,18], bipolar disorder [19], Parkinson’s disease [20], multiple
sclerosis [21], and Alzheimer’s disease [22]. Further research found that SC–FC coupling
combined with machine learning methods showed better sensitivity and specificity in the
diagnosis of diseases, such as major depressive disorder [23,24]. However, few studies
have focused on altered grey matter SC–FC coupling and its value for the early diagnosis
of ALS.

In the current study, we first applied connectomics techniques to functional and
structural imaging data to explore aberrant brain SC and FC in ALS. Second, we combined
the support vector machine (SVM) with SC–FC coupling to distinguish ALS patients from
HCs and aimed to reveal the underlying neuroimaging mechanisms of ALS.

2. Materials and Methods
2.1. Participants and Clinical Evaluation

The experimental procedures performed for this research were approved by the
ethics committee of involved hospital. All persons gave their informed consent prior to
their inclusion in the study. Thirty-seven ALS individuals recruited in 2021 fitted the
diagnosis of sporadic possible or probable ALS on the basis of the revised El Escorial
criteria [25]. All individuals were assessed by “the revised ALS Functional Rating Scale”
(ALSFRS-R) [26]. Clinical variables of “disease duration” and “rate of disease progression”
were obtained to reflect disease severity. The “disease duration” measures the time from
the symptom onset to the neuroimaging assessment. The “rate of disease progression” is
computed by linearly averaged decrease of ALSFRS-R scores per month from the symptom
onset [(48-ALSFRS-R)/(disease duration)]. The exclusion criteria for ALS individuals in-
cluded family history of neurodegenerative diseases (including a family history of ALS),
frontotemporal dementia [27], cognitive impairment, major psychiatric and other neurolog-
ical disorders. Twenty-five HCs with no history of neuro-psychiatric illness were included.
Diagram flow of the sample composition was described in Figure 1. All individual subjects
provided written informed consent.
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Figure 1. Diagram flow of the ALS recruitment. Abbreviations: ALS, amyotrophic lateral sclerosis. 
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data were acquired by the gradient-recalled echo planar imaging sequence [repetition 
time (TR) = 2000 ms, flip angle (FA) = 90°, echo time (TE) = 30 ms, number of slices = 35, 
thickness = 4.0 mm, field of view (FOV) = 240 × 240 mm2, acquisition matrix = 64 × 64]. For 
structural MRI data, high-resolution 3D T1-weighted images were performed in a turbo 
gradient echo sequence [TR = 9.8 ms, FA = 8°, TE = 4.6 ms, number of slices = 192, thickness 
= 1.0 mm, FOV = 250 × 250 mm2, acquisition matrix = 256 × 256]. 

2.3. MRI Data Preprocessing and Multimodal Connectome Construction 
2.3.1. Functional Connectome 

The rs-fMRI data in this study were preprocessed by statistical parametric mapping 
(SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/ (assessed on 9 September 
2022)) and Data Processing & Analysis for Brain Imaging (DPABI V4.1, 
http://rfmri.org/dpabi/(assessed on 9 September 2022)). The major preprocessing steps in-
cluded slice-timing and head motion correction, normalization to the Montreal Neurolog-
ical Institute space, multiple linear regression analysis and band-pass filtering (0.01–0.1 
Hz). In addition, subjects who exhibited an angular rotation >2°, a displacement >2 mm in 
any direction, or mean Jenkinson frame-wise displacement (FD) greater than 0.2 mm were 
excluded from this study [28]. The entire brain was divided into 246 cortical and subcor-
tical regions based on the Human Brainnetome Atlas (https://atlas.brainnetome.org/ (as-
sessed on 9 September 2022), the detailed brain segmentation in Supplementary Materials 
Table S1). Pearson correlation between the regional mean time series of each pair of brain 
regions was conducted. Only those functional connectivity whose corresponding p values 
lower than 0.05 (false discovery rate-corrected) were preserved [29]. Finally, we con-
structed a 246 × 246 symmetric correlation matrix to represent the individual functional 
network (Figure 2). 

Figure 1. Diagram flow of the ALS recruitment. Abbreviations: ALS, amyotrophic lateral sclerosis.

2.2. MRI Acquisition

All participants underwent multimodal neuroimaging scanning on a 3.0T Philips
MRI (Philips Medical Systems, Eindhoven, The Netherlands). Resting-state functional
MRI (rs-fMRI) data were acquired by the gradient-recalled echo planar imaging sequence
[repetition time (TR) = 2000 ms, flip angle (FA) = 90◦, echo time (TE) = 30 ms, number
of slices = 35, thickness = 4.0 mm, field of view (FOV) = 240 × 240 mm2, acquisition
matrix = 64 × 64]. For structural MRI data, high-resolution 3D T1-weighted images were
performed in a turbo gradient echo sequence [TR = 9.8 ms, FA = 8◦, TE = 4.6 ms, number of
slices = 192, thickness = 1.0 mm, FOV = 250 × 250 mm2, acquisition matrix = 256 × 256].

2.3. MRI Data Preprocessing and Multimodal Connectome Construction
2.3.1. Functional Connectome

The rs-fMRI data in this study were preprocessed by statistical parametric mapping
(SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/ (assessed on 9 September
2022)) and Data Processing & Analysis for Brain Imaging (DPABI V4.1, http://rfmri.org/
dpabi/ (assessed on 9 September 2022)). The major preprocessing steps included slice-
timing and head motion correction, normalization to the Montreal Neurological Institute
space, multiple linear regression analysis and band-pass filtering (0.01–0.1 Hz). In addition,
subjects who exhibited an angular rotation >2◦, a displacement >2 mm in any direction,
or mean Jenkinson frame-wise displacement (FD) greater than 0.2 mm were excluded
from this study [28]. The entire brain was divided into 246 cortical and subcortical regions
based on the Human Brainnetome Atlas (https://atlas.brainnetome.org/ (assessed on
9 September 2022), the detailed brain segmentation in Supplementary Materials Table S1).
Pearson correlation between the regional mean time series of each pair of brain regions
was conducted. Only those functional connectivity whose corresponding p values lower
than 0.05 (false discovery rate-corrected) were preserved [29]. Finally, we constructed a
246 × 246 symmetric correlation matrix to represent the individual functional network
(Figure 2).

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://rfmri.org/dpabi/
http://rfmri.org/dpabi/
https://atlas.brainnetome.org/
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Figure 2. Workflow for quantifying SC–FC coupling and SVM analysis. Abbreviations: SC, structural
connectivity; FC, functional connectivity; SVM, support vector machine.

2.3.2. Structural Connectome

Before constructing the grey matter structural network, the 3D T1 imaging were
preprocessed by using the Computational Anatomy Toolbox (CAT12, http://www.neuro.
uni-jena.de/cat/ (assessed on 9 September 2022)) as implemented in the SPM12. The main
preprocessing steps included correction for bias-field inhomogeneities, tissue segmentation
into white matter, grey matter and cerebrospinal fluid, and spatial normalization with
the DARTEL algorithm. Then, the grey matter volume maps were smoothed spatially
(Gaussian kernel with 6 mm full width at half maximum). To construct grey matter
structural connectome, the Jensen–Shannon distance-based similarity (JSS) was applied
to define structural connectivity between each pair of brain regions [30]. For each subject,
we first extracted the grey matter volume values of all voxels in each brain region. Second,
the probability density function of these grey matter volume values was estimated by the
kernel density. Third, the probability distribution function (PDF) was computed according
to the above probability density function. Afterwards, the JSS between each pair of brain
regions was computed by their PDF and ranged from 0 to 1. Finally, a 246 × 246 symmetric
similarity matrix was obtained to represent the grey matter structural connectome of each
participant (Figure 2).

2.4. Network-Based Statistic Analysis

To identify the specific subnetwork that showed a significant group difference between
ALS and HC patients, we applied a network-based statistic (NBS) approach [31]. Based on
the step of permutation, the NBS could correct for the family-wise error due to the large
number of connections compared. Briefly, a primary threshold (p < 0.001, uncorrected) was
applied to the two-sample t test computed for each edge to define a set of suprathreshold
connections, among which any connected subnetworks and their sizes were then deter-
mined. A corrected p value was computed for each connected component using the null
distribution of the maximal component size, which was empirically derived by using a
nonparametric permutation approach (5000 permutations). The 246 brain regions from the
Human Brainnetome Atlas were mapped into the 7 functional network atlases proposed by
Yeo et al. and the subcortical network [32]. The eight intrinsic brain networks included the
SN, limbic network (LN), visual network (VN), somatomotor network (SMN), FPN, DMN,
dorsal attention network (DAN), and salience/ventral attention network (SVAN). Finally,

http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
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we counted the number of connections with significant statistical differences within and
between subnetworks.

2.5. Calculation of SC–FC Coupling

A correlation analysis was conducted between the strengths of the SC and FC for
the whole-brain SC–FC coupling. All nonzero values of the SC matrix were selected and
rescaled to a Gaussian distribution. The new SC vector was correlated with its functional
counterparts derived from the FC matrix. Then, a single whole-brain SC–FC coupling
metric for each participant was obtained, indicating the SC–FC coherence across the whole-
brain regions. Regional-node SC–FC coupling was performed by computing the correlation
coefficient between a row of the SC matrix with its corresponding row of the FC matrix
(excluding the self-connection). This resulted in a vector of 246 values that represented
the regional-node SC–FC coupling for each of the 246 regions in each participant. In
addition, we separately calculated the global-network SC–FC coupling, within-network
SC–FC coupling, and between-network SC–FC coupling from the perspective of the brain
network. The global-network SC–FC coupling for each subnetwork was calculated by
correlating the SC matrix of each subnetwork with the corresponding FC matrix. The
within-network SC–FC coupling for each brain region was the correlation of the FC and
SC between that region and other regions in the same subnetwork. The between-network
SC–FC coupling for each brain region was performed between that region and other regions
belonging to other subnetworks. The pattern diagrams of these SC–FC coupling measures
are shown in Figure 2.

2.6. Machine Learning

The SVM with linear kernel was performed by using a toolkit (LIBSVM, http://www.
csie.ntu.edu.tw/cjlin/libsvm/ (assessed on 9 September 2022)). The SVM analysis involves
three steps: feature selection, classifier training, and prediction. In our research, statistically
significant features, such as regional-node SC–FC coupling, global-network SC–FC cou-
pling, within-network SC–FC coupling, and between-network SC–FC coupling, were first
selected for SVM to form a high dimensional space (Figure 2). Second, SVM conducts the
classifier training to construct a hyperplane that optimally separates the classes. Last, the
classifier is used to predict the class label when a new sample is added into the classifier.
Due to the limited number of samples, we used the leave-one-out cross-validation (LOOCV)
scheme to assess the performance of the classifier. The performance of a classifier can also
be quantified using sensitivity, specificity, and accuracy. Note that the specificity represents
the proportion of HC subjects correctly predicted, while the sensitivity represents the pro-
portion of ALS subjects correctly predicted. To further evaluate the statistical significance
of the observed classification accuracy, we conducted permutation testing. During each
permutation test, we randomly permuted the labels of participants prior to SVM analysis,
and LOOCV was then performed on the permuted datasets. This procedure was repeated
5000 times to determine whether the classification accuracy occurs by chance. To achieve
stable classification performance, we also applied the linear discriminant analysis and
the bagged trees, which were performed in MATLAB 2017b. The detailed information is
described in the Supplementary Materials.

2.7. Statistical Analysis

Statistical analyses of demographic characteristics were performed using Statistical
Package for Social Sciences software (SPSS V22, IBM Corp., Armonk, NY, USA). We used
a Chi-square (χ2) test to test group differences in gender and applied a two-sample t test
for age and education. To compare these SC–FC coupling measures between the HC
and ALS groups, a nonparametric permutation test was used and repeated 5000 times.
p < 0.05 was considered as a significant level (uncorrected). The permutation procedure
was conducted based on the permutation code embedded in the Graph Theoretical Net-

http://www.csie.ntu.edu.tw/cjlin/libsvm/
http://www.csie.ntu.edu.tw/cjlin/libsvm/
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work Analysis Toolbox (GRETNA, http://www.nitrc.org/projects/gretna/ (accessed on
9 September 2022)).

3. Results
3.1. Demographic and Clinical Characteristics

In the ALS group, nineteen ALS individuals were excluded from analysis because
of lacking multimodal MRI data (n = 13), excessive head movement (n = 4), and cerebral
vascular damage (n = 2) (Figure 1). Finally, 18 ALS and 25 HC patients were involved in
the imaging analyses. Demographic and clinical data are provided in Table 1. There were
no significant differences in the age, gender, and Montreal cognitive assessment (MoCA)
between the ALS and HC groups.

Table 1. Demographic and clinical data in ALS patients and HCs.

Items HC (n = 25) ALS (n = 18) Statistical
Value p Value

Age (years) 53.40 ± 2.89 54.11 ± 12.09 −0.24 0.78 b

Gender (male/female) 17/8 9/9 1.42 0.23 a

MoCA 27.88 ± 1.13 27.33 ± 0.84 1.73 0.09 b

Disease duration at baseline (months) – 9.97 ± 8.45 – –
Site of onset (spinal/bulbar) – 16/2 – –
ALSFRS-R at baseline (0–48) – 41.89 ± 4.00 – –
ALSFRS-R progression rate

[(48-ALSFRS-R score)/disease duration] – 1.06 ± 0.97 – –

Diagnostic category
(Definite/probable/probable

lab-supported/possible)
– 14/3/1/0 – –

Values are presented as the mean ± standard deviation. a p value was obtained by the χ2 test, b p value was
obtained by two-sample t tests. Abbreviations: ALS, amyotrophic lateral sclerosis; HC, healthy control; MoCA,
Montreal cognitive assessment; ALSFRS-R, the revised ALS functional rating scale.

3.2. Altered Functional Network Connectivity in ALS

Compared to the HC group, the NBS result identified a single subnetwork containing
39 nodes with 49 significantly increased connections in the ALS group (p = 0.019, corrected,
Figure 3A). This subnetwork predominantly encompassed the connections between the
DMN and the FPN (edges: 11/49, 22.45%), and the DMN and the DAN (edges: 9/11,
18.37%).

3.3. Altered Structural Network Connectivity in ALS

Non-parametric NBS analysis showed two subnetworks with significant differences in
SC matrices between the ALS and HC groups. Compared to HCs, ALS patients showed sig-
nificantly increased connections within the first subnetwork (p = 0.009, corrected, the upper
row of Figure 3B). This subnetwork consisted of 129 nodes and 202 edges, predominantly
involved the inter-regional connections between the LN and the DMN (edges: 36/202,
17.82%), the LN and the SVAN (edges: 24/202, 11.88%), and the LN and the FPN (edges:
22/202, 10.89%). Compared to the HC group, the second subnetwork was composed of
73 nodes and 168 edges, which was significantly decreased in the ALS group (p = 0.009,
corrected, the bottom row of Figure 3B). This subnetwork mainly involved the connections
between the LN and the SN (edges: 60/168, 35.71%).

3.4. SC–FC Coupling Measures and Their Clinical Prediction

There was no significant difference in the whole-brain SC–FC coupling between the
ALS and HC groups (p = 0.29, 5000 permutations). We separately calculated the global-
network SC–FC coupling from the perspective of brain network. The ALS group exhib-
ited significantly increased global-network SC–FC coupling strength in the SN (p = 0.024,
5000 permutations), SMN (p = 0.025, 5000 permutations), and DMN (p = 0.009, 5000 per-

http://www.nitrc.org/projects/gretna/


Brain Sci. 2023, 13, 803 7 of 14

mutations) compared to the HC group, as shown in Figure 4A. No significant difference
in global-network SC–FC coupling was observed in other subnetworks (e.g., LN, VN,
FPN, DAN, and SVAN). Based on the features of global-network SC–FC coupling, the
SVM model could distinguish the ALS patients from HCs with an accuracy of 72.09%, a
sensitivity of 88.00%, and a specificity of 61.11% (p = 0.008, 5000 permutations, Figure 4A).
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Figure 3. The altered connected subnetwork in patients with ALS based on the NBS analysis.
(A) Altered functional network connectivity in ALS. A single connected subnetwork containing
39 nodes with 49 significantly increased connections in patients with ALS compared with the HC
group (p = 0.019, corrected). (B) Altered grey matter structural network connectivity in ALS. ALS pa-
tients showed significantly increased connections within the first subnetwork consisting of 129 nodes
and 202 edges (p = 0.009, corrected, the upper row of (B)). The second subnetwork was composed
of 73 nodes and 168 edges, which was significantly decreased in ALS compared with the HC group
(p = 0.009, corrected, the bottom row of (B)). Abbreviations: ALS, amyotrophic lateral sclerosis; HC,
healthy control; NBS, network-based statistic; SN, subcortical network; LN, limbic network; VN,
visual network; SMN, somatomotor network; FPN, frontoparietal network; DMN, default mode
network; DAN, dorsal attention network; SVAN, salience/ventral attention network.
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Figure 4. SC–FC coupling and clinical predictive analysis. (A) The ALS group showed significantly
increased global-network SC–FC coupling than the HC group in the SN (p = 0.024, 5000 permutations),
SMN (p = 0.025, 5000 permutations) and DMN (p = 0.009, 5000 permutations). Based on the features of
global-network SC–FC coupling, SVM analysis was able to classify the ALS subjects from HCs with an
accuracy of 72.09%, a sensitivity of 88.00%, and a specificity of 61.11% (p = 0.008, 5000 permutations).
(B) ALS patients exhibited significantly different regional-node SC–FC coupling in 23 brain regions
compared with HCs (p < 0.05, 5000 permutations, the upper row of (B)). By applying the node-level
SC–FC coupling as features, the SVM model showed the classification performance with an accuracy
of 81.40%, a sensitivity of 80.00%, and a specificity of 94.44% (p = 0.001, 5000 permutations, the upper
row of (B)). ALS patients showed significantly different within-network SC–FC coupling in 17 brain
regions compared with HCs (p < 0.05, 5000 permutations, the middle row of (B)). The within-network
SC–FC coupling could be applied to distinguish ALS patients from HCs with an accuracy of 76.74%,
a sensitivity of 72.00%, and a specificity of 94.44% (p = 0.005, 5000 permutations, the middle row of
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(B)). From the perspective of between-network SC–FC coupling, ALS patients exhibited signifi-
cantly different regional-node SC–FC coupling in 19 brain regions compared with HCs (p < 0.05,
5000 permutations, the bottom row of (B)). By using the between-network SC–FC coupling as features,
the SVM analysis showed the classification performance with an accuracy of 76.74%, a sensitivity of
80.00%, and a specificity of 72.22% (p = 0.005, 5000 permutations, the bottom row of (B)).

From the perspective of node-level SC–FC coupling, ALS patients exhibited signif-
icantly different regional-node SC–FC coupling in 23 brain regions compared to the HC
group (p < 0.05, 5000 permutations, the upper row of Figure 4B). Among them, the regional-
node SC–FC coupling of LN-related brain regions (e.g., hippocampus and parahippocampal
gyrus) was significantly reduced, and the regional-node SC–FC coupling of DMN-related
brain regions (e.g., prefrontal lobe and anterior cingulate gyrus) was significantly enhanced
in the ALS group. By applying node-level SC–FC coupling as features, the SVM model
showed classification performance with an accuracy of 81.40%, a sensitivity of 80.00%,
and a specificity of 94.44% (p = 0.001, 5000 permutations, the upper row of Figure 4B),
and the node-level SC–FC coupling in the parahippocampal gyrus represented the best
predictive value.

ALS patients showed significantly different within-network SC–FC coupling in 17 brain
regions compared with HCs (p < 0.05, 5000 permutations, the middle row of Figure 4B). A
distribution pattern similar to that of regional-node SC–FC coupling was observed. The
within-network SC–FC coupling of LN-related brain regions was significantly reduced,
while the within-network SC–FC coupling of DMN-related brain regions was significantly
enhanced in the ALS group. In addition, the within-network SC–FC coupling could be
applied to distinguish ALS patients from HCs with an accuracy of 76.74%, a sensitivity
of 72.00%, and a specificity of 94.44% (p = 0.005, 5000 permutations, the middle row of
Figure 4B). From the perspective of between-network SC–FC coupling, ALS patients ex-
hibited significantly different regional-node SC–FC coupling in 19 brain regions compared
with HCs (p < 0.05, 5000 permutations, the bottom row of Figure 4B). The distribution
pattern of these 19 brain regions was similar to the regional-node and within-network
SC–FC coupling mentioned above. By using the between-network SC–FC coupling as
features, the SVM analysis showed a classification performance with an accuracy of 76.74%,
a sensitivity of 80.00%, and a specificity of 72.22% (p = 0.005, 5000 permutations, the bottom
row of Figure 4B).

Due to the effects of overfitting and small sample size on our results, we also performed
a linear discriminant analysis and the bagged trees. In general, these two models prelimi-
narily showed similar classification performance compared with the SVM, as described it
in the Supplementary Materials.

4. Discussion

In this study, using multimodal neuroimaging techniques, we constructed functional
and structural networks and examined altered brain networks in patients with ALS. In
addition, we employed a hierarchical analysis approach (from global to regional scales) to
investigate the abnormal pattern of SC–FC coupling in ALS and combined these data with
the SVM approach to distinguish ALS patients from HCs. Our findings revealed that ALS
patients showed significantly increased functional connectivity of interconnected edges,
primarily related to the DMN. In the structural network-based analyses, the enhanced
grey matter structural connections predominantly involved the interregional connections
between the LN and other cortical networks, while the weakened structural connections
mainly involved connections between the LN and the SN. We also found stronger SC–FC
coupling in DMN-related brain regions and decoupling in LN-related brain regions in ALS
patients based on the SVM approach, which is promising for distinguishing ALS patients
from HCs.

The NBS results indicated that a single connected subnetwork exhibited increased con-
nections in the ALS group compared with the HC group. The subnetwork predominantly
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encompassed the connections between the DMN and other cortical networks (e.g., the FPN
and DAN). Altered resting-state functional network connectivity, especially in the DMN,
in ALS has been extensively reported in previous studies [9–11,33–36]. However, fMRI
studies have reported inconsistent findings. A few studies were consistent with our find-
ings and reported increased functional connectivity in the DMN (e.g., parahippocampal,
frontoparietal, prefrontal, cingulate, and thalamic regions) in ALS patients compared to
controls. Furthermore, the strength of functional connectivity in the DMN of ALS patients
exhibited more significant correlations with cognitive function, disability, and disease
progression, which might indicate physiological compensation for impaired structural in-
tegrity [11,33,35]. However, other research has described hypoconnectivity in DMN-related
regions, including the cingulate cortex, inferior parietal cortex, superior mid-frontal gyrus,
and frontotemporal gyrus, which have been linked previously to executive functions and
global cognition [9,10,36,37]. Notably, the above-mentioned studies investigated functional
abnormalities at a regional level. We employed a network-based neuroimaging method
to determine how internetwork and intranetwork connectivity was altered in ALS and to
expand upon previous neuroimaging findings. It is well established that disease hetero-
geneity, severity, and rate of progression differ significantly among studies, which may
have also caused the differences in the results.

In our study, we demonstrated that the stronger grey matter structural connectivity
predominantly involved the interregional connections between the LN and other cortical
networks, while the weakened grey matter structural connectivity mainly involved the
connections between the LN and the SN. It is worth noting that ALS patients showed
more widespread white matter structural alterations than functional alterations compared
with HCs, especially in terms of damage [36,38,39]. These findings indicate that structural
alterations may occur earlier than functional abnormalities. As a major relay station that
modulates input from many cortical areas, the thalamus (an important region of the SN) is
involved in the pathophysiology of ALS [40]. Abnormalities in the thalamus on diffusion
MRI, MR spectroscopy, and fMRI have been reported in many studies; these abnormalities
are mostly consistent with our findings [40,41]. According to the network-based hypothesis,
pathological alterations could physically spread along neuroanatomical connections in
the brain. Thus, it is reasonable to assume that altered functional connectivity may lead
to damage to the brain structural network. Previous studies investigated the correlation
between changes in FC and white matter SC of the brain network. We speculated that
the coupling analysis of SC and FC, both originating from grey matter, would be more
consistent. To our knowledge, no studies have focused on altered grey matter structural
connectivity in ALS. We hypothesize that the compensation of changes in the DMN-related
functional network and the LN-cortical-related brain structural network may follow the
structural impairment of LN–SN connectivity in the progression of ALS.

Combining the analyses of grey matter and functional networks, we explored ALS
pathophysiology from the perspective of SC–FC coupling strength on global and regional
scales. Our main findings were that ALS patients exhibited stronger SC–FC coupling in
DMN-related brain regions and weaker SC–FC coupling in LN-related brain regions. Esti-
mating the correspondence between SC and FC matrices at different spatiotemporal scales,
known as SC–FC coupling, has been proposed for the quantification of this correspondence.
Stronger SC–FC coupling suggests a more direct association between FC and SC. In contrast,
decoupling (i.e., weaker coupling) may suggest a loss of coherence. The opposite trends of
SC–FC coupling between the DMN and the LN indicate the nonsynchronous disruption
of structural and functional connectivity. This is consistent with previous studies that
showed widespread structural (but not functional) damage in ALS patients compared with
HCs [36,39]. Incorporating the significant differences in SC–FC coupling as features in the
SVM model resulted in classification performance with similar or even higher accuracy
(72.09–81.40%), sensitivity (72.00–88.00%), and specificity (61.11–94.44%) for distinguishing
ALS patients from HCs compared to that obtained in previous studies using other neu-
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roimaging features [42–45]. Our findings show that SC–FC coupling may be a valuable
neuroimaging marker for ALS.

Several limitations of the present investigation should be considered. First, ALS sam-
ple size was relatively small and the attrition rate, due to low MRI image quality, was high
(i.e., about half of the studied population), hindering the monitoring of fast progressors
and the identification of multi-modal mechanisms of ALS. Furthermore, multiple com-
parison corrections were not performed when comparing SC–FC-coupled between-group
differences. These findings should be replicated in future multicenter longitudinal datasets.
Second, other MRI modalities (e.g., DTI) can also help to identify ALS at the early stage [43];
thus, multimodal neuroimaging combinations should be considered in future research.
Third, we did not determine the C9orf72 repeat expansion status of ALS patients in this
study. Recognition of the ALS patients who carry the C9orf72 repeat expansion is important
in the context of appropriate disease management and stratification in clinical trials. In
future research, we will perform genetic analysis and explore the C9orf72 repeat expansion
status in ALS patients. Fourth, ALS is gradually characterized as a multisystem disorder,
which may why linear models exhibit poor performance. We hope to improve the model
performance by applying other methods (e.g., a graph neural network).

5. Conclusions

This study demonstrated that ALS individuals exhibited a characteristic pattern of grey
matter functional and structural connectivity changes in the DMN and the LN. Stronger
DMN-related functional connectivity and the coexistence of stronger and weaker LN-
related structural connectivity were observed in ALS patients. Additionally, we found
stronger SC–FC coupling in DMN-related brain regions and decoupling in LN-related brain
regions in ALS patients based on the SVM approach, which is promising for distinguishing
ALS patients from HCs. Our findings suggest that SC–FC coupling strength is a valuable
biological feature for diagnosing ALS in clinical practice.
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Abbreviations

ALS: amyotrophic lateral sclerosis; HC: healthy control; MoCA: Montreal cognitive assessment;
NBS: network-based statistic; SC–FC coupling: structural–functional connectivity; SVM: support
vector machine; DMN: default mode network; FPN: frontoparietal network; LN: limbic network;
SVAN: salience/ventral attention network; SN: subcortical network; MRI: magnetic resonance imag-
ing; DTI: diffusion tensor imaging; FC: functional connectivity; ALSFRS-R: ALS functional rating
scale; rs-fMRI: Resting-state functional MRI.

References
1. Brown, R.H.; Al-Chalabi, A. Amyotrophic Lateral Sclerosis. N. Engl. J. Med. 2017, 377, 162–172. [CrossRef]
2. Turner, M.R.; Verstraete, E. What does imaging reveal about the pathology of amyotrophic lateral sclerosis? Curr. Neurol. Neurosci.

Rep. 2015, 15, 45. [CrossRef]
3. Mezzapesa, D.M.; Ceccarelli, A.; Dicuonzo, F.; Carella, A.; De Caro, M.F.; Lopez, M.; Samarelli, V.; Livrea, P.; Simone, I.L.

Whole-brain and regional brain atrophy in amyotrophic lateral sclerosis. AJNR Am. J. Neuroradiol. 2007, 28, 255–259. [PubMed]
4. Bede, P.; Bokde, A.; Elamin, M.; Byrne, S.; McLaughlin, R.L.; Jordan, N.; Hampel, H.; Gallagher, L.; Lynch, C.; Fagan, A.J.; et al.

Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): A neuroimaging study of ALS motor phenotype
heterogeneity and cortical focality. J. Neurol. Neurosurg. Psychiatry 2013, 84, 766–773. [CrossRef]

5. Agosta, F.; Pagani, E.; Rocca, M.A.; Caputo, D.; Perini, M.; Salvi, F.; Prelle, A.; Filippi, M. Voxel-based morphometry study of brain
volumetry and diffusivity in amyotrophic lateral sclerosis patients with mild disability. Hum. Brain Mapp. 2007, 28, 1430–1438.
[CrossRef] [PubMed]

6. Zhang, F.; Chen, G.; He, M.; Dai, J.; Shang, H.; Gong, Q.; Jia, Z. Altered white matter microarchitecture in amyotrophic lateral
sclerosis: A voxel-based meta-analysis of diffusion tensor imaging. Neuroimage Clin. 2018, 19, 122–129. [CrossRef]

7. Chen, G.; Zhou, B.; Zhu, H.; Kuang, W.; Bi, F.; Ai, H.; Gu, Z.; Huang, X.; Lui, S.; Gong, Q. White matter volume loss in amyotrophic
lateral sclerosis: A meta-analysis of voxel-based morphometry studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 83,
110–117. [CrossRef]

8. Wei, L.; Baeken, C.; Liu, D.; Zhang, J.; Wu, G.-R. Functional connectivity-based prediction of global cognition and motor function
in riluzole-naive amyotrophic lateral sclerosis patients. Netw. Neurosci. 2022, 6, 161–174. [CrossRef] [PubMed]

9. Trojsi, F.; Di Nardo, F.; Santangelo, G.; Siciliano, M.; Femiano, C.; Passaniti, C.; Caiazzo, G.; Fratello, M.; Cirillo, M.;
Monsurrò, M.R.; et al. Resting state fMRI correlates of Theory of Mind impairment in amyotrophic lateral sclerosis. Cortex 2017,
97, 1–16. [CrossRef] [PubMed]

10. Temp, A.G.M.; Dyrba, M.; Büttner, C.; Kasper, E.; Machts, J.; Kaufmann, J.; Vielhaber, S.; Teipel, S.; Prudlo, J. Cognitive Profiles of
Amyotrophic Lateral Sclerosis Differ in Resting-State Functional Connectivity: An fMRI Study. Front. Neurosci. 2021, 15, 682100.
[CrossRef] [PubMed]

11. Chenji, S.; Jha, S.; Lee, D.; Brown, M.; Seres, P.; Mah, D.; Kalra, S. Investigating Default Mode and Sensorimotor Network
Connectivity in Amyotrophic Lateral Sclerosis. PLoS ONE 2016, 11, e0157443. [CrossRef]

12. Douaud, G.; Filippini, N.; Knight, S.; Talbot, K.; Turner, M.R. Integration of structural and functional magnetic resonance imaging
in amyotrophic lateral sclerosis. Brain 2011, 134, 3470–3479. [CrossRef] [PubMed]

13. Sporns, O.; Tononi, G.; Kötter, R. The human connectome: A structural description of the human brain. PLoS Comp. Biol. 2005,
1, e42. [CrossRef] [PubMed]

14. Honey, C.J.; Sporns, O.; Cammoun, L.; Gigandet, X.; Thiran, J.P.; Meuli, R.; Hagmann, P. Predicting human resting-state functional
connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA 2009, 106, 2035–2040. [CrossRef] [PubMed]

15. Zhang, Z.; Liao, W.; Chen, H.; Mantini, D.; Ding, J.-R.; Xu, Q.; Wang, Z.; Yuan, C.; Chen, G.; Jiao, Q.; et al. Altered functional-
structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 2011, 134, 2912–2928. [CrossRef]

16. Hearne, L.J.; Lin, H.-Y.; Sanz-Leon, P.; Tseng, W.-Y.I.; Gau, S.S.-F.; Roberts, J.A.; Cocchi, L. ADHD symptoms map onto noise-driven
structure-function decoupling between hub and peripheral brain regions. Mol. Psychiatry 2021, 26, 4036–4045. [CrossRef]

17. Sun, Y.; Dai, Z.; Li, J.; Collinson, S.L.; Sim, K. Modular-level alterations of structure-function coupling in schizophrenia connectome.
Hum. Brain Mapp. 2017, 38, 2008–2025. [CrossRef]

18. Cocchi, L.; Harding, I.H.; Lord, A.; Pantelis, C.; Yucel, M.; Zalesky, A. Disruption of structure-function coupling in the schizophre-
nia connectome. Neuroimage Clin. 2014, 4, 779–787. [CrossRef]

19. Zhang, R.; Shao, R.; Xu, G.; Lu, W.; Zheng, W.; Miao, Q.; Chen, K.; Gao, Y.; Bi, Y.; Guan, L.; et al. Aberrant brain structural-
functional connectivity coupling in euthymic bipolar disorder. Hum. Brain Mapp. 2019, 40, 3452–3463. [CrossRef]

20. Zarkali, A.; McColgan, P.; Leyland, L.-A.; Lees, A.J.; Rees, G.; Weil, R.S. Organisational and neuromodulatory underpinnings of
structural-functional connectivity decoupling in patients with Parkinson’s disease. Commun. Biol. 2021, 4, 86. [CrossRef]

https://doi.org/10.1056/NEJMra1603471
https://doi.org/10.1007/s11910-015-0569-6
https://www.ncbi.nlm.nih.gov/pubmed/17296989
https://doi.org/10.1136/jnnp-2012-302674
https://doi.org/10.1002/hbm.20364
https://www.ncbi.nlm.nih.gov/pubmed/17370339
https://doi.org/10.1016/j.nicl.2018.04.005
https://doi.org/10.1016/j.pnpbp.2018.01.007
https://doi.org/10.1162/netn_a_00217
https://www.ncbi.nlm.nih.gov/pubmed/35356196
https://doi.org/10.1016/j.cortex.2017.09.016
https://www.ncbi.nlm.nih.gov/pubmed/29073458
https://doi.org/10.3389/fnins.2021.682100
https://www.ncbi.nlm.nih.gov/pubmed/34248485
https://doi.org/10.1371/journal.pone.0157443
https://doi.org/10.1093/brain/awr279
https://www.ncbi.nlm.nih.gov/pubmed/22075069
https://doi.org/10.1371/journal.pcbi.0010042
https://www.ncbi.nlm.nih.gov/pubmed/16201007
https://doi.org/10.1073/pnas.0811168106
https://www.ncbi.nlm.nih.gov/pubmed/19188601
https://doi.org/10.1093/brain/awr223
https://doi.org/10.1038/s41380-019-0554-6
https://doi.org/10.1002/hbm.23501
https://doi.org/10.1016/j.nicl.2014.05.004
https://doi.org/10.1002/hbm.24608
https://doi.org/10.1038/s42003-020-01622-9


Brain Sci. 2023, 13, 803 13 of 14

21. Koubiyr, I.; Besson, P.; Deloire, M.; Charre-Morin, J.; Saubusse, A.; Tourdias, T.; Brochet, B.; Ruet, A. Dynamic modular-level
alterations of structural-functional coupling in clinically isolated syndrome. Brain 2019, 142, 3428–3439. [CrossRef] [PubMed]

22. Sun, Y.; Yin, Q.; Fang, R.; Yan, X.; Wang, Y.; Bezerianos, A.; Tang, H.; Miao, F.; Sun, J. Disrupted functional brain connectivity
and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer’s disease. PLoS ONE 2014,
9, e96505. [CrossRef] [PubMed]

23. Liu, X.; He, C.; Fan, D.; Zhu, Y.; Zang, F.; Wang, Q.; Zhang, H.; Zhang, Z.; Zhang, H.; Xie, C. Disrupted rich-club network
organization and individualized identification of patients with major depressive disorder. Prog. Neuro-Psychopharmacol. Biol.
Psychiatry 2021, 108, 110074. [CrossRef]

24. Bi, K.; Hua, L.; Wei, M.; Qin, J.; Lu, Q.; Yao, Z. Dynamic functional-structural coupling within acute functional state change
phases: Evidence from a depression recognition study. J. Affect. Disord. 2016, 191, 145–155. [CrossRef] [PubMed]

25. Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral
sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000, 1, 293–299. [CrossRef]

26. Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A revised ALS
functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III). J. Neurol. Sci.
1999, 169, 13–21. [CrossRef]

27. Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; van Swieten, J.C.; Seelaar, H.; Dopper, E.G.P.;
Onyike, C.U.; et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011,
134, 2456–2477. [CrossRef]

28. Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved optimization for the robust and accurate linear registration and motion
correction of brain images. NeuroImage 2002, 17, 825–841. [CrossRef]

29. Toppi, J.; De Vico Fallani, F.; Vecchiato, G.; Maglione, A.G.; Cincotti, F.; Mattia, D.; Salinari, S.; Babiloni, F.; Astolfi, L. How the
statistical validation of functional connectivity patterns can prevent erroneous definition of small-world properties of a brain
connectivity network. Comput. Math. Methods Med. 2012, 2012, 130985. [CrossRef]

30. Wang, H.; Jin, X.; Zhang, Y.; Wang, J. Single-subject morphological brain networks: Connectivity mapping, topological characteri-
zation and test-retest reliability. Brain Behav. 2016, 6, e00448. [CrossRef]

31. Zalesky, A.; Fornito, A.; Bullmore, E.T. Network-based statistic: Identifying differences in brain networks. NeuroImage 2010, 53,
1197–1207. [CrossRef] [PubMed]

32. Yeo, B.T.T.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.;
Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol.
2011, 106, 1125–1165. [CrossRef]

33. Heimrath, J.; Gorges, M.; Kassubek, J.; Müller, H.-P.; Birbaumer, N.; Ludolph, A.C.; Lulé, D. Additional resources and the
default mode network: Evidence of increased connectivity and decreased white matter integrity in amyotrophic lateral sclerosis.
Amyotroph. Lateral Scler. Front. Degener. 2014, 15, 537–545. [CrossRef] [PubMed]

34. Agosta, F.; Canu, E.; Valsasina, P.; Riva, N.; Prelle, A.; Comi, G.; Filippi, M. Divergent brain network connectivity in amyotrophic
lateral sclerosis. Neurobiol. Aging 2013, 34, 419–427. [CrossRef] [PubMed]

35. Menke, R.A.L.; Proudfoot, M.; Wuu, J.; Andersen, P.M.; Talbot, K.; Benatar, M.; Turner, M.R. Increased functional connectivity
common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. J. Neurol. Neurosurg. Psychiatry 2016, 87, 580–588.
[CrossRef]

36. Menke, R.A.L.; Proudfoot, M.; Talbot, K.; Turner, M.R. The two-year progression of structural and functional cerebral MRI in
amyotrophic lateral sclerosis. Neuroimage Clin. 2018, 17, 953–961. [CrossRef]

37. Mohammadi, B.; Kollewe, K.; Samii, A.; Krampfl, K.; Dengler, R.; Münte, T.F. Changes of resting state brain networks in
amyotrophic lateral sclerosis. Exp. Neurol. 2009, 217, 147–153. [CrossRef]

38. Schmidt, R.; Verstraete, E.; de Reus, M.A.; Veldink, J.H.; van den Berg, L.H.; van den Heuvel, M.P. Correlation between structural
and functional connectivity impairment in amyotrophic lateral sclerosis. Hum. Brain Mapp. 2014, 35, 4386–4395. [CrossRef]

39. Basaia, S.; Agosta, F.; Cividini, C.; Trojsi, F.; Riva, N.; Spinelli, E.G.; Moglia, C.; Femiano, C.; Castelnovo, V.; Canu, E.; et al.
Structural and functional brain connectome in motor neuron diseases: A multicenter MRI study. Neurology 2020, 95, e2552–e2564.
[CrossRef]

40. Zhang, J.-Q.; Ji, B.; Zhou, C.-Y.; Li, L.-C.; Li, Z.-H.; Hu, X.-P.; Hu, J. Differential Impairment of Thalamocortical Structural
Connectivity in Amyotrophic Lateral Sclerosis. CNS Neurosci. Ther. 2017, 23, 155–161. [CrossRef]

41. Turner, M.R.; Cagnin, A.; Turkheimer, F.E.; Miller, C.C.J.; Shaw, C.E.; Brooks, D.J.; Leigh, P.N.; Banati, R.B. Evidence of widespread
cerebral microglial activation in amyotrophic lateral sclerosis: An [11C](R)-PK11195 positron emission tomography study.
Neurobiol. Dis. 2004, 15, 601–609. [CrossRef] [PubMed]

42. Thome, J.; Steinbach, R.; Grosskreutz, J.; Durstewitz, D.; Koppe, G. Classification of amyotrophic lateral sclerosis by brain volume,
connectivity, and network dynamics. Hum. Brain Mapp. 2022, 43, 681–699. [CrossRef] [PubMed]

43. Chen, Q.-F.; Zhang, X.-H.; Huang, N.-X.; Chen, H.-J. Identification of Amyotrophic Lateral Sclerosis Based on Diffusion Tensor
Imaging and Support Vector Machine. Front. Neurol. 2020, 11, 275. [CrossRef] [PubMed]

https://doi.org/10.1093/brain/awz270
https://www.ncbi.nlm.nih.gov/pubmed/31504228
https://doi.org/10.1371/journal.pone.0096505
https://www.ncbi.nlm.nih.gov/pubmed/24806295
https://doi.org/10.1016/j.pnpbp.2020.110074
https://doi.org/10.1016/j.jad.2015.11.041
https://www.ncbi.nlm.nih.gov/pubmed/26655124
https://doi.org/10.1080/146608200300079536
https://doi.org/10.1016/S0022-510X(99)00210-5
https://doi.org/10.1093/brain/awr179
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1155/2012/130985
https://doi.org/10.1002/brb3.448
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://www.ncbi.nlm.nih.gov/pubmed/20600983
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.3109/21678421.2014.911914
https://www.ncbi.nlm.nih.gov/pubmed/24862983
https://doi.org/10.1016/j.neurobiolaging.2012.04.015
https://www.ncbi.nlm.nih.gov/pubmed/22608240
https://doi.org/10.1136/jnnp-2015-311945
https://doi.org/10.1016/j.nicl.2017.12.025
https://doi.org/10.1016/j.expneurol.2009.01.025
https://doi.org/10.1002/hbm.22481
https://doi.org/10.1212/WNL.0000000000010731
https://doi.org/10.1111/cns.12658
https://doi.org/10.1016/j.nbd.2003.12.012
https://www.ncbi.nlm.nih.gov/pubmed/15056468
https://doi.org/10.1002/hbm.25679
https://www.ncbi.nlm.nih.gov/pubmed/34655259
https://doi.org/10.3389/fneur.2020.00275
https://www.ncbi.nlm.nih.gov/pubmed/32411072


Brain Sci. 2023, 13, 803 14 of 14

44. Foerster, B.R.; Carlos, R.C.; Dwamena, B.A.; Callaghan, B.C.; Petrou, M.; Edden, R.A.E.; Mohamed, M.A.; Welsh, R.C.; Barker, P.B.;
Feldman, E.L.; et al. Multimodal MRI as a diagnostic biomarker for amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 2014,
1, 107–114. [CrossRef]

45. Ferraro, P.M.; Agosta, F.; Riva, N.; Copetti, M.; Spinelli, E.G.; Falzone, Y.; Sorarù, G.; Comi, G.; Chiò, A.; Filippi, M. Multimodal
structural MRI in the diagnosis of motor neuron diseases. Neuroimage Clin. 2017, 16, 240–247. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/acn3.30
https://doi.org/10.1016/j.nicl.2017.08.002

	Introduction 
	Materials and Methods 
	Participants and Clinical Evaluation 
	MRI Acquisition 
	MRI Data Preprocessing and Multimodal Connectome Construction 
	Functional Connectome 
	Structural Connectome 

	Network-Based Statistic Analysis 
	Calculation of SC–FC Coupling 
	Machine Learning 
	Statistical Analysis 

	Results 
	Demographic and Clinical Characteristics 
	Altered Functional Network Connectivity in ALS 
	Altered Structural Network Connectivity in ALS 
	SC–FC Coupling Measures and Their Clinical Prediction 

	Discussion 
	Conclusions 
	References

