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Simple Summary: Various studies and techniques have been designed to discover biofluid-derived
biomarkers for non-invasive early detection and prognosis of cancers. Despite the importance of
non-invasive biomarker discovery in cancer diagnosis and management, the reported markers are
often inconsistent and irreproducible across different studies and cohorts. In this article, we reviewed
the ongoing trend of non-nucleotide biomarkers, including lipidomics, proteomics and metabolomics,
derived from body fluids, with a focus on breast cancer, and reviewed the inconstancies in the
biomarker discovery pipelines across pre-analytical, analytical, and post-analytical phases, covering
the diversity of approaches from sample processing to predictive modelling and validation.

Abstract: Breast cancer has now become the most commonly diagnosed cancer, accounting for
one in eight cancer diagnoses worldwide. Non-invasive diagnostic biomarkers and associated
tests are superlative candidates to complement or improve current approaches for screening, early
diagnosis, or prognosis of breast cancer. Biomarkers detected from body fluids such as blood
(serum/plasma), urine, saliva, nipple aspiration fluid, and tears can detect breast cancer at its early
stages in a minimally invasive way. The advancements in high-throughput molecular profiling
(omics) technologies have opened an unprecedented opportunity for unbiased biomarker detection.
However, the irreproducibility of biomarkers and discrepancies of reported markers have remained
a major roadblock to clinical implementation, demanding the investigation of contributing factors
and the development of standardised biomarker discovery pipelines. A typical biomarker discovery
workflow includes pre-analytical, analytical, and post-analytical phases, from sample collection
to model development. Variations introduced during these steps impact the data quality and the
reproducibility of the findings. Here, we present a comprehensive review of methodological variations
in biomarker discovery studies in breast cancer, with a focus on non-nucleotide biomarkers (i.e.,
proteins, lipids, and metabolites), highlighting the pre-analytical to post-analytical variables, which
may affect the accurate identification of biomarkers from body fluids.
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1. Background

The number of women diagnosed with breast cancer is increasing every year [1].
Female breast cancer surpassed lung cancer as the most diagnosed cancer in the world in
2020, with approximately 2.3 million new cases diagnosed [2]. Although statistics show that
the mortality rate of breast cancer patients is low compared to lung, colorectal, liver, and
stomach cancer patients [2], the breast cancer burden is costly and an enormous obstacle to
increasing the quality of life for women and girls around the world [1].

One of the key approaches to breast cancer management and control is cost-effective
screening and early detection [3]. Although mammography is a widely used breast cancer
screening technology, it has technical, logistic, and diagnostic limitations with respect to
false positives and negatives, convenience and participation, limitations with younger
women and dense breasts, exposure to radiation, and the limitation of detecting tumours
of small sizes in the early stage of breast cancer [4,5]. Therefore, alternative tools for the
screening and detection of breast cancer are urgently needed.

Over the past decade, there has been a surge of interest in the study of metabolite,
protein, and lipid biomarkers derived from high-throughput molecular profiling of various
biofluids of patients with breast cancer, such as blood (serum/plasma) [6–8], urine [9–11],
saliva [12,13], ductal lavage fluid [14], nipple aspiration fluid [14–16], and tears [17,18].
While increasing evidence from numerous studies corroborates the utility of non-nucleotide
biomarkers in diagnosing breast cancer, there have often been inconsistencies in biomarkers
reported by different studies. One of the major contributors to the observed inconsistencies
is the lack of gold-standard methods and protocols across different phases of biomarker
discovery and laboratory testing, including the pre-analytical phase (specimen collection
and sample processing), analytical phase (measurement of analytes), and post-analytical
phase (data pre-processing, statistical analysis, model development, interpretation of
results, and reporting) [19,20].

There are several factors across each of these phases which can impact the outcomes
and the reproducibility of the findings, that is, the ability to replicate the same results for
the same condition [21]. It is, therefore, essential to review diverse approaches commonly
practised in each phase of liquid biopsy biomarker discovery to help research and industry
sectors to adopt the best practices and standardise their pipelines. There has been a dearth
of comprehensive reviews on experimental and methodological variations from the pre-
analytical to post-analytical phases of liquid biopsies for breast cancer diagnosis and beyond.
Furthermore, while former studies have reviewed liquid biopsies in breast cancer [22–25],
the focus has often been on circulating tumour cells (CTCs) or nucleotide-based biomarkers
(e.g., circulating tumour DNA (ctDNA), circulating or extracellular vesicle-encapsulated
microRNA, and platelet-derived RNAs), with non-nucleotide biomarkers often limited to
proteins. Therefore, non-nucleotide-based circulating biomarkers have been reviewed to a
much less extent, demanding focused attention given the differences in the pre-analytical
and analytical phases and diversity of techniques of molecular profiling for non-nucleotide
compared to nucleotide-based analytes.

To address this resource gap, we conducted a comprehensive search of the litera-
ture published in the last two decades (2001–2023), focusing on high-throughput omics
approaches in breast cancer liquid biopsy using Google Scholar, PubMed, Elsevier, and
Scopus databases to query a combination of medical subject headings (MeSH) and terms in-
cluding breast cancer, proteomics, metabolomics, lipidomics, liquid biopsy, plasma, serum,
blood, urine, saliva, tear, nipple aspiration fluid, and ductal lavage fluid. We extracted
over 200 relevant public shed articles (Supplementary Table S1), reviewed their biomarker
discovery pipelines, and investigated the trend in the target biofluids and biomarker types.
Figure 1 illustrates different factors affecting biomarker discovery outcomes from the pre-
analytical to post-analytical phase, according to the findings of previous studies. More
details on exemplar studies are summarised in Table 1 (and Supplementary Table S2) to
showcase the diversity of protocols adopted across different phases of biomarker discov-
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ery, focusing on circulating non-nucleotide-based breast cancer diagnostic makers (lipids,
proteins, and metabolites), highlighting the demand for standardised procedures.
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Figure 1. Variable factors involved in biomarker discovery pipeline. This schematic flow chart
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stages in proteomics, metabolomics, and lipidomic investigations in breast cancer liquid biopsy.
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Table 1. Protocol variability in breast cancer-associated biomarker discovery workflows.

Aim
Pre-Analytical Phase Analytical Phase Post-Analytical Phase

Ref
BioSource Collection Tube Time to Sample

Processing Centrifugation Storage Tumour
Grade Technique Validation Method Hypothesis Test Performed

Pr
ot

eo
m

ic

Serum NA 4 ◦C for 1–2 h 3000 rpm for 5 min +
12,000 rpm for 5 min −80 ◦C NA SELDI-TOF-MS SDS-PAGE

MALDI-TOF/TOF
• t-test
• ANOVA

[26]

Serum Plastic tube with clot
activator 15 min 3280× g for 5 min,

4 ◦C −80 ◦C NA SELDI-TOF
MALDI-TOF-TOF NA

• t-tests
• Multivariate

discrimination analysis
• ANOVA
• ANN
• ROC

[27]

Plasma K2EDTA tube 2 h 1300× g for 10 min −80 ◦C NA
1D gel electrophoresis
2D gel electrophoresis

LC-MS/MS
WB Unpaired t-test [28]

Plasma EDTA tube 30 min 4000× g for 30 min −80 ◦C NA LC-MS/MS WB t-test [29]

Plasma Sodium EDTA tube NA 1400× g for 5 min,
4 ◦C ND Low and

high grade Label-free nano-LC/MSMS WB Mann–Whitney [30]

NAF Graduated
micropipette Immediately 1500 rpm for 10 min −80 ◦C I/II SELDI-TOF-MS ELISA

Supervised and
unsupervised cluster
analysis

[14]

NAF

Tube pre-treated
with cocktail

mixture of protease
inhibitor

<30 min NA ST: −20 ◦C
LT: −80 ◦C I–III 1D LC-MS/MS NA

• Pearson’s correlation
coefficients

• Paired Student t-test
[31]

Urine Sterile tube Immediately 2000× g for 10 min,
4 ◦C

ST: −20 ◦C
LT: −80 ◦C II–III Label-free LC-MS/MS WB ANOVA [9]

First
Morning

Urine

Tube containing
0.02% w/v Sodium

Azide)
NA NA ND I/II

Standardisation phase: 2D
gel electrophoresis

Discovery phase: 2D-DIGE,
MALDI-TOF-TOF,

SWATH-MS, iTRAQ,
LC-QTOF

WB
MRM

• Supervised and
unsupervised cluster
analysis

• Multivariate analysis
• Chi-square

[10]
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Table 1. Cont.

Aim
Pre-Analytical Phase Analytical Phase Post-Analytical Phase

Ref
BioSource Collection Tube Time to Sample

Processing Centrifugation Storage Tumour
Grade Technique Validation Method Hypothesis Test Performed

M
et

ab
ol

om
ic

Plasma EDTA tube <2 h 3000× g for 10 min,
4 ◦C −80 ◦C I–III LC-MS NA

• Kruskal–Wallis
• Mann–Whitney U test
• ROC

[32]

Plasma K2EDTA tube Immediately 1500× g for 10 min,
RT −80 ◦C I–III LC-QTOF-MS

LC-QQQ-MS NA
• Student’s t-test
• PLS-DA
• OPLS-DA

[33]

Serum Vacutainer tube 30 min 3000 rpm for 10 min,
4 ◦C −80 ◦C I–III UHPLC-QTOF-(ESIþ)-MS NA

• Pearson
• ROC
• PCA
• PLS-DA
• t-test

[34]

First
Morning

Urine
NA NA 3000× g for 10 min,

RT −80 ◦C I/III GC–MS
LC-QTOF/MS NA

• PCA
• OPLS-DA
• Univariate analysis
• Unpaired t-test
• Mann–Whitney U test

[35]

Saliva Polypropylene tube NA NA −80 ◦C 0–IV CE-TOF-MS LC-QQQ-MS

• Mann–Whitney U test
• Kruskal–Wallis
• Multiple logistic

regression
• Multiple AD tree

models

[36]

Saliva NA 10 min 13,500 rpm for
20 min, 4 ◦C −40 ◦C I–IV HILIC-ESI-MS

RPLC-ESI-MS NA
• Mann–Whitney U test
• PLS-DA
• PCA

[37]
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Table 1. Cont.

Aim
Pre-Analytical Phase Analytical Phase Post-Analytical Phase

Ref
BioSource Collection Tube Time to Sample

Processing Centrifugation Storage Tumour
Grade Technique Validation Method Hypothesis Test Performed

Li
pi

do
m

ic

Plasma Heparin tube NA 1500× g for 15 min −80 ◦C I/II UPLC-QTOF/MS NA
• t-test
• One-way ANOVA
• OPLS-D

[38]

Plasma EDTA tube <2 h 2600× g for 10 min,
4 ◦C −80 ◦C 0- II LC-ESI-MS/MS NA

• t-test
• Binary logical

regression
• ROC

[39]

Serum NA NA NA −80 ◦C NA NMR spectroscopy NA

• t-test
• Mann–Whitney U test
• Chi-square
• Binary logistic

regression

[40]

First
Morning

Urine
NA NA 3000× g for 10 min,

RT −80 ◦C I/III LC–MS NA

• OPLS-DA
• Univariate analysis
• Unpaired t-test
• Mann–Whitney U test
• ROC

[35]

Saliva Polypropylene tube NA 10,000× g for 10 min
Without

freezing and
storage

I–III IR spectroscopy NA

• Mann–Whitney U-test
• Kruskal–Wallis
• Multivariate

comparison

[41]

NA: Not Available, EDTA: Ethylenediaminetetraacetic Acid, K2 EDTA: Dipotassium Ethylenediaminetetraacetic Acid, h: Hour, min: Minute, RT: Room Temperature, ST: Short-Term,
LT: Long-Term, WB: Western Blotting, ELISA: Enzyme-linked Immunosorbent Assay, ANN: Artificial Neural Network, ROC: Receiver Operating Characteristic.
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2. Pre-Analytical Variables

In biomarker discovery studies, body fluid sources, sample collection procedures,
handling, preparation steps, and storage conditions are defined as pre-analytical vari-
ables [42,43]. They are one of the most error-prone, time-consuming, and laborious steps in
biomarker identification, and they affect the sensitivity, reproducibility, and selectivity of
analysis and need to be carefully considered during the project design [44]. In the following
subsections, we will outline the intricacy of the pre-analytical phase and its significance for
biomarker discovery.

2.1. Biofluids Are Excellent Sources of Biomarkers

Recently, different types of body fluids have obtained great attention as sources of
biomarkers for the detection and monitoring of breast cancer due to their low complexity
and simpler sample collection and processing procedures compared to solid tissues, sus-
tainable accessibility, and the ability to be measured repeatably in a minimally invasive
way [45]. The major challenge in biomarker discovery from body fluids is the identification
of biomarkers specific to the type of cancer. For example, a proteomic analysis of five dif-
ferent body fluids by Zhao et al. suggested that the proteome of body fluids may indicate
the holistic functions of the whole body rather than that of adjacent tissues [46]. Therefore,
the identification of biomarkers released into the body fluid by cancerous lesions may be
difficult. Nonetheless, the metabolic changes that occur in the body due to the onset of
cancer can be reflected in the metabolic/proteomic profile of body fluids. Furthermore,
daily water intake or microbiome profile may alter the protein or metabolite concentration
in a patient’s body fluid [47,48] and the biomarker concentration may depend on the sam-
ple collection method. Thus, the pre-analytical phase of biomarker discovery workflows
should be stringently standardised.

The selection of appropriate body fluids depends on the type of omics study (i.e.,
proteomics, lipidomics, or metabolomics), as one specimen may be advantageous over the
other. For example, urine samples, mainly composed of metabolites and end products
of biochemical reactions, are more suitable for metabolomic analysis [49]. Furthermore,
compared to saliva, which comprises 99% water and 0.3% protein, serum and plasma are
more appropriate for proteomic investigations [50]. In the following sections, we discuss
the commonly used biofluids for biomarker discovery.

2.1.1. Serum and Plasma

Blood is believed to have the most complex human-derived circulating biomarkers
and therefore has attracted considerable research attention. So far, over 12,000 proteins,
600 lipids, and 300 metabolites have been profiled from blood samples [51–53], and the
concentrations of many circulating analytes were found to be different in plasma and
serum [54–56]. For example, Liu et al. revealed that some metabolites, including most
amino acids, hypoxanthine, carbohydrates, b-hydroxybutyrate, and glycerol-3-phosphate,
were significantly lower in plasma compared to serum. In contrast, other metabolic prod-
ucts such as citrate, fumarate, pyruvate, glycerate, nitrogen metabolites, urate, and hydrox-
ylamine were significantly higher in the plasma [54]. Furthermore, studies indicate that the
total concentration of several lipids, including triglycerides (TGs), phosphatidylcholines
(PCs), and HDL cholesterol, were higher in serum than in EDTA or citrate plasma [57,58].

Breier et al. reported that the reliability of metabolite measurements was slightly
higher in serum samples compared to plasma [59]. The reason for this may be the higher
metabolite concentration in serum compared to plasma, which provides greater sensitivity
for biomarker identification [60,61]. However, the concentration of some metabolites
involved in platelet aggregation will be different from their actual level in serum as the
clotting process causes these metabolite levels to increase. Therefore, such metabolites
will need to be measured from plasma [58]. In the study by Ishikawa et al., it has been
demonstrated that plasma is more suitable than serum for studying lipid biomarkers
because the clotting process was found to affect serum lipid levels [62]. Moreover, lipids



Cancers 2023, 15, 2780 8 of 24

showed the lowest biological variation in plasma citrate samples, implying the suitability of
plasma for quantitative targeted lipidomics [60]. Nonetheless, the method and conditions
by which the plasma was prepared need to be standardised to avoid detecting differences
due to the time used, temperature or type of tubes, centrifuge used, or how the sample is
stored (e.g., 4 ◦C −20 ◦C, −80 ◦C, or snap frozen).

When the blood clot is removed during serum preparation, the concentration of high-
abundance circulating proteins, such as fibrinogen, will significantly decrease in serum,
making it much easier to detect low-abundance proteins. At the same time, some proteins
are released from the platelet during the blood coagulation process. This phenomenon can
vary sample-to-sample and may lead to the false positive identification of protein biomarkers
from serum [63,64]. A study by Tammen et al. suggested citrate plasma or platelet-depleted
EDTA plasma for studying the low-molecular-weight proteome [65]. In 2005, the HUPO’s
Human Plasma Proteome Project (HPPP) recommended using EDTA plasma as the preferred
sample for all proteomic analyses [66]. Therefore, it is not possible to measure the biomarkers
of interest from plasma and serum interchangeably. Based on the aims of the study and the
target biomarker, either plasma or serum may need to be chosen.

As shown in Figure 2, a greater tendency to use serum over plasma has not been
observed in breast cancer metabolomics investigations. The number of metabolomics
studies that used serum as the biofluid sample of choice was relatively similar to those that
utilised plasma samples. However, plasma was the preferred matrix over serum for breast
cancer lipidomic investigations, with approximately 60% of the publications reporting on
plasma as opposed to approximately 24% reporting on serum. In contrast, serum samples
were used in approximately 44% of the studies focusing on proteomics investigations of
breast cancer, which is much higher than plasma selection.
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Figure 2. The proportion of metabolomic, lipidomic, and proteomic investigations carried out on
various biofluid samples of breast cancer between January 2001 and April 2023. (A) Percentage of
metabolomic, lipidomic, and proteomic studies according to their biofluid source. (B) The trend
in studying non-nucleotide-based biomarkers from various biofluids of breast cancer in the last
twenty years.

2.1.2. Urine

Urine is one of the most widely used human body fluids for routine testing due to
its less complex composition [67,68]. Many studies on urine biomarkers for breast cancer
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screening and diagnosis are still in the discovery phase; hence, further cohort investigations
are needed to validate their sensitivity and specificity [22].

There are several types of urine collection approaches, including random, first-morning,
second-morning, and 24-h collections [69]. Each kind has unique advantages and disadvan-
tages for metabolomic, proteomic, and lipidomic investigations. Although a random urine
sample is presumably the most straightforward collection approach, it is rarely the pre-
ferred choice, as depending on the collection time, urine may be excessively diluted due to
water intake, and the patient’s diet and exercise would have affected its composition [68,70].
The first-morning urine sample is generally considered appropriate for proteomic studies
because it contains the largest amount of total proteins [71] and shows the lowest variation
compared to the 24-h urine samples [68,72]. Conversely, the midstream second-morning
urine collected after an overnight fast is recommended for metabolomic profiling, as the
pattern of metabolites in the first-morning urine may reflect nutrients consumed the day
before [69,73]. Although urine collection time is a critical factor, it has been neglected by
many studies focused on urinary metabolomics in breast cancer [74–76]. However, in a few
investigations, it has been indicated that first-morning urine collection was used [77,78].

In terms of lipidomic analysis, there is a lack of information demonstrating the char-
acteristics of each urine sample type based on the time of sampling for lipid biomarker
discovery. Furthermore, few investigations have been performed on urinary lipidomics in
patients with breast cancer, in which the detailed information of urine collection protocols
has not been addressed well [79,80].

Another aspect to consider using urine as the source of biomarkers is the difference in
the microbiome composition of the urinary tract and the vaginal tract in women. Due to the
microbiome–host interaction, the results can be affected. The microbiota may produce and
secrete proteins, lipids, etc., which may confound the biomarker discovery and may also
metabolise the host-secreted biomarkers in the sample. It has been shown that urinary micro-
biota composition differs by menopausal status in patients with breast cancer [81]. Moreover,
regardless of menopausal status, cancerous patients had increased levels of Gram-positive
bacteria, including Corynebacterium, Staphylococcus, Actinomyces, and Propionibacteriaceae [81],
which may influence the metabolite and protein content of urine.

2.1.3. Tears

The tear’s composition, especially proteins, can be substantially affected due to the
sample collection procedure [82–84]. Schirmer’s test strips (STSs) and microcapillary
tubes (MCTs) are the most popular tear sampling procedures [85]. Pieragostino et al. [86]
reviewed the advantages and disadvantages of collection techniques previously. STSs have
been used in most proteomics studies in breast cancer so far [17,18,87]. Results from the
analysis by Nättinen et al. [83] indicated that Schirmer strip samples had a ten-fold greater
mean total protein content compared to MCTs. To date, there is no agreement on how
the tear sampling procedures impact the proteomic data. Sample handling, such as strip
cutting, has been shown to increase the risk of contamination and protein loss, making the
results even more variable [84]. Therefore, the most appropriate and reliable tear sampling
approaches are needed for the accurate and repeatable detection of tear biomarkers.

2.1.4. Nipple Aspiration Fluid

Nipple aspirate fluid (NAF) in non-lactating women is a fluid secreted by breast
epithelial duct cells and can be collected with various degrees of effectiveness, ranging from
34% to 90% by utilising a milk-expressing pump, nasal oxytocin spray, and gentle breast
massage [31,88–90]. Proteins are the main components of NAF, with concentrations up to
170 mg/mL, which can be more than that found in plasma [91]. However, there are some
challenges when using NAF as a source of protein biomarkers. Firstly, NAF droplets may
not be acquired from the duct where carcinogenesis has occurred [92]. Furthermore, it has
been shown that the colour and viscosity of NAF can affect biomarker identification when
using spectrophotometry approaches [92]. Li et al. proposed that the notable differences
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in the results spectra between NAF samples in a group may stem from several reasons,
including the biological variation in the breast duct’s microenvironment and variability
of the protein concentration in the samples (equal sample volume was examined rather
than equal protein concentration) [14]. Given these variations and challenges in NAF
sample examinations, it is difficult to cross-compare the findings of different investigations.
Another challenge in using NAF is that the microbiome profile and host–microbiome
interaction may interfere with the biomarker studies. The study by Chan et al. showed
that the microbiota composition of NAF significantly differs in patients with breast cancer
compared to healthy women, which may affect the multi-omics profile of NAF [93] for
biomarker discovery.

2.1.5. Saliva

The safe, non-invasive, and repeatable collection makes saliva a good target for
biomarker discovery. Investigations showed significant differences in the level of metabo-
lites in saliva that can be used as biomarkers for breast cancer diagnosis [37,94,95]. However,
the exceptionally diverse composition of saliva arising from age, diet, gender, and time of
day of the collection makes it a challenging choice of biofluid for biomarker studies.

Protein degradation is one of the main reasons for the irreproducibility of salivary
proteomic analyses. The proteolytic degradation commences just as the proteins enter
the oral cavity and continues post-collection of salivary samples, leading to substantial
differences in biomarker profiles [70]. Furthermore, salivary biomarkers can be affected
by the site of collection. For example, Cui et al. showed that the concentration of several
metabolites was different in whole saliva, parotid saliva, and submandibular/sublingual
saliva [96]. Moreover, Assad et al. propounded that small variations in the collection and
storage procedure affect the free amino acid content of saliva as it comprises proteinases
and peptidases [97], resulting in irreproducible results between studies.

2.1.6. Extracellular Vesicles

Extracellular vesicles (EVs) are rich sources of circulating biomarkers in blood that
have been of interest in many recent studies, with demonstrated utility in breast cancer
diagnosis, as reviewed previously [98]. Continuous production, release, and uptake of
existing EVs by different types of blood cells, as well as the delay between blood collec-
tion and preparation of plasma or serum, need to be considered when EVs are used for
biomarker discovery [99,100]. It is shown that physical activity undertaken prior to sample
collection, besides other pre-analytical parameters such as collection tube, centrifugation,
and storage time, may influence morphology, size, and stability, as well as the downstream
characterisation of EVs [101,102]. EV isolation and enrichment are other discriminatory
pre-analytical factors in many studies, as there is no established gold-standard protocol
to purify and isolate EVs. For instance, centrifugation is one of the main parameters that
impact the reproducibility of EV isolation and purification [102,103]. This may complicate
cross-comparison between studies as well as the external validation of biomarkers. This
lack of standardised guidelines in EV research has triggered international efforts and con-
sortiums, such as EV-TRACK (https://evtrack.org/index.php, accessed on 2 May 2023), to
facilitate the standardisation of EV research through increased systematic reporting [104].

Based on the study published in 2020 [105], the concentration and size of the mi-
crovesicles (MVs), which are a sub-type of EVs, differ in plasma and serum. While MVs
have lower concentrations in serum, small-sized MVs are higher in serum than large-sized
MVs. In another study by Palviainen et al., the protein profiles of plasma EVs were dif-
ferent between serum and plasma [106]. In order to reduce vesicle release from blood
cells, most procedures suggest using plasma rather than serum [101]. EVs and MVs in
cancer biomarker discovery have previously been reviewed in detail [99,101,107,108]. In
breast cancer studies focusing on EVs, plasma was used as the main source compared to
serum [108], regardless of the type of EV composition.

https://evtrack.org/index.php
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2.2. Sample Collection and Processing Variables Impact the Discovery of Accurate Biomarkers

In addition to biofluid type, other pre-analytical variables, including anti-coagulants,
collection tubes, incubation times (pre-centrifugation processing delay), storage time and
temperature, and freeze–thaw cycles, can also influence biomarker levels, thereby affecting
the analytical reproducibility [42,43,109]. Some distinguished influential variables that
may occur during sample collection and handling are presented in Table 2 to highlight
the importance of considering these facets in prospective proteomic, metabolomic, and
lipidomic studies. The information presented in Table 2 reiterates that the pre-analytical
phase should be meticulously controlled and regulated to prevent unfavourable impacts
on biomarker discovery and underscores the need for highly standardised protocols.

Table 2. Pre-analytical variables during sample collection and handling.

Pre-Analytical Variable Literature Findings

Collection Tubes

• Sample collection containers are frequently overlooked variables in laboratory settings [110]
• The same sample might have different protein profiles when collected in two different types of

tube [111–113]
• Blood tube components may adsorb some analytes, particularly proteins, leading to their

detection loss [114]
• Release of plasticisers from tubes into samples may adversely affect high-resolution mass

spectrometric examinations [62]

Anti-Coagulant

• For metabolomics profiling, sodium fluoride (NaF) and EDTA salts caused less interference than
sodium citrate or lithium-heparin [115]

• Heparin [116,117] or EDTA plasma [115,118,119] is recommended for mass spectrometry-based
lipidomic and metabolomic analyses; EDTA plasma is unsuitable for NMR-based approaches as it
leads to interferences in the spectra [120]

• EDTA anti-coagulant is preferable for proteomics [111,121]

Hemolysis

• One of the most common pre-analytical errors [122]
• Destruction of red blood cells
• Release of proteins, metabolites, and lipids into serum or plasma [115,123]
• May obstruct correct profile interpretation [115,122]
• MS-based assessments may be affected [124]

Incubation Time

• Many chemical and enzymatic reactions will continue and eventually metabolise the
lipids [125,126]

• Blood cells constantly release, uptake, and metabolise compounds [69,119,127]
• Metabolites are more sensitive to prolonged incubation at room temperature than at 0–4 ◦C [124]
• Peptides and degraded proteins can be released from blood cells [128]

Centrifugation Force

• Minor differences in centrifugation could lead to variations in metabolomic patterns [129]
• Higher centrifugation (between 2300 and 4000× g for 5–10 min) is recommended for lipidomic

and metabolomic studies [69]
• Centrifugation at 1300–2000× g for 15 min was recommended for proteomic studies [130]

Storage Conditions
• Several analytes can be affected by storage temperature and time [131]
• Serum proteins change more at room temperature compared with −20 ◦C and −80 ◦C [132]
• Storage at lower temperatures, such as −80 ◦C, is recommended [133,134]

Freeze–Thaw Cycles • Repeated freeze–thaw of samples can result in profile alterations [135,136]
• One freeze–thaw cycle leads to dramatic alterations in several urinary proteins [132]

2.3. Trends in Non-Invasive, Non-Nucleotide Biomarker Discovery for Breast Cancer

As discussed above, in biomarker discovery studies, the ease of sample collection,
reproducibility, and effective variables are some of the critical factors. Biomarker investiga-
tions for the detection and prognosis of breast cancer are more concentrated on non-invasive
approaches rather than a tissue biopsy. Figure 2 illustrates the proportion of metabolomic,
lipidomic, and proteomic investigations carried out on various biofluid samples of breast
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cancer between January 2001 and April 2023. It demonstrates that the number of studies
exploiting non-nucleotide-based biomarkers from various biofluids has increased in the
last ten years. Although proteomics has dominated the field for many years, there has been
a shift to metabolomics and lipidomics since 2015. Regarding biofluid sources, although
various biofluids have been exploited for biomarker discovery, blood continues to be the
primary biofluid for biomarker discovery (plasma and serum). Notably, serum was the
primary source before 2015, and plasma was the primary source from 2015 to 2019. The
preference for choosing blood over other biofluids might be due to the fact that, compared
to the other biofluids, fewer variables, including exposure to air, possible effects of their
microbiome on the abundance and composition of analytes, time of collection, and the high
proportion analytes related to adjacent tissues may affect the study outcomes [137–140].

Furthermore, protocols and analysis pipelines of plasma and serum may be more stan-
dardised compared to other biofluids. Proteomics and metabolomics are emerging fields
that have expanded rapidly as a result of parallel improvements in bioanalytical platforms
and methods for data analysis [141]. As shown in Figure 2, the trend of research using
proteomics to identify biomarkers has been overtaken by lipidomics and metabolomics in
more recent years. This may be due to the development of new protocols and methods for
metabolome and lipidome purification, advances in analytical techniques, and awareness
of their potential use for biomarker discovery.

3. Analytical Techniques for Biomarker Discovery

Apart from the pre-analytical variables, the wide dynamic ranges, sensitivity, and
specificity of analytical methods are major challenges in biomarkers discovery, which
can affect the reproducibility of biomarker identification. For example, because some
biomarkers have a very low abundance in the selected biofluid, the sensitivity of the
analytical method can limit the number of discovered proteins [70]. Detailed information
on commonly used techniques in proteomic, metabolomic, and lipidomic investigations is
included in Table 3 and summarised below.

Table 3. Advantages and disadvantages of various analytical techniques used for proteins, metabo-
lites, and lipidomics biomarkers.

Techniques Advantages Limitations Biomarker Type

MALDI-TOF-MS
[142–145]

• Rapid and straightforward operability
• Low sample volumes
• Mostly single-charged registered ions

[M-H]+
• High throughput
• High accuracy, resolution, and sensitivity
• No staining, labelling, anti-body, and

hybridisation
• Suitable for large polypeptides (>30 kDa)

detection

• Variation in the surface of the
MALDI-TOF target

• Limited dynamic range
• Sensitive to contaminants
• Low reproducibility

• Proteins

SELDI-TOF-MS
[146]

• High throughput
• Low sample volumes
• High sensitivity
• Easy operability
• Suitable for small peptides (∼500 Da)

detection
• Suitable for low MW, modified, truncated, or

fragmented proteins detection

• Failure of the validation process
• Low reproducibility
• Low resolution
• Biased toward smaller peptides and proteins

(<30 kDa)
• Problems in larger MW proteins and PTM

identification
• Ion suppression
• Prone to artefacts generation

• Proteins

LC-MS
[68,147–150]

• High throughput
• High resolution
• Suitable for low and high-molecular-weight

compounds
• High sensitivity

• Problems in identifying hydrocarbons that
produce similar ions

• Highly manual workflows for sample
preparation can benefit from automation

• The high complexity of the instrumentation’s
operation and maintenance when looking at
a limited number of analytes

• Proteins
• Metabolites
• Lipids
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Table 3. Cont.

Techniques Advantages Limitations Biomarker Type

GC-MS
[147,150]

• High-efficiency separations
• Suitable for nonpolar, volatile, and small

molecules
• High sensitivity
• High throughput

• Limited mass range
• Limited to thermally stable and volatile

compounds
• Destructive analysis
• Not suitable for compounds heavier than

1000 Da
• Time-consuming for sample preparation

• Metabolites
• Lipids

NMR
[150,151]

• Very high reproducibility
• High throughput
• Non-destructive Sample recovery
• Rapid

• Highly skilled operators
• Low sensitivity
• Cost is higher than GC-MS and LC-MS
• Difficult to quantify the noise.

• Metabolites

1DGE
[68,152–154]

• Simple workflow
• Rapid• Cost-effective

• Limited reproducibility
• Unsuitable for low-abundance proteins
• Hydrophobic proteins’ insolubility

• Proteins

2DGE
[68,152–154]

• High resolution
• High throughput
• Cost-effective

• Gel-to-gel variation
• Lack of sensitivity
• Poor dynamic range
• Time-consuming
• Highly skilled operators
• Not automated approach

• Proteins

2D-DIGE
[153,155,156]

• Wide dynamic range detection
• Fewer number of gels
• Straightforward matching between gels
• Higher sensitivity and reproducibility over

2DGE

• Highly skilled operators
• Time-consuming
• Lower throughput
• Not suitable for extremely acidic, basic, or

hydrophobic proteins

• Proteins

Immunoassay
techniques

(ELISA, Western
Blot)

[152,157,158]

• High sensitivity and specificity when looking
at a limited number of analytes

• Cost-effective
• Simple workflows
• Highly reproducible
• Suitable for validation

• Resource-intensive efforts
• Time-consuming
• Not recognition of posttranslational protein

variants
• Limited multiplexing options
• Relatively high sample volume
• Cross-reactivity
• Stability of reagents affects outcome
• Limited number of analytes in each analysis

• Proteins

3.1. Proteomic Approaches

Proteomic workflows can be categorised as gel-based and gel-free methods coupled
with array-based and mass spectrometry-based (MS) techniques [159]. Mass-spectrometry
(MS) is the most commonly used approach in proteomic studies of breast cancer [160].
Time-of-flight, triple quadrupole, and orbitrap mass spectrometers can be coupled with
different ionisation procedures, including surface-enhanced laser desorption/ionisation
(SELDI), matrix-assisted laser desorption/ionisation (MALDI), and electrospray ionisation
(ESI) for proteomic applications [160]. Although most of the investigations utilised the
SELDI-TOF-MS method for breast cancer diagnosis as a potential discovery method, the
reproducibility was questionable due to the low resolution of SELDI-TOF-MS data and
chip-to-chip variation. In contrast, MALDI-TOF-MS shows higher reliability and robustness
and is favoured in clinical proteomics [161]. However, it is not without limitations; for
example, MALDI-TOF-MS is sensitive to impurities such as salt, causing problems with the
reproducibility of the results [68].

Two-dimensional gel electrophoresis (2-DE) is a technique widely used in qualita-
tive proteomic investigations of breast cancer [10,28]. However, this technique has some
drawbacks, including weak inter-assay reproducibility, low sensitivity for the detection
of proteins with either very low PH (<3) or high PH (>10) values, and too small (<10 kD)
or too large (>150 kD) molecular masses, as well as the inability to identify hydrophobic
and low abundant proteins [162]. In contrast, the two-dimensional difference in the gel
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electrophoresis (2D-DIGE) approach has demonstrated higher sensitivity and improved
reproducibility [155].

Other factors, such as diversity in binding/washing buffer conditions and the chem-
istry of ProteinChip surfaces, can influence the binding and identification of various
proteins, leading to discrepancies in biomarker discovery [27]. For example, IMAC3 (Immo-
bilized Metal Affinity Capture) chips capture proteins via chelation of metal ions, whereas
H4 chips absorb by hydrophobic interaction; consequently, the proteins captured by these
chips are distinct and would lead to irreproducible results [163,164]. Therefore, analytical
procedures should be standardised among research and clinical laboratories for a precise
interpretation and interlaboratory comparison of data.

3.2. Metabolomic Approaches

Two main analytical techniques are commonly employed in metabolomic investi-
gations: mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy [32].
Although NMR has the capability to measure metabolites with high reproducibility in
complex samples without the need for pre-preparation of biological fluids, it shows low
sensitivity [165]. Mass spectrometry techniques used for breast cancer studies include ultra-
high performance liquid chromatography coupled with quadrupole time-of-flight (UPLC-
QTOF-MS) [166,167], gas chromatography-mass spectrometry (GC-MS) [168–170], liquid
chromatography-mass spectrometry (LC-MS) [8,171], and ultra-fast liquid chromatography-
tandem mass spectrometry (UFLC-MS/MS) [172]. However, the LC-MS and GC-MS meth-
ods have been frequently applied for biofluids [173]. LC-MS stands as the most suitable ap-
proach for the sensitive identification of biomolecules with high reproducibility [174], while
GC-MS shows relatively stronger chromatography with distinct peak separation [175].

3.3. Lipidomic Approaches

Technological advancements in liquid chromatography, high-resolution accurate mass
spectrometry, and NMR spectroscopy have improved the high throughput analysis of lipid
molecules [176]. Many mass-spectrometry-based approaches are used in lipidomic studies,
each with unique characteristics, advantages, and disadvantages [177]. Mass spectrometry
imaging (MSI), direct infusion or shotgun MS, and MS accompanied by initial chromato-
graphic separation such as GC, LC, and thin-layer chromatography (TLC) are the main
three infrastructures of lipidomic investigations [147]. Shotgun MS, in which the analyte is
not separated by prior chromatography, performs poorly in detecting less-ionisable and
low-abundant lipids due to ion suppression, during which the signals stemming from
weakly ionised lipid species are buried in the signal of strongly ionised lipids [178,179].
However, the detection of such lipids can be improved by a pre-separation approach, such
as LC-MS, which has demonstrated high sensitivity, specificity, and remarkable separation
efficiency for lipids [147].

4. Post-Analytical Steps and Variations
4.1. Data Pre-Processing

Mass spectrometry-based techniques have become the mainstream methods for high-
throughput and unbiased proteomics, metabolomics, and lipidomics profiling. Several
forms of proprietary and open-source software have been developed for data acquisition
and quantification, as discussed elsewhere [180,181]. These tools have different underlying
assumptions and algorithms for searching (e.g., database vs. de novo) and molecular
species quantification [182], which contributes to the discrepancy of generated data across
different studies. A comprehensive benchmarking is required to compare data acquisition
and quantification techniques and to provide a guideline for the best practices.

Once quantified, high-throughput spectrometry or spectroscopy data are often sub-
ject to multiple pre-processing steps to stabilise variance, reduce systematic bias or tech-
nical variations, and impute missing data. The choice of pre-processing approach can
substantially affect the data quality and validity of downstream analyses. For instance,
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Mertens [183] argued in favour of log-transformation to mitigate the skewness and stan-
dardise spectrometry data, which has raised concerns regarding using so-called “closure
normalisation”, e.g., data normalised by the sum of the combined expression in exerting
spurious biases in the correlations between the spectral measures masking true popu-
lation associations. Nonetheless, the diversity of the available pre-processing statistical
approaches demands benchmarking studies to systematically investigate their effect on the
quality of data and the reproducibility of the biomarkers identified. Välikangas et al. [184],
for instance, evaluated normalisation methods in quantitative label-free proteomics and
demonstrated the variations in outcomes of downstream analyses (e.g., differential ex-
pression) depending on the choice of the normalisation method. Despite the importance
of pre-processing, we frequently observed unclear and incomplete descriptions of the
approaches undertaken in the literature we have reviewed in relation to the non-nucleotide
biomarkers of breast cancer (Table 1 and Supplementary Table S2).

4.2. Biomarker Signature Panel Identification (Feature Selection)

From the computational perspective, signature panel identification can be formu-
lated as a feature selection or extraction problem, which implies the selection of a set of
molecules (e.g., proteins, lipids, or metabolites) that best stratify the groups of interest (e.g.,
cancer vs. control) or the extraction of latent features from the entire omics profile (e.g.,
embeddings derived via dimensionality reduction). Feature selection has been historically
performed via differential analysis (i.e., statistical hypothesis tests such as t-test or Mann–
Whitney U test). However, while differential analysis can detect functionally relevant
molecules, it is ineffective in selecting features with optimal predictive power [185] as it
is a univariate approach overlooking nonlinear relationships among multiple biomarkers,
whose collective effect contributes to the prediction of a phenotype, disease outcome, or
treatment response. Several sophisticated machine learning-based methods have been
developed by the computer science community for feature extraction or selection of pre-
dictive variables from high-dimensional data, which can substantially enhance signature
panel identification, and the development of predictive models and cancer diagnostics as
previously benchmarked [186]. Despite the proven utility of machine learning and nonlin-
ear, multivariate feature selection in identifying biomarker signatures with high sensitivity
and specificity, statistical hypotheses testing has been the dominant approach adopted in
non-nucleotide breast cancer biomarker discovery, as outlined in Supplementary Table S2.

4.3. Biomarker Predictive Modelling (Classification)

After feature selection (or extraction), the identified biomarker signature panel can
be used as predictive variables of a classifier algorithm to stratify patients into categories
of interest (e.g., cancer vs. normal). A classifier algorithm often implements a mathemat-
ical function that maps input data to a category upon learning from a training cohort.
Different classifiers have been implemented as multi-variate cancer diagnostics models,
including commonly used algorithms such as random forest, support vector machines,
logistic regression, artificial neural networks, and ensemble approaches (i.e., predictive
models composed of a weighted combination of multiple classifiers) [187]. For a long time,
improving the prediction accuracy has been the primary focus of biomarker discovery
predictive modelling. However, biomarker discovery methods should be assessed based
on prediction accuracy as well as robustness, defined as the generalisability of the model
to diverse cohorts. In recent years, the stability of biomarker discovery has gained more
attention, as reviewed previously [188]. Nonetheless, in breast cancer liquid biopsy studies,
the adoption of classifiers as diagnostic models has been limited (Supplementary Table S2),
contributing to the lack of highly predictive and robust diagnostic tests.

4.4. Clinical Validation

Extensive validation is necessary before the clinical implementation of a diagnostic test.
Validation of a predictive model using the dataset at hand (referred to as the development
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dataset) is often referred to as an internal validation, wherein the dataset is divided into
the test and train sets, using the latter for model development and optimisation and the
former for model validation. In addition, to mitigate model overfitting, particularly in
small datasets, data re-sampling techniques, such as bootstrapping or cross-validation,
can be used to account for the selection bias and to quantify the stability of the predictive
performance [189].

Based on our literature review, the majority of breast cancer liquid biopsy studies have
only reported the prediction performance of biomarkers upon internal validation, which is
not sufficient to confirm model generalisability. In order to progress towards implemen-
tation and technology readiness, extensive external validation is required, wherein the
model’s predictive performance is quantified using data collected from participant cohorts
external, temporally and/or geographically, to the development dataset [189].

Besides the validation of the prediction models, the analytical parameters should be
optimised, followed by the validation of the parameters according to regulatory guide-
lines [190,191]. The clinical performance of the test should then be compared to the gold-
standard method, e.g., mammography [192,193]. When the technology is implemented,
prospective clinical studies should be conducted to assess if the assay improves patient
outcomes and reduces healthcare costs [192,194].

5. Conclusions and Future Perspective

Our major biofluid biomarker discovery pathway throughout the last decades was
focused mainly on nucleotide-based biomarkers for early breast cancer diagnosis. However,
in recent years, the investigation of proteomics, lipidomics, metabolomics, and microbiome
profiles, along with EV cargo, has been increased to introduce new biomarker profiles,
not only for blood but also for other types of body fluids, as we have comprehensively
reviewed here. We also reviewed the effect of different procedures, from sample collection
and processing to data analysis and validation. The lack of standard protocols in different
parts of biomarker discovery can be a key factor hindering the clinical implementation
and manufacturing of commercialisable assays or clinical tests. Therefore, one of the
future efforts in breast cancer biomarker studies is to standardise the liquid biopsy assay
procedures and analysis platforms. This will give a better opportunity to combine and
compare results from different studies and develop breast cancer liquid biopsy consortiums
to advance and validate liquid biopsy technologies, homogenise guidelines, and standardise
data for the development of breast cancer biomarkers. Some initiatives have already been
implemented by the National Institute of Health (https://prevention.cancer.gov/major-
programs/liquid-biopsy-consortium, accessed on 2 May 2023), targeted for early-stage
cancer detection on a wide range of cancer types.

Due to the ongoing advances in non-invasive biomarker discovery, technology, and
data analytics, the future of the field is moving towards multi-omics liquid biopsy and
non-invasive blood tests (or other bodily fluids) through the simultaneous assessment of
different omics data (e.g., genomics, transcriptomics, and proteomics) from body fluids for
cancer detection and monitoring. Multi-omics approaches could provide complementary
information on the presence of the dysregulated bodily processes leading to disease, en-
abling early detection of tumours, and they have demonstrated utility in enhancing the
sensitivity and specificity of cancer detection as we construct a fuller picture [195]. Despite
its advantages, multi-omics liquid biopsy is facing slow adoption and implementation. So
far, there have been limited studies using this approach for breast cancer identification
emerging over the last few years (Supplementary Table S1). One major obstacle is lim-
ited sample availability and/or technical difficulties associated with generating complete
multi-omics datasets due to the uneven maturity of different omics approaches. Moreover,
the growing gap between generating large volumes of data compared to data processing
capacity and available integrated datasets are of concern. Additional efforts are needed
for the standardisation of multi-omics operational procedures and data integration, from
robust pre-processing and operational guidelines to data integration and validation.

https://prevention.cancer.gov/major-programs/liquid-biopsy-consortium
https://prevention.cancer.gov/major-programs/liquid-biopsy-consortium
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