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Simple Summary: Dynamic contrast-enhanced (DCE) MRI has become a quantitative standard
for assessing vascular permeability and perfusion. However, conventional pharmacokinetic (PK)
modeling in DCE MRI is complex and time-consuming for dynamic MR scans with thousands of
pixels per image. We have previously developed a deep learning approach using convolutional
neural networks (CNN) as an efficient and accurate tool for the generation of PK parameter maps
from DCE MRI of glioblastoma (GBM) mice. In the present study, the utility of this approach is further
established through transfer learning between GBM-trained CNN and whole-brain radiotherapy
(WBRT)-treated brain metastasis (BM) mice.

Abstract: The purpose of this study is to further validate the utility of our previously developed
CNN in an alternative small animal model of BM through transfer learning. Unlike the glioma model,
the BM mouse model develops multifocal intracranial metastases, including both contrast enhancing
and non-enhancing lesions on DCE MRI, thus serving as an excellent brain tumor model to study
tumor vascular permeability. Here, we conducted transfer learning by transferring the previously
trained GBM CNN to DCE MRI datasets of BM mice. The CNN was re-trained to learn about the
relationship between BM DCE images and target permeability maps extracted from the Extended
Tofts Model (ETM). The transferred network was found to accurately predict BM permeability and
presented with excellent spatial correlation with the target ETM PK maps. The CNN model was
further tested in another cohort of BM mice treated with WBRT to assess vascular permeability
changes induced via radiotherapy. The CNN detected significantly increased permeability parameter
Ktrans in WBRT-treated tumors (p < 0.01), which was in good agreement with the target ETM PK
maps. In conclusion, the proposed CNN can serve as an efficient and accurate tool for characterizing
vascular permeability and treatment responses in small animal brain tumor models.

Keywords: transfer learning; convolutional neural network; dynamic contrast-enhanced MRI;
glioblastoma; brain metastasis; whole-brain radiotherapy

1. Introduction

Brain metastasis (BM) is the most common intracranial tumor among adults, en-
compassing nearly 80% of all brain tumors [1–3]. Even with aggressive standard-of-care
treatment, including surgical resection, chemotherapy, stereotactic radiosurgery, and/or
whole-brain radiotherapy (WBRT), the prognosis is extremely poor, with a median survival
of only 4–6 months [4–6]. In particular, conventional chemotherapeutic agents often fail
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when they are used to treat brain tumors due to many BM lesions retaining a partially intact
blood–tumor barrier (BTB) [2,5,7]. As such, novel strategies aimed at enhancing the delivery
of these chemotherapeutic agents are of paramount interest. It has been documented that
WBRT may be able to disrupt the BTB to enhance the accessibility of chemotherapeutics to
brain tumor parenchyma by increasing intratumoral permeability [5,8–10].

Quantitative MRI methods, such as dynamic contrast-enhanced (DCE) MRI, are be-
coming increasingly common in BTB permeability assessment of cancer, as well as for the
assessment of permeability responses to treatment options [11–15]. DCE MRI involves
the acquisition of a series of T1-weighted (T1-w) images before and after an i.v. bolus
injection of gadolinium chelates to capture the contrast agent’s kinetics. A pharmacokinetic
(PK) model can then be applied to these dynamic images to estimate several vascular
permeability/perfusion parameters based on signal intensity (SI) changes over time [16–19].
However, conventional PK modeling is complex and time-consuming for a whole DCE
MRI scan with multiple dynamic images and thousands of pixels per image.

Deep learning, specifically convolutional neural networks (CNN), has been success-
fully applied to many image processing applications and can solve complex problems
through pattern recognition [20,21]. Researchers have introduced CNNs to facilitate a
vast amount of medical imaging research, including image segmentation, detection and
classification of malignancies, computer-aided prognosis, image de-noising, and synthetic
image generation [22–25]. Neural networks (e.g., deep learning) can automatically learn
about the representations of data during the training process and can be implemented as
the surrogate problem solvers of sophisticated and difficult problems. Furthermore, neural
networks have been shown to be able to speed up the problem solving process by multiple
orders of magnitude. As such, implementing deep learning for PK mathematical modeling
in DCE MRI holds great promise for accelerating the prediction of PK parameters in brain
tumors without complex and time-consuming mathematical modeling.

Indeed, others have sought to implement deep learning for the prediction of vascular
PK parameters based on clinical data. Fang et al. [26] and Ulas et al. [24] have demon-
strated the feasibility of implementing 1D and 2D CNNs, respectively, in clinical datasets
that does not require conventional PK modeling. These approaches using CNNs could
accurately characterize vascular PK parameters and largely speed up the modeling process.
Although the CNN is the most commonly employed deep learning approach for imaging
processing tasks, other studies have demonstrated alternative deep learning approaches
for the prediction of PK parameters without conventional PK modeling in clinical data,
including the long short-term memory (LSTM) network [27], the fully connected network
(FCN), and the gated recurrent unit (GRU) [28]. However, to the best of our knowledge,
there have been no efforts to apply these approaches to small animal permeability research.

Hence, to this end, we have previously developed a deep learning model using a 2D
CNN for the efficient generation of PK parameter maps in glioblastoma (GBM)-bearing
mice [29]. The CNN was able to accurately predict intratumoral vascular PK parameters
of GBM in less than a few seconds, significantly decreasing the average computational
time during the PK modeling process. Furthermore, it was shown that the network was
transferrable between alternative PK models and parameters. The results and observations
from this study indicate that the neural network could perform as precisely as conventional
PK models can for predicting permeability and perfusion in small animal brain tumors [29].
However, it is still unknown if the CNN can accurately predict vascular permeability
parameters in alternative brain tumor models, as well as predict vascular responses to
anti-cancer treatments.

In the present study, to further elucidate and establish the utility of the CNN, we have
sought the expansion of our CNN for the assessment of BTB permeability responses to
radiotherapy in a breast cancer MDA-MB231-Br (231-Br) BM mouse model. Our data have
demonstrated that the model leads to the development of multiple metastases throughout
the brain that can be as small as 0.1 mm3 (6–8 pixels) on high-resolution T2-weighted MRI
images (T2-WI) [5]. A large proportion of these BM lesions retain an intact BTB even at
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the late stage of the disease, leading to heterogeneity of permeability both between and
within lesions. As such, this BM model serves as both a difficult and excellent phenotype
for evaluating the expansion of our CNN in the prediction of vascular permeability.

A transfer learning approach was employed to transfer our GBM-trained CNN to
BM DCE MRI datasets treated with or without WBRT. Transfer learning is a powerful tool
in machine learning that allows the knowledge gained from one problem to be passed
on to another related problem [30–32]. The application of transfer learning can reduce
the training times and can improve the network’s performance and generalization when
it is applied to other related problems. Here, we apply transfer learning to transfer the
knowledge gained for predicting GBM PK parameters to predicting permeability responses
to radiotherapy in BM mice based on DCE MRI (Figure 1). To the best of our knowledge,
this is the first study employing the transfer learning of a CNN for the prediction of vascular
permeability responses to therapy in an alternative tumor phenotype in either pre-clinical
or clinical settings.
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Figure 1. Pathway for transfer learning. A pre-trained GBM CNN hidden layer’s weights were saved,
and the network was re-trained using BM DCE MRI datasets. BM mice were treated with either sham
irradiation or WBRT and used for the training/testing of the neural network. Green arrows indicate
enhanced tumors on DCE MRI.

2. Materials and Methods
2.1. GBM and BM Mouse Models

All animal procedures performed were approved by the Wake Forest University
Institutional Animal Care and Use Committee. The orthotopic GBM and breast cancer BM
mouse model have been described previously [5,29,33,34]. Briefly, human GBM U87 cells
(ATCC, Manassas, VA, USA) and MDA-MB-231-BR (231-BR) BM cells (kindly provided by
Dr. Steeg, NCI) were cultured in DMEM with 10% FBS, 1% L-Glutamine, and 1% penicillin-
streptomycin at 37 ◦C with 5% CO2. Once 80% confluence was achieved, cells were
harvested and suspended in serum-free medium. U87 cell suspensions (1.5 × 104 cells in
4 µL serum-free medium) were injected intracranially to the right caudal diencephalon of
nude mice (n = 6). Under the guidance of a small animal ultrasound imaging platform
(Vevo LAZR, FUJIFILM VisualSonics, Inc., Toronto, Canada), 231-BR cell suspensions
(2 × 105 cells in 50 µL serum-free medium) were injected directly into the left ventricle
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of nude mice (n = 16). All animals were anesthetized via the inhalation of isoflurane
(3% induction; 1.5% maintenance) during the procedures.

2.2. Magnetic Resonance Imaging

MR imaging was performed with a small animal Bruker 7T Biospec 70/30 USR scanner
(Bruker Biospin, Rheinstetten, Germany). Animals were anesthetized with 3% isoflurane,
and the tail vein was catheterized using a 27G butterfly for the bolus injection of Gd-DTPA
(Magnevist; Bayer Healthcare). A respiratory bulb was used during image acquisition
to monitor the animals’ respiration. MRI was performed using our previously estab-
lished small animal imaging protocol [5,29]. Briefly, anatomical T2-WI were acquired
using a Rapid Imaging with Refocused Echoes (RARE) sequence (TR/TE: 2500/50 msec;
Number of Scan Averages (NSA): 8; Echo Train Length (ETL): 8, Field of View (FOV):
22 mm × 22 mm (256 × 256 pixels); Slice Thickness (ST): 1 mm; scan time: 5 min and 22 s).
Variable flip angle images were captured for T1 mapping prior to DCE MRI (TR/TE:
100/2.24 ms; NSA: 6; FOV: 22 mm × 22 mm (128 × 128 pixels); ST: 1 mm; Flip An-
gles (FA): 5, 10, 20, and 35 degrees; scan time: 57 s/FA). DCE MRI was performed
on 5 slices using a rapid T1-w FLASH sequence (TR/TE: 43/2.3 ms; FA: 30 degrees;
FOV: 22 mm × 22 mm (128 × 128 pixels); NSA: 2; scan time per acquisition: 8 s) acquired
during the bolus injection of Gd-DTPA (0.1 mmol/kg, i.v.). Lastly, T1-w contrast-enhanced
(T1-CE) imaging was performed using a T1-w RARE sequence (TR/TE: 800/7 ms; ETL: 8;
NSA: 8; FOV: 22 mm × 22 mm (256 × 256 pixels); scan time: 2 min and 33 s).

For GBM-bearing mice (n = 6), MRI was performed two weeks after tumor implan-
tation. Alternatively, for the BM mice (n = 16), MRI was performed three weeks after
tumor implantation. A subset of BM mice (n = 10) was randomly assigned to either WBRT
(n = 5) or sham (n = 5) treatment groups. Immediately following the initial imaging of BM
mice and the confirmation of the development of multifocal BM lesions, WBRT or sham
irradiation was conducted for each treatment group in 3 daily doses. Twenty-four hours
following the last WBRT dose, MRI was acquired again for both treatment groups to assess
permeability/perfusion changes at mid-WBRT. The remaining BM mice (n = 6) were used
as training data and not included in network testing. A 3D Gaussian filter was used on
DCE dynamic data to smooth images prior to the PK modeling process. The co-registration
of DCE and variable flip angle images was performed, with T2-weighted images serving as
the reference to eliminate motion artifacts in the PK modeling process.

2.3. Whole-Brain Radiotherapy

BM-bearing mice were randomly assigned to either WBRT (n = 5) or sham (n = 5)
treatment groups. Following first round of MRI three weeks after tumor implantation and
the confirmation of the development of multifocal BM lesions, mice were anesthetized
with 3% isoflurane, and the WBRT treatment group received three daily doses of 4 Gy, as
described previously [5]. An X-RAD 320 orthovoltage irradiator (Precision X-ray, North
Branford, CT) was used to deliver WBRT at 300 kV and a dose rate of 233 cGY/min. A
1 mm Cu (copper) HVL was used to filter the X-ray beam, and a rectangular Lipowitz alloy
collimator of 10 × 15 mm was used to align the X-ray beam to the whole brain.

2.4. Conventional PK Modeling

All modeling steps were implemented using homemade MATLAB scripts. Prior to
conventional PK modeling, T1 mapping was performed to relate the native T1 intensity
(T10) of tumor tissue to SI changes during DCE MRI to contrast agent concentration. Co-
registered variable flip angle T1 images acquired at angles of 5, 10, 20, and 35 were used
to calculate T10 using the method proposed by Brookes et al. [35]. The SI of each flip
angle image was stacked into an array for each individual pixel. X and Y coordinates were
computed according to the following equations for T10 estimation:

X =
SI

tan(VA)
(1)
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Y =
SI

sin(VA)
(2)

These coordinates were then linearly fitted to quantify the slope (Sp) and, in turn,
tissue T10 values could be estimated by:

T10 =
−Tr

log(Sp)
, (3)

where Tr is the repetition time of the MR scan. All DCE MRI images were temporally resized
to 128 × 128 × 5 × 40 (X × Y × slice × time points). Dynamic changes in SI following
Gd-DTPA administration were then used to deduct T1 values, which are given by:

S(t) = S0

(
1 − e

−Tr
T1

)
∗ sin(θ)

1 − e
−Tr
T1 ∗ cos(θ)

, (4)

where S0 is the relaxed signal before injection of the contrast agent, and θ is the flip angle
of the DCE MRI sequence (θ = 30◦).

Following T1 mapping, dynamic concentration maps of the contrast within the tissue
(Ct) were computed using the relaxivity of the contrast agent (r1 = 3.11 s−1mM−1 for
Gd-DPTA at 7T) according to the following equation:

1
T1

=
1

T10
+ r1∗Ct(t) , (5)

Conventional PK modeling was then performed using the Extended Tofts Model
(ETM) according to the following equation:

Ct(t) = Vp∗Cp(t) + Ktrans ∗
∫ t

0
Cp(t)∗e−kep∗(t−τ)dτ , (6)

where Vp, Ktrans, and kep are all PK parameters that describe the fractional volume of
blood plasma, the transfer rate of contrast agent from the blood plasma to the extravascular
extracellular space (EES), and the reverse transfer rate of the contrast agent from the EES
to the blood plasma, respectively. Cp is a population average bi-exponential arterial input
function (AIF). For this study, ETM maps of permeability parameter Ktrans were generated
for all DCE imaging data (n = 140 slices) and used for network training, as Ktrans is
commonly the most reproducible and reliable parameter from conventional PK modeling.

2.5. Transfer Learning

All machine learning algorithms were developed and implemented on MATLAB using
the deep learning toolkit and an imported Keras library using a 3.7 GHz processor with
16 GB RAM. A 24-layer CNN designed with dual parallel pathways, as described in our
previous study, was used for transfer learning [29]. The CNN was originally designed
for the prediction of PK parameters in GBM small animals using DCE MRI images. The
CNN consists of dual parallel pathways to capture both local and global information. The
local pathway consists of 3 convolutional non-dilated layers. The global pathway consists
of 3 convolutional layers that were dilated by factors of 2, 4, and 8, respectively. The
convolutional layers were designed with a filter size of 4, and there were 128 filters in both
local and global pathways. The dual pathways were then concatenated and followed by
4 fully connected convolutional layers of 1024, 512, 128, and 1 hidden node with a filter size
of 1. Each convolutional layer was followed by a ReLU activation layer with the exception
of the final convolutional layer, which was instead followed by a regression output layer to
estimate the output. In the present study, the networks hidden layer’s weights were saved
following training with GBM DCE MRI datasets for transfer learning using MATLAB’s
deep network designer.
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BM DCE MRI datasets (n = 140 DCE slices) were concatenated to create a single four-
dimensional dataset of size 128 × 128 × 40 × 140. Similarly, BM DCE MRI target ETM
PK parameter maps of Ktrans were also concatenated to a single four-dimensional dataset
of size 128 × 128 × 1 × 140. DCE dynamic images and target ETM PK parameter maps
were segmented to remove peripheral tissue surrounding the brain. The BM DCE MRI
dataset was further batch normalized in each plane. As GBM and BM MRI datasets were
acquired using the same standard imaging protocol and were subjected to the same PK
modeling process, both datasets have the same DCE image input size (128 × 128 × 40),
as well as PK image output size (128 × 128 × 1), in the CNN. Hence, domain adaptation
in the transfer learning process was not required, as the source (GBM) and target (BM)
data distributions/characteristics were the same. A supervised transfer learning technique
was then employed through feeding the BM DCE MRI datasets and target ETM maps of
Ktrans into the pre-trained GBM CNN. The network was then re-trained to learn about
the relationship between SI changes in BM DCE MRI images and the corresponding ETM
maps of the permeability parameter, Ktrans.

Training was performed using k-fold cross validation. To this end, imaging datasets
from a single WBRT or sham irradiation treated animal (n = 10 slices, 5 pre-treatment, and
5 post-treatment) were randomly isolated and removed from the training process and saved
for future testing of the network. The remaining DCE imaging datasets (n = 130 slices) were
then randomly sorted into a training to validation ratio of 80:20. All data were shuffled, and
hyper-parameters were adjusted and optimized to achieve the best network performance
with minimum error. The following hyper-parameters: a learning rate of 1 × 10−4, a
maximum number of epochs of 215, and a mini-batch size of 4 using the Adam optimizer,
were determined as the optimal tuned parameters for the best prediction accuracy in the
transfer learning process. The CNN was then re-trained using the tuned hyper-parameters.
Following training, the isolated imaging dataset was then fed directly into the network to
predict Ktrans maps. This process was repeated ten times to allow each WBRT or sham
irradiation treated animal to serve as the testing data.

2.6. Image Processing and Statistical Analysis

Following the training and testing of the transferred network, individual lesions were
masked and segmented using newly developed MATLAB scripts. An SI threshold-based
segmentation approach was employed on ground truth high-resolution T2-WI of BM
lesions. The tumor mean Ktrans, as well as individual pixel Ktrans, were quantified using
the segmented masks of BM lesions. All statistical analysis was performed using GraphPad
Prism 9.1.

To assess the accuracy of the network for predicting intratumoral BM PK parameters,
pixel-wise and lesion-wise comparisons of Ktrans were conducted. Linear regression was
applied for statistical correlation and significance. The root-mean-squared error (RMSE)
and mean absolute error (MAE), as well as normalized RMSE (nRMSE) and MAE (nMAE)
values based on target ETM Ktrans standard distributions (SD), were determined for each
individually trained network, as well as for the ensemble of all networks. To assess the
accuracy of the network for predicting permeability changes induced by radiotherapy,
analysis of variance (ANOVA) was used with Fisher’s LSD multiple comparisons test to
determine statistical differences between all treatment groups for both the ETM and CNN.

3. Results

The transferred CNN does not require complex mathematical curve fitting algorithms
and can efficiently generate PK parameter maps with no human interference or additional
data. For a single BM DCE MRI imaging dataset (n = 5 slices), the CNN could generate PK
parameter maps in 2 s. By comparison, the ETM required 26.2 min to generate PK parameter
maps for the same imaging dataset. Furthermore, in contrast to the deep learning approach,
conventional PK modeling requires the manual identification of contrast agent arrival on
DCE dynamic images to begin the modeling process, the conducting of additional MRI for
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T1 measurements, and knowledge about the AIF, which further complicates the modeling
process. In good agreement with our previous studies with the 231-BR BM model, T2-WI
revealed the formation of multifocal hyperintense BM lesions (Figure 2). While some BM
lesions were largely enhanced on T1-CE images (green arrows), many of these lesions
were found to retain an intact BTB, as evidenced by no enhancement on the T1-CE images
(red arrowheads). Furthermore, lesions with a partially intact BTBs were also found, as
evidenced by minimal enhancement on the T1-CE images (yellow arrows).
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Figure 2. (a) Three representative cases of BM imaging datasets tested using the transferred neural
network. Anatomical MR images revealed the development of multifocal lesions, many of which
retained a partially or fully intact BTB. Green arrows, yellow arrows, and red arrowheads correspond
to those enhanced, minimally enhanced, and non-enhanced lesions, respectively. Corresponding
ETM and CNN maps of permeability parameter Ktrans display marked differential permeability
between lesions with good agreement. (b) Representative MR images of Case 3 and corresponding
DCE SI changes over time for four lesions. The black dashed line represents the contrast agent arrival.
Lesions 1 and 2 displayed high-level permeability and moderate-level permeability, respectively.
Lesions 3 and 4 were minimally permeable and impermeable, respectively.

As shown in Figure 2, three representative BM cases tested using the transferred
neural network all displayed marked differential permeability levels between individual
lesions. Of particular interest, in Case 3, Lesions 1 and 2 (Figure 2b) were both highly
enhanced on the T1-CE images and had large increases in the SI on DCE SI time courses,
indicating high-permeability Ktrans. Lesion 3 was found to be minimally enhanced on
the T1-CE images, with minimal SI changes on its corresponding DCE SI time course,
leading to low-permeability Ktrans. Lesion 4 was not enhanced on the T1-CE images and
had no increases in the SI on its corresponding DCE SI time course, similarly leading to
low permeability Ktrans. Importantly, target conventional ETM maps of permeability
parameter Ktrans similarly recapitulated these trends in differential permeability between
individual lesions in high agreement to their DCE SI time courses. The transferred neural
network similarly recapitulated this trend of intertumoral heterogeneity of Ktrans with
high accuracy. Furthermore, the CNN maps depicted some image de-noising relative to the
ETM maps, particularly in the surrounding healthy brain region.

Across all the tested DCE imaging datasets (n = 100 slices), a total of 276 lesions
were identified on the corresponding high-resolution T2-WI. Lesion-wise and pixel-wise
(n = 11,628 pixels) comparisons of the permeability parameter Ktrans between the ETM
and CNN were conducted following an ensemble of all lesions (Figure 3). A significant
linear correlation (p-value < 0.0001) was found for both the tumor mean Ktrans (R2 = 0.54)
and the individual pixel comparisons of Ktrans (R2 = 0.61). Lesion-wise and pixel-wise
comparisons revealed marked heterogeneity both between and within lesions, respectively.
As many of these lesions were not enhanced, we further investigated lesion-wise and pixel-
wise correlations between the ETM and CNN only for T1-CE enhanced lesions (Figure 3).
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A significant linear correlation (p-value < 0.0001) was found for both the lesion-wise Ktrans
(R2 = 0.62) and the pixel-wise Ktrans (R2 = 0.64).
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Figure 3. Linear regression analysis plots of BM permeability parameter Ktrans between the ETM and
CNN. (a) Lesion-wise comparison across all lesions (n = 276) revealed a significant linear correlation
of R2 = 0.54 (p-value < 0.0001). (b) Pixel-wise comparison across all lesions (n = 11,628) similarly
revealed significant linear correlation of R2 = 0.61 (p-value < 0.0001). Lesion-wise (c) and pixel-wise
(d) comparison of T1-CE enhanced lesions (n = 89 lesions, 6613 pixels) revealed significant linear
correlations of R2 = 0.62 and 0.61, respectively (p-value < 0.0001).

Clearly, the transferred CNN can decipher both inter- and intratumoral heterogeneity
with a high level of correlation with the ETM. We then investigated if the neural network
over- or under-predicted the permeability parameter Ktrans in these BM lesions. Bland-
Altman plot analysis was performed on all lesions (n = 276) for both tumor mean Ktrans and
the individual pixel values of Ktrans. As shown in Figure 4, the CNN was found to not over-
or under-predict tumor mean Ktrans or individual pixel Ktrans values. To further assess
the predictive performance and accuracy of the CNN in BM, RMSE, nRMSE, MAE, and
nMAE were quantified for each of the ten trained and tested networks/animals. Similarly,
these error terms were also quantified for an ensemble of all networks (Table 1). For each
of the ten networks, low RMSE and MAE values were found, eight of which had both an
RMSE and MAE smaller than the target ETM SD (nRMSE and nMAE < 1). Importantly, the
ensemble analysis of all tested lesions revealed an RMSE value of 6.54 × 10−4 and an MAE
value of 4.50 × 10−4, which was smaller than that of the target ETM SD (nRMSE = 0.638,
nMAE = 0.439), indicating that the CNN has a smaller predictive error than the relative SD,
as seen on the target ETM maps.
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Figure 4. Lesion-wise (a) and pixel-wise (b) Bland-Altman plot analysis revealed no over or under-
prediction of permeability parameter Ktrans in BM lesions (n = 276 lesions, 11,628 pixels). 95% limits
of agreement are shown as dashed lines.

To assess if the transferred network can decipher permeability changes induced during
radiotherapy, we compared the ETM and CNN maps of permeability parameter Ktrans for
both pre and post-WBRT and sham irradiation treatments. Lesions that were found to be
newly forming or disappeared on the post-treatment images were removed from the analy-
sis to ensure that only lesions affected by either treatment were included. Representative
cases of pre- and post-sham irradiation and WBRT treatments are presented in Figure 5a.
Anatomical images of the sham treatment group revealed three hyperintense lesions across
both the pre- and post-treatment images. Only one of these lesions had a minimal level
of enhancement on the pre-treatment T1-CE images (yellow arrow). Post-treatment, both
of these lesions became highly enhancing on the T1-CE images (green arrows). All three
lesions were found to have low permeability parameter Ktrans on both the ETM and CNN
maps pre-treatment. However, post-treatment, two of these lesions had increases in Ktrans
on both the ETM and CNN maps, which means that they were in good agreement.

Table 1. Predictive performance of the CNN for predicting Ktrans in BM small animal models.

Metric Animal 1 Animal 2 Animal 3 Animal 4 Animal 5
Ensemble

RMSE 5.70 × 10−4 5.39 × 10−4 7.73 × 10−4 6.50 × 10−4 6.82 × 10−4

nRMSE 0.754 0.938 1.21 0.639 0.508
RMSE 6.54 × 10−4

MAE 3.83 × 10−4 3.79 × 10−4 5.20 × 10−4 5.03 × 10−4 4.89 × 10−4

nMAE 0.507 0.659 0.814 0.495 0.364
nRMSE 0.638

Metric Animal 6 Animal 7 Animal 8 Animal 9 Animal 10

RMSE 6.44 × 10−4 5.46 × 10−4 6.88 × 10−4 1.74 × 10−3 6.65 × 10−4
MAE 4.50 × 10−4

nRMSE 0.485 0.457 0.880 2.46 0.595
MAE 4.52 × 10−4 3.95 × 10−4 4.42 × 10−4 1.48 × 10−3 5.07 × 10−4

nMAE 0.439nMAE 0.340 0.331 0.566 2.09 0.453

The anatomical images of the representative case for the WBRT treatment group
(Figure 5a) revealed six hyperintense lesions on the T2-WI. One of these lesions newly
formed post-WBRT. The T1-CE images revealed that only one of these lesions had a
minimal level of enhancement pre-WBRT (yellow arrow). Following WBRT, the T1-CE
images revealed three highly enhanced lesions (green arrows) and two minimally enhanced
lesions (yellow arrows), indicating enhanced permeability. All lesions, with the exception
of the newly formed lesion, were enhancing post-WBRT. The pre-treatment ETM and
CNN maps revealed that all lesions had a low intratumoral Ktrans prior to WBRT. On the
post-WBRT images, multiple lesions had increased permeability parameter Ktrans with
good correlation with the T1-CE images. Importantly, these trends in permeability changes



Cancers 2023, 15, 2703 10 of 14

for both the sham and WBRT treatment groups were recapitulated, with the CNN in good
agreement with the ETM.

Clearly, both WBRT and sham irradiation lead to increases in permeability on both
ETM and CNN maps (Figure 5a). In order to further quantify and compare the extents to
which each treatment increased the permeability parameter Ktrans, tumor mean Ktrans
were quantified for all groups for both the ETM and CNN (Figure 5b). The tumor mean
Ktrans was found to be increased in the sham radiation group (n = 79 lesions) post-
treatment, but it did not reach statistical significance for both the ETM and CNN. Alter-
natively, both the ETM (p-value = 0.0022) and CNN (p-value = 0.001) revealed significant
increases in tumor mean Ktrans in the WBRT group (n = 34 lesions) post-treatment. More-
over, post-WBRT lesions were found to have significantly higher tumor mean Ktrans
than post-sham irradiation lesions for both the ETM (p-value = 0.0067) and the CNN
(p-value = 0.0454).
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Figure 5. Investigation of permeability changes pre- and post-sham/WBRT. (a) Anatomical MR
images revealed multifocal lesion development with differential permeability for both sham and
WBRT treatments. Green arrows, yellow arrows, and red arrowheads correspond to enhanced,
minimally enhanced, and non-enhanced lesions, respectively. Corresponding pre- and post-treatment
ETM and CNN maps revealed increases in permeability parameter Ktrans post-treatment, which
is in good agreement for both sham and WBRT treatments. (b) Quantification of tumor mean
Ktrans permeability treatment response. Despite an increase in Ktrans post-treatment, no statistical
significance was found between pre- and post-sham irradiation treatment groups for both the ETM
and CNN. Significant increases in tumor mean Ktrans were found for the WBRT treatment groups for
both the ETM (p-value = 0.0022) and CNN (p-value = 0.001). Post-WBRT lesions had significantly
higher tumor mean Ktrans than post-sham irradiation lesions for both the ETM (p-value = 0.0067)
and the CNN (p-value = 0.0454). Mean ± SEM, * p < 0.05, ** p < 0.01.

4. Discussion

In the present study, we have established a transfer learning approach to using a
machine learning model for predicting permeability in a small animal model of GBM to
predict radiotherapy treatment responses in a small animal model of BM. To the best of our
knowledge, this is the first study on transfer learning employing a CNN for the prediction
of vascular permeability responses to therapy. In general, deep learning requires a large
amount of data to develop a model with accurate predictions and good generalization.
With the limited availability of animal data used in this study, there is a higher risk of
the development of a model with inaccurate predictions and an inability to generalize
to alternative testing cases. However, despite there being a small number of training
data (n = 140 slices), we have shown, in the current study, that the CNN can efficiently
recapitulate vascular permeability responses in multiple testing cases in a small animal
model of BM. This is likely attributable to the fact that each of these training slices comprised
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multiple individual lesions with thousands of pixels per image. Across all DCE training
data, 397 lesions for the network to learn from were identified on corresponding anatomical
T2-WI. Similarly, through the implementation of transfer learning, the CNN was provided
a more robust and accurate starting point for the network to learn from.

As shown in Figure 2, BM lesions presented with marked differential permeability
both between and within lesions. Enhanced (green arrows), minimally enhanced (yellow
arrows), and non-enhanced lesions (red arrowheads) were identified on anatomical images,
representing an excellent tumor phenotype for the assessment of transfer learning of the
CNN. Resulting ETM Ktrans maps generated from DCE SI time courses were in good
agreement for permeable, minimally permeable, and impermeable lesions. Importantly,
the CNN maps show a good match to their corresponding ETM maps for BM and to
recapitulate these trends in differential permeability between individual lesions with a high
level of accuracy. Furthermore, the CNN maps were shown to successfully recapitulate
both the intertumoral and intratumoral heterogeneity of BM lesions with significantly
strong correlations to the ETM maps (Figure 3). An ensemble across all tested sham and
WBRT-treated animals revealed that the network had a lower RMSE (RMSE = 6.54 × 10−4)
relative to the ETM intratumoral SD (nRMSE = 0.638). Similarly, the ensemble analysis
revealed that the CNN had a lower MAE (MAE = 4.50 × 10−4) relative to the ETM SD
(nMAE = 0.439), indicating the ability of the transferred network to generate Ktrans with a
minimal error (Table 1).

In our previous study, we tested the aforementioned GBM trained neural network
using BM mice without transfer learning [29]. Interestingly, Bland-Altman plot analysis
revealed that the CNN without transfer learning slightly over-predicted the intratumoral
permeability parameter Ktrans generated by the ETM. As shown in Figure 4 in the current
study, the transferred network did not over- or under-predict the permeability parameter
Ktrans in BM lesions. Via the application of transfer learning, the network was able to
better generalize to DCE MRI datasets of BM lesions with an enhanced predictive accuracy
of PK parameters. Hence, in order for the CNN to have accurate predictions of permeability
PK parameters for a specific brain tumor phenotype of interest, it should be trained using
images of the target brain tumor model.

To this end, we believe that transfer learning is a robust machine learning approach that
can reduce the training times, tolerate a lack of training data, and improve both the network
performance and generalization when it is applied to other brain tumor phenotypes. We
anticipate that the network could not only be transferred to alternative brain tumor types,
but also to other cancer anatomical sites. Although further studies are warranted, the CNN
could also transfer to clinical DCE MRI studies. Furthermore, this approach could translate
to alternative quantitative imaging techniques beyond DCE MRI via transfer learning,
including quantitative apparent diffusion coefficient (ADC) mapping in diffusion-weighted
(DW) MRI and perfusion metrics, such as cerebral blood volume (CBV), from dynamic
susceptibility contrast (DSC) MRI.

As shown in this study, the transfer learning approach has the ability to generate PK
parameter maps that are structurally similar and highly correlated with conventional PK
model maps with a minimal error and negligible over-/under-prediction. In line with our
previous study, the transferred network significantly reduces computational times in com-
parison to those of the ETM [29]. For a single BM DCE MRI imaging dataset (n = 5 slices),
the ETM required 26.2 min to generate PK parameter maps. In contrast, the CNN only
required 2 s to generate PK parameter maps from the same BM DCE MRI imaging dataset.
The machine learning approach negates the need for the manual identification of contrast
agent arrival, additional MRI acquisitions for T1 measurements, complex curve fitting, and
knowledge about the AIF, all of which are required for conventional PK modeling and
can complicate the modeling process. Furthermore, the CNN maps depicted some image
de-noising relative to the ETM maps, particularly in the surrounding healthy brain region.
CNN approaches have commonly been implemented for noise removal in computer vision
tasks [36]. Noise removal in PK parameter maps from DCE MRI can help to improve the
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image quality and allow the ease of interpretation of permeability and perfusion kinetics
potentially improving prognosis and treatment planning.

DCE MRI is becoming increasingly common in the assessment of BTB permeability
responses to treatment options. In the present study, we have investigated the ability of
the proposed neural network to predict permeability changes in BM following a WBRT
treatment. Permeability parameter Ktrans using the ETM was found to significantly
increase in post-WBRT tumors relative to both pre-WBRT, as well as post-sham irradiation
(Figure 5), indicating the ability of WBRT to disrupt the BTB. This finding supports the
potential advantage of concomitant chemotherapeutic agents with WBRT in BM patients. It
is worth noting that this increased intratumoral permeability may be only applicable to
other small-molecule drugs of a similar molecular weight to that of the used MRI contrast
agent, Gd-DTPA [5,9]. Future studies of alternative contrast agents, such as macromolecular
contrast agents or albumin labeled contrast agents, may allow us to predict the permeability
of the BTB to large therapeutic antibodies.

Importantly, it was shown that the transferred network accurately predicted the per-
meability parameter Ktrans in both the sham irradiation and WBRT treatment groups
(Figure 5). The network similarly revealed a significant increase in Ktrans for post-WBRT
tumors relative to those of both the pre-WBRT and post-sham irradiation treatment groups,
which is in good agreement with the ETM. This finding supports the use of the proposed
neural network as an efficient and accurate tool for PK modeling in the assessment of BTB
permeability responses to treatment. To this end, it would be interesting to investigate the
utility of the deep learning approach to investigate permeability changes due to radiother-
apy treatment in clinical brain tumors that could provide further insight into the potential
advantage and timing of concomitant chemotherapeutic agents.

5. Conclusions

The proposed CNN allows the rapid estimation of brain tumor PK parameters without
complex PK modeling. As shown in this study, by employing transfer learning, the CNN
can be used to study alternative small animal brain tumor models. Furthermore, the
proposed CNN can serve as an efficient and accurate tool for characterizing permeability
treatment responses in small animal brain tumor research. The results and observations
from this study support the use for transfer learning for improved network performance
and generalization in the prediction of vascular permeability changes following treatment.
Future studies investigating the ability of the CNN to predict vascular permeability changes
due to radiotherapy in clinical brain tumors, transfer to alternative cancer anatomical sites,
as well as transfer to different quantitative imaging modalities will further establish the
networks utility. Similarly, as permeability and perfusion are three-dimensional, applying
a three-dimensional CNN could enhance the predictive performance of the deep learning
approach. Furthermore, with the emergence of more sophisticated deep learning methods,
such as the generative adversarial network (GAN), future studies are warranted of potential
alternative deep learning approaches that may enhance the prediction accuracy of vascular
permeability.
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