
Citation: Zhang, S.; Qi, Y.; Tan, S.P.H.;

Bi, R.; Olivo, M. Molecular

Fingerprint Detection Using Raman

and Infrared Spectroscopy

Technologies for Cancer Detection: A

Progress Review. Biosensors 2023, 13,

557. https://doi.org/10.3390/

bios13050557

Received: 16 March 2023

Revised: 12 May 2023

Accepted: 16 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Review

Molecular Fingerprint Detection Using Raman and Infrared
Spectroscopy Technologies for Cancer Detection: A
Progress Review
Shuyan Zhang 1,† , Yi Qi 1,†, Sonia Peng Hwee Tan 2, Renzhe Bi 1,* and Malini Olivo 1,*

1 Institute of Materials Research and Engineering (IMRE), Agency for Science,
Technology and Research (A*STAR), 31 Biopolis Way, Nanos #07-01, Singapore 138634, Singapore

2 Department of Biomedical Engineering, National University of Singapore (NUS),
4 Engineering Drive 3 Block 4, #04-08, Singapore 117583, Singapore

* Correspondence: bi_renzhe@imre.a-star.edu.sg (R.B.); malini_olivo@imre.a-star.edu.sg (M.O.)
† These authors contributed equally to this work.

Abstract: Molecular vibrations play a crucial role in physical chemistry and biochemistry, and
Raman and infrared spectroscopy are the two most used techniques for vibrational spectroscopy.
These techniques provide unique fingerprints of the molecules in a sample, which can be used to
identify the chemical bonds, functional groups, and structures of the molecules. In this review article,
recent research and development activities for molecular fingerprint detection using Raman and
infrared spectroscopy are discussed, with a focus on identifying specific biomolecules and studying
the chemical composition of biological samples for cancer diagnosis applications. The working
principle and instrumentation of each technique are also discussed for a better understanding of
the analytical versatility of vibrational spectroscopy. Raman spectroscopy is an invaluable tool for
studying molecules and their interactions, and its use is likely to continue to grow in the future.
Research has demonstrated that Raman spectroscopy is capable of accurately diagnosing various
types of cancer, making it a valuable alternative to traditional diagnostic methods such as endoscopy.
Infrared spectroscopy can provide complementary information to Raman spectroscopy and detect a
wide range of biomolecules at low concentrations, even in complex biological samples. The article
concludes with a comparison of the techniques and insights into future directions.

Keywords: biosensor; molecular fingerprint; vibrational spectroscopy; Raman spectroscopy; infrared
spectroscopy; biomedical; cancer diagnosis; biomarker

1. Introduction

Molecular vibrations, known as “molecular fingerprints,” are crucial processes in
physical chemistry and biochemistry. Studying these fingerprints can provide valuable
insights into disease mechanisms by tracking the structural changes that occur in biological
samples during disease development or treatment. Currently, there is a great clinical
interest in developing a rapid and non-invasive methodology that can enable real-time
monitoring of the morphological and biochemical modifications occurring in tissues during
carcinogenesis, overcoming the limitations of standard biomedical techniques.

Raman and infrared spectroscopies are two extensively utilized vibrational spec-
troscopy methods for detecting molecular fingerprints. Raman spectroscopy is based on the
inelastic scattering of light, which causes molecules to vibrate and emit light of a different
frequency than the incident light, and is widely used in chemistry, biology, and materials
science for molecular structure and interaction analysis [1–11]. Infrared spectroscopy, on
the other hand, uses infrared light to measure the vibrational and rotational motions of
molecules in a sample, and is sensitive to different types of functional groups than Raman
spectroscopy is.
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Combining Raman and infrared spectroscopy can provide complementary information
to give a complete characterization of the molecular fingerprints of a sample. Additionally,
surface-enhanced techniques such as surface-enhanced Raman spectroscopy (SERS) and
surface-enhanced infrared absorption spectroscopy (SEIRA) can detect a wide range of
biomolecules at low concentrations, even in complex biological samples. However, the
setup of proper sample handling, measurement, and data processing protocols for repro-
ducibly detecting specific disease patterns by surface-enhanced methods is challenging.

There has been extensive research in this field, such as, for example, medical imaging
and cancer diagnosis based on Fourier transform infrared spectroscopy techniques [2,3,12],
hyperspectral imaging techniques [4,6,7], SEIRA techniques [9,10], and Raman spectroscopy
techniques [11,13–16]. In this review article, we will focus on recent advancements in
molecular fingerprint detection using Raman and infrared spectroscopy for cancer detection
in the past 10 years. Specifically, we will highlight the identification of specific biomolecules,
such as proteins, lipids, and nucleic acids, as well as the examination of the chemical
composition of biological samples, including tissues, cells, and biofluids, for various cancer
diagnosis applications. We will also review the different Raman and infrared spectroscopy
techniques that have been developed and their working principles and instrumentation for
better understanding of the analytical versatility of vibrational spectroscopy. Lastly, we
will compare these techniques and provide insights into future directions.

2. Technology Review
2.1. Raman Spectroscopy

In 1928, the Raman effect was first discovered by Chandrashekhara Venkata Raman.
This phenomenon, also known as Raman scattering, occurs when photons scatter inelas-
tically, resulting in a change in the wavelength of the incident light beam. The change in
wavelength offers insights into the chemical structure of the molecules by revealing their
vibrational modes. Raman spectroscopy is a type of vibrational spectroscopy that is used to
investigate the low-frequency modes, rotational modes, and vibrational modes of a system.
It utilizes the inelastic scattering of monochromatic light, typically from a visible (VIS),
near-infrared (NIR), or near-ultraviolet (UV) laser [17]. When a photon of light interacts
with a molecule, the majority of the photons are elastically scattered, known as Rayleigh
scattering. However, a small fraction of the photons (approximately 1 in 10 million) is
scattered inelastically, resulting in a change in energy of the scattered photons. This energy
shift is the Raman effect, and the resulting inelastically scattered light is analyzed to give
information about the molecular vibrational modes, thus providing a chemical structure
fingerprint.

Figure 1 illustrates that when a molecule is subjected to a monochromatic light beam,
it can undergo three types of scattering: Rayleigh scattering, Stokes Raman scattering, and
anti-Stokes Raman scattering. From the quantum mechanical principle, the vibrational
energy states of a diatomic molecule is

Ev = hv
(

n +
1
2

)
(1)

where v is the vibrational frequency, h is Plank’s constant, and n is the vibrational quantum
number with integer values. The light from Rayleigh scattering has no change in the
vibrational energy level, so the frequency of the scattered light is the same as the incident
excitation light. Therefore, although the Rayleigh scattering contains the largest amount of
energy of the incident light, it cannot be used for the identification of the molecule. During
Stokes Raman scattering, the molecule gains vibrational energy due to the interaction with
the incident light, resulting in a decrease in frequency of the scattered light photon. On
the other hand, during anti-Stokes Raman scattering, the final energy state of the molecule
is lower than the initial state, resulting in an increase in frequency of the scattered light
compared to the incident light. Furthermore, Raman scattering is also different from
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infrared absorption, where the difference between the initial and final energy states is equal
to the absorbed photon energy.
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A Raman spectrometer is a device that uses the Raman effect to measure the vibrational,
rotational, and other low-frequency modes in a system. It consists of four main components:
a light source, a sample chamber, a spectrometer, and a detector. The light source is used
to excite the sample molecules, causing them to vibrate and emit photons of different
energies. The laser source provides a narrow, monochromatic light beam with a single
wavelength. This makes them ideal for obtaining high-resolution spectra. Common laser
wavelengths used in Raman spectroscopy range from the UV to the NIR region, such as the
argon ion laser in 480.0 nm and 514.5 nm, the krypton ion laser in 530.9 nm and 647.1 nm,
the He:Ne laser in 632.8 nm, the laser diode in 630 nm and 785 nm, and the Nd:YAG laser
in 532 nm and 1064 nm [18,19]. Wavelength in the VIS range (400–700 nm) is the most
common because the detector can be a low-cost Si-based array sensor [20,21]. However,
the fluorescent effect on the organic subject will influence the signal-to-noise ratio (SNR)
of the Raman spectrometer. Thus, there is various emerging research in fluorescence-free
Raman spectroscopy with an NIR light source [17]. The sample chamber is used to contain
the sample and keep it in a stable environment. The spectrometer is used to separate the
different photons according to their energies. Two approaches are the most commonly used:
dispersive spectroscopy and Fourier transform (FT) spectroscopy, as shown in Figure 2.
Various types of Raman spectroscopy have been developed based on these two approaches.

Resonance Raman spectroscopy (RRS) uses a laser with a frequency close to the
electronic transition energy of the object. The resonance between the incident photon
and the analyte enhances the intensity of the Raman scattering. Unlike general Raman
scattering, which only occurs at the virtual energy state, resonance Raman can detect the
excited electronic state, hence improving the sensitivity of the spectroscopy. RSS has been
utilized to explore various aspects of protein structure and dynamics and to investigate
conformational changes that occur in proteins, as well as interactions between proteins and
other molecules [22]. RRS has also been employed for biomedical applications, such as
detecting blood cells and diagnosing skin conditions in vivo [23,24].
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A confocal Raman spectrometer (CRS) is a versatile instrument capable of providing
a variety of spectroscopic information. CRS provides additional spatial resolution at the
micron level by incorporating a confocal optical setup to suppress stray light and realize
depth profiling, which can be used to measure multi-layered samples non-invasively.
CRS is a powerful tool for testing plastics, polymers, and drugs because the confocal
laser can penetrate the surface coating of samples. However, the high power of the laser
(>100 mW) may lead to the injury of organic tissues. Fortunately, with the development
of semiconductor technology and the improvement of detector performance, many CRS
with low-power laser sources (<20 mW) have been investigated [25–27] and widely used
for the analysis of the stratum corneum, natural moisturizing factor, water content, and
other morphology diagnoses of in vivo skin [28].

Spatially offset Raman spectroscopy (SORS) can probe deeper into samples than
conventional Raman spectroscopy. SORS has the capability to eliminate scattering photons
from the surface of an object by spatially offsetting the laser excitation and scattering
collection regions. Hence, the diffuse scattering from the deeper layer tissue of the sample
can be detected [29]. In contrast, conventional Raman spectroscopy generally only works
on the surface of a sample, while CRS can penetrate 100–200 µm into a transparent or
semi-transparent sample. However, SORS can penetrate >2 mm into diffusely scattering
samples, making it useful for the non-invasive diagnosis of deep tissue diseases such as
cancer monitoring. As a result, SORS has been widely used in biomedical research [29].

Surface-enhanced Raman spectroscopy (SERS) concentrates electromagnetic (EM)
energy by metallic nanostructures with surface plasmon optical modes. SERS enhances
the intensity of Raman scattering by the combined effect of EM and chemical mechanisms,
which improves the level of Raman scattering by 108 to 1011 magnitude. When the excitation
laser irradiates the metallic nanostructure, the conductive electrons will be delocalized and
oscillated. While the excitation laser frequency is resonant with the electron oscillation,
localized surface plasmon resonance (LSPR) can enhance the EM field near the metal
nanostructure interface, resulting in surface-enhanced Raman scattering [30,31]. SERS can
detect single molecules due to the enhancement of Raman scattering. This makes it a useful
tool for detecting low-abundance biomolecules such as proteins in bodily fluids, which are
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important biomarkers for early cancer diagnosis [32–35]. A SERS-based microfluidic chip
has been developed for multiplex protein biomarkers detection [28].

The SERS technique has numerous advantages in cancer diagnosis [36] and therapy
due to its high Raman scattered light signal strength. SERS has gained significant popularity
in biomedical research over the past decades, as it offers high sensitivity and multiplexing
capabilities that are attractive in molecular diagnostics [37]. Applications of SERS in cancer
detection include using immunoassays and the detection of biomarkers, single-nucleotide
polymorphisms, and circulating tumor cells [32,33,38]. SERS has also been explored as a
dynamic technology for point-of-care (POC) monitoring due to its high sensitivity and
multiplexing capabilities, making it a promising candidate for rapid diagnostic testing [39].
Despite its high sensitivity and multiplexing capabilities, SERS still faces challenges, such as
unreliable and inconsistent signals, a lack of methodologies that can be applied to multiple
types of biomarkers, and the expensive cost of portable Raman readers. Nevertheless,
promising solutions for SERS in point-of-care (POC) monitoring are being explored, such
as the use of more specific and robust capture ligands such as DNA aptamer-coated
nanomaterials [40]. SERS has also found applications in cancer imaging and as a tool
for targeted drug delivery and photothermal therapy. Recent technical improvements in
SERS, including integration into microfluidic chips and hollow crystal photonic fibers,
have been highlighted by Vendrell et al. They provide an overview of label-free SERS
methodologies and their potential for non-invasive cancer diagnosis and profiling [41].
Wei et al. developed a SERS substrate by utilizing a two-step method known as the noble
metal-assisted chemical etching and reduction method, which involves synthesizing gold
nanoparticles/silicon nanowire arrays (Au/SiNWA). They then measured the SERS spectra
of serum samples from both healthy individuals and gastric cancer patients using the
Au/SiNWA substrate [42].

SERS nanoparticles are currently being developed for biomedical purposes, including
tumor imaging-guided theranostics and biosensing [43]. Li et al. described the fabrication
of SERS nanoparticles that are biocompatible, have high SERS enhancement, and are encap-
sulated to maintain their Raman fingerprint [44]. The strategy for in vivo SERS imaging
involves attaching Raman molecule probes to SERS nanoparticles and covering the SERS-
active cores with protective shell materials. The aim is to combine the diagnostic imaging
and therapeutic functions of SERS nanoparticles. Qian et al. compared the in vitro cellular
binding and in vivo distribution of three types of control SERS nanotags, including plain
PEG-coated nanoparticles, IgG1-labeled SERS tags, and smaller nonspecific protein-labeled
nanoparticles, and found that the EGFR-targeted nanoparticles were the most efficient for
tumor uptake [43]. Recent research in SERS-guided theranostic nanoplatforms has shown
promising results in photodynamic therapy and photothermal efficacy. Andreou et al.
demonstrated that SERS nanoparticles can accurately identify liver tumors and microscopic
lesions in the liver and spleen with high contrast and high-resolution [45].

Tip-enhanced Raman spectroscopy (TERS) combined with a high-resolution spatial
scanning probe microscopy can achieve single-molecular level surface chemical characteri-
zation with nanometer level spatial imaging resolution. A sharp metallic TERS tip is the
critical component positioned at the excitation laser focus point to generate the EM field
at the tip-apex for Raman signal enhancement (the working principle is the same as the
SERS) [28]. TERS is widely used to investigate the chemical composition and the molecular
dynamics of biological samples in aqueous mediums, such as pathogens, lipids, nucleic
acids, proteins, and peptides [46,47].

Coherent anti-Stokes Raman spectroscopy (CARS) is a nonlinear optical spectroscopy
technique which employs two excitation lasers with different frequencies to irradiate the
sample simultaneously, a pump laser with frequency ωp, and a Stoke laser with frequency
ωs < ωp. The frequency difference between two incident laser beams is equal to the
chemical bond vibrational frequency of the sample. The interaction between the laser
pulses and the molecular in the sample leads the four simultaneous vibrational coherences,
a coherent anti-Stokes Raman scattering with frequency

(
ωp − ωs

)
+ ωp, a coherent Stokes
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Raman scattering with frequency ωs, a Raman gain with frequency ωs, and a Raman loss
with frequency ωp. CARS has been widely used for the testing of lipids and proteins in
cells and the characterization of the myelin sheath in nervous systems [28].

Stimulated Raman spectroscopy (SRS), also known as femtosecond stimulated Raman
spectroscopy (FSRS), is a nonlinear optical technique with ultrafast sensing speed and high
spectral resolution [48]. SRS uses three-pulse lasers to stimulate the sample, and the Raman
spectrum is measured at different time intervals using a series of a narrowband Raman
pump pulses and a broadband probe pulse. The generation of macroscopic polarization
by the broadband probe pulse leads to free induction decay. SRS is a powerful tool for
reaction dynamics due to its ultrafast sensing speed, and it has been applied to investigate
the charge transfer and transport processes in solid-state materials [48–50].

Raman spectroscopy has many potential applications in regenerative medicine, includ-
ing the analysis of cell differentiation, tissue engineering, and drug delivery. By providing
a non-invasive and non-destructive method for analyzing molecular composition, Raman
spectroscopy can help researchers better understand the underlying mechanisms of tissue
regeneration and develop new therapies for human patients. In the future, Raman spec-
troscopy may be used to monitor the effects of therapy non-invasively and to discriminate
between samples based on their molecular composition. This could greatly benefit the field
of regenerative medicine by enabling novel therapeutic and diagnostic techniques to be
implemented in humans [15].

2.2. Infrared Spectroscopy

Infrared spectroscopy is a technique that uses infrared light to study the vibrational and
rotational motions of molecules. There are several different types of infrared spectroscopy,
each of which uses a different technique to measure the infrared absorption of a sample.
Some of the most common types of infrared spectroscopy include [51]:

Laser absorption spectroscopy (LAS), as shown in Figure 3a: This technique uses
a laser source on a sample and measures the reflected or transmitted light directly [52].
Usually, the sample is gaseous and is contained in a cell with two reflective mirrors to
improve the interaction length. The laser is tuned to a specific wavelength that matches the
vibrational frequency of the sample molecules, causing them to absorb some of the incident
light energy. The intensity of light absorbed by the sample can be utilized to identify the
type and measure the concentration of the sample.

Fourier transform infrared spectroscopy (FTIR), as shown in Figure 3b: The use of a
Michelson interferometer to measure the infrared absorption of a sample allows for the
determination of the sample’s chemical composition [53]. A broadband infrared light
source is directed to a beam splitter, which ideally splits the light into equal parts. Half of
the light reflects towards a stationary mirror, while the other half passes through a movable
mirror. The two beams are then reflected back to the beam splitter, and the recombined light
is focused onto the sample. The light is then refocused onto the detector after leaving the
sample compartment. An interferogram is obtained by varying the difference in the optical
path length between the two arms of the interferometer and recording the signal from the
detector. A Fourier transform algorithm turns the interferogram data (light absorption
for each mirror position) into the infrared absorption spectrum (light absorption for each
wavelength) of the sample. The FTIR can provide quantitative information about the
chemical composition of a wide range of samples, including solids, liquids, and gases as a
function of light frequency with high resolution and sensitivity.

Attenuated total reflectance (ATR) FTIR spectroscopy, as shown in Figure 3c: This
sampling technique works by shining infrared light through a crystal which is internally
reflected at least once at the crystal-sample interface by total internal reflection [54]. During
this reflection, a portion of the light enters the sample, where it can be absorbed, creating
an evanescent wave. The penetration depth of the evanescent wave into the sample
is determined by the difference in refractive indices between the sample and the ATR
crystal. The evanescent wave propagates into the sample and interacts with it, allowing
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for the identification and quantification of the sample’s chemical components. ATR-FTIR
spectroscopy is a non-destructive and easy-to-use technique suitable for analyzing solid,
liquid, and gel samples. The crystal could be put on the fiber tip. The fiber probe-based FTIR
sensing technique is suitable for remote sensing in hard-to-access areas and for real-time
monitoring of the dynamic processes of biomarkers.

Infrared microspectroscopy, as shown in Figure 3d: This technique uses a microscope
to focus infrared light onto a small sample area and measure the resulting absorption [55].
It allows for the analysis of microscale samples, such as single cells, tissue sections, or small
particles, which may be too small or heterogeneous for conventional infrared spectroscopy.
Infrared microspectroscopy can provide spatially resolved information about the composi-
tion, structure, and function of biological or material samples, which can be correlated with
imaging or other analytical techniques.

SEIRA spectroscopy, as shown in Figure 3e: This technique is based on the phe-
nomenon of surface enhancement, where the absorption of infrared light by the sample
is increased due to the interaction of the sample with the nanostructures typically on a
metal or metal oxide surface [56]. SEIRA spectroscopy is particularly useful for analyzing
samples that have low intrinsic absorbance in the infrared region, such as thin films or
monolayers. Since the SEIRA structures are microscale or nanoscale, it relies on an infrared
microspectroscopy technique to detect the reflected or transmitted signals. The resulting
spectrum can be used to identify the chemical bonds and structures of the molecules at the
surface of the sample.

The accuracy and reliability of infrared spectroscopy depends on the quality and
preparation of the sample [53,54,56]. For instance, in FTIR spectroscopy, the sample must
be free of contaminants, as even small impurities or variations in the sample can lead
to significant errors in the spectra. In ATR spectroscopy, the contact between the crystal
and the sample must be tight and stable, as any air gaps or movements can affect the
intensity and shape of the spectra. In SEIRA spectroscopy, the size, shape, and density of
the nanostructures on the surface can affect the enhancement and reproducibility of the
spectra. In addition, interpreting the spectra obtained from infrared spectroscopy requires
knowledge of and experience in chemistry and spectroscopy [57]. The spectra can contain
a wealth of information about the functional groups, vibrations, and interactions of the
molecules in the sample, but they can also be complex and overlapping. Various software
programs and databases, such as IR spectral libraries and chemometric tools, can assist in
spectral interpretation and analysis.

Overall, infrared spectroscopy is particularly useful for studying the vibrational and
rotational motions of molecules that contain polar covalent bonds, such as C-O, C-N, and
N-H bonds [53,57]. These bonds have a dipole moment, which allows them to interact
with the incident infrared radiation. In addition, IR spectroscopy is also useful for ana-
lyzing molecules with functional groups, such as alcohols, amines, and carboxylic acids,
which have characteristic absorption bands in the infrared spectrum. Raman spectroscopy,
on the other hand, is particularly useful for analyzing molecules that have polarizabil-
ity and undergo changes in polarizability upon excitation, such as C-C, C-H, and N-H
bonds [58,59]. Raman spectroscopy is also useful for studying the orientation and con-
formation of molecules in a sample. The technique is particularly sensitive to changes
in bond length and bond angle, which can be used to study molecular vibrations and
rotations. While both infrared and Raman spectroscopy can provide information about
the chemical composition and structure of a sample, they are each particularly useful for
studying different types of molecules and chemical bonds [60,61]. For example, infrared
spectroscopy is limited by the presence of water in the sample, but Raman spectroscopy is
not. Water has a broad absorption band centered around 3450 cm−1, which corresponds to
the stretching vibration of the O-H bond. Water also shows a relatively strong absorption
band around 1600 cm−1, which corresponds to the bending vibration of the O-H bond.
This can lead to significant interference and distortion in the spectra, making it difficult
to analyze the sample. Several methods have been proposed to overcome this challenge,
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such as drying the sample or exchanging the water with deuterated water, which has a
weaker absorption in the mid-infrared range. However, this may not always be feasible
or practical for certain samples. Recent developments have demonstrated the potential
of using multi-modal vibrational spectroscopy techniques to provide complementary and
more comprehensive information about samples [62].
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3. Cancer Diagnosis

Based on our literature survey, Raman spectroscopy is more commonly used for
cancer diagnosis than infrared spectroscopy. Recent research has shown that Raman
spectroscopy can be a promising tool for cancer diagnosis [18,63–67]. It can provide real-
time information on cancerous tissues, distinguish between normal and cancerous tissues,
and assess the efficacy of anticancer drugs [67,68]. Nevertheless, both Raman spectroscopy
and infrared spectroscopy techniques can reduce the need for unnecessary biopsies, save
medical resources, and improve the patient experience. They have been demonstrated for
the detection of different types of cancer.

3.1. Prostate Cancer

Prostate biopsy procedures and the intra-operative assessment of tumor resection
margins can be guided using Raman spectroscopy. For in vitro studies, the technique has
been shown to differentiate between benign samples and prostate cancer with an overall
accuracy of 86% [20]. Gaba et al. conducted a study that utilized Raman spectroscopy to
distinguish between prostate and non-prostate tissue with an accuracy rate of 82% sensitiv-
ity and 83% specificity. The study also demonstrated that the technique can differentiate
between benign and malignant prostatic tissue with an accuracy rate of 87% sensitivity and
86% specificity [69,70].

Haroon et al. explored the potential of SERS for prostate cancer diagnosis through
various methods, including a SERS-based immunoassay and electrochemical-SERS (EC-
SERS) method [71]. The main characteristic peaks for prostate cancer in SERS are shown in
Table 1. The study by Mistro et al. found that SERS can be used to distinguish between the
urine samples of healthy donors and those collected from patients with prostate cancer with
a sensitivity of 100%, a specificity of 89%, and an overall diagnostic accuracy of 95% [72].
SERS can be combined with chemometric techniques such as principal component analysis
(PCA) and linear discriminant analysis (LDA) to improve the accuracy of diagnosis [72].

Table 1. Characteristic peaks for prostate cancer using SERS. Adapted with permission from
Harron et al. [71].

Peaks (cm−1) Assignment Remarks Substrate

484 C-C str Glycogen molecule AuNPs
492 glycogen AuNPs
495 Uric acid AuNPs
529 S-S protein AuNPs
532 Zn2+ Zinc ion AuNPs
619 Xanthene ring AuNPs

719–726 DNA/RNA
727 Hypoxanthine
797 O-P-O DNA

887.68 C-O-H
935–937 C-C str Protein

960 Carotenoid
1002 Phenylalanine
1062 C-C Lipid
1087 P-O Phosphoproteins
1134 D-Mannose
1155 C-C, C-N str Proteins
1160 PSA
1171 C-H str Protein
1326 N=O str AuNPs
1356 RhodamineB AuNPs
1426 Creatine
1490 NH3 str Glutamine
1523 Carotenoids
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P. Crow et al. developed a fiberoptic Raman system to differentiate between benign
and malignant bladder and prostate pathologic findings in vitro [73]. The bladder and
prostate algorithms could distinguish between malignant and benign samples with an
accuracy of 84% and 86%, respectively.

Kast et al. conducted a review of emerging techniques that can be used for the
diagnosis of prostate cancer. They suggested that novel techniques such as shifted ex-
citation Raman difference spectroscopy and TERS can improve the Raman signature by
reducing noise and enhancing the signal. Moreover, non-invasive and non-destructive
techniques such as atomic force microscopy and near-field scanning optical microscopy
can be employed for imaging, while Raman spectroscopy can be used for molecular and
chemical analysis [74].

According to these studies, Raman spectroscopy can provide accurate and non-
invasive diagnostic information, as well as the ability to identify the biomarkers associated
with prostate cancer. The scope of its applications in the field of prostate cancer is vast
and includes tissue diagnosis, margin assessment, therapeutic development, and basic
scientific research.

Extracellular vesicles are small membrane-bound structures secreted by cells and that
are associated with malignancy. They can contribute to resistance to cancer treatment
and angiogenesis. Urinary extracellular vesicles (UEVs) have the potential to be a non-
invasive biomarker for detecting prostate cancer, as they may contain a distinctive set of
biomolecules that can be utilized as a signature profile. UEVs can improve the specificity
and sensitivity of prostate cancer detection compared to invasive methods such as biopsies.
Yap et al. aimed to investigate the potential of UEVs as a non-invasive biomarker for
prostate cancer detection using ATR-FTIR spectroscopy [75]. The spectra were analyzed
using PCA and LDA. The study analyzed urine samples from 12 prostate cancer patients
and 12 healthy individuals. It was observed that the spectral peaks in the urine exosomes of
prostate cancer patients differed from those of healthy individuals at specific wavelengths,
such as the amide I peak (1640 cm−1), RNA ribose peak (1120 cm−1), and C-N stretch peak
(967 cm−1), among others. The resulting diagnostic classifier for prostate cancer achieved
a sensitivity of 83.33% and a specificity of 60%. The study sheds light on the potential of
UEVs as a non-invasive biomarker for prostate cancer detection using IR spectroscopy,
which may increase the specificity and sensitivity of prostate cancer detection compared to
traditional methods that require invasive procedures such as biopsies.

Krafft et al. aimed to identify a distinct spectral pattern of extracellular vesicles derived
from the serum and plasma for cancer screening [76]. To achieve this, they performed
a comprehensive comparative analysis of extracellular vesicles using both infrared and
Raman spectroscopy. This analysis was conducted on extracellular vesicles from both
cancerous and non-cancerous sources, as well as on samples from patients being screened
for cancer. The researchers identified several spectral features that were significantly
different between the two groups, especially peaks associated with proteins.

3.2. Skin Cancer

Cancerous skin tissues have different molecular compositions compared to normal
skin tissues. A study found that regenerative skin has a significant increase in cellular
density, nucleic acid content, neutral lipid density, Collagen III, and glycosaminoglycans
compared with reparative skin [70]. Lipids are the main component of cellular membranes
and are highly diverse in structure [77]. Nucleic acids such as messenger RNAs (mRNAs),
antisense oligonucleotides (ASOs), and short interfering RNAs (siRNAs) hold great promise
for treating previously ‘undruggable’ diseases [78]. Raman spectroscopy can be used for
the in vivo characterization of skin lesions in real-time due to its non-intrusive nature, the
absence of sample preparation, and its high chemical specificity [79]. Raman spectroscopy
has been used in several studies to diagnose different types of skin cancer with high
sensitivity and specificity [80]. Using Raman spectroscopy, it is possible to detect the
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biochemical differences between basal cell carcinoma (BCC) and normal skin structures
with high sensitivity, which can be used for the development of a diagnostic model.

Feng et al. introduced a biophysical model for human skin cancer that allows for
the inference of the skin’s biochemical composition based on its Raman spectrum [81].
They also demonstrated the use of superpixel acquisition for the rapid discrimination
of BCC tumors from normal skin. The findings indicate that there is a strong ability to
differentiate between tumor and normal skin using variations in the nucleus, collagen,
keratin, and ceramide. Moreover, the faster processing speed of the superpixel method
is directly proportional to the ratio of the superpixel area to the laser spot size. With this
approach, it is estimated that scanning a tissue sample of 1 × 1 cm would take 2.7 h [82].

A study carried out by Lieber et al. showcased the effectiveness of a portable Raman
probe in distinguishing between benign lesions and malignant/premalignant lesions with
high sensitivity rates ranging from 95% to 99% [83]. Another study by Nijssen et al.
used a two-step classification model based on Raman spectra to diagnose BCC with 100%
sensitivity and 93% specificity [84].

A novel approach that combines auto-fluorescence and Raman spectroscopy has been
developed to accelerate the diagnostic process while maintaining high accuracy [85]. AF-
Raman was employed by Kong et al. to detect BCC in skin resections obtained during Mohs
surgery, and they provided illustrative instances [20]. This approach accurately assessed
skin resections with only 500–1500 Raman spectra. Combining fluorescence and Raman
spectroscopy presents a promising non-invasive technique for detecting malignant skin
cancer in humans. Fluorescence analysis enables quick scanning of extensive tissue areas,
while Raman spectrum analysis can be utilized to identify suspected cases of malignancy
and determine the type of tumor.

To identify skin tumors in vivo, a novel RS phase method has been suggested, which
utilizes quadratic discriminant analysis for tumor type classification. The combined diag-
nostic method is shown to be highly efficient, with a sensitivity of 89% and a specificity of
87% in identifying malignant melanoma [86]. Singurdsson et al. developed a skin lesion
classification method using in vitro Raman spectroscopy and a nonlinear neural network
classifier. Their approach is fully automated and probabilistic, including feature extraction
and a feedforward neural network that is fully adaptive. The study results showed a correct
classification rate of 80.5% for malignant melanoma and 95.8% for basal cell carcinoma.
The overall classification rate of skin lesions was 94.8% [87].

Khristoforova et al. presented a portable Raman spectroscopy system for skin tumor
optical screening with 100% accuracy in the differentiation of benign and malignant skin
tumors through a combined analysis of Raman and AF signals [88,89].

Collagen and triolein have proven to be the most relevant biomarkers for diagnosing
melanoma and non-melanoma skin cancers. Raman spectroscopy could be used to discover
the biophysical basis for accurate diagnosis, potentially reducing the need for excisional
biopsies [90]. Ruiz et al. devised a novel methodology to non-invasively and rapidly
quantify and localize biomarkers that classify dysplastic lesions with a sensitivity of 94.1%
and a specificity of 100%. The Raman spectral maps are shown in Figure 4 [91].

Tamosiunas et al. employed ex vivo Raman spectroscopy on various tissue samples
including soft tissue sarcomas, lipomas, skin, and mast cell tumors taken from cats and dogs.
The study combined OCT and Raman data, resulting in better differentiation between the
samples. The method achieved high sensitivities for skin, lipomas, and malignant tumors,
with values of 0.968, 1, and 0.939, respectively. The specificities were also high, with values
of 0.956, 1, and 0.977 for skin, lipomas, and malignant tumors, respectively [92].

Liao et al. have developed a new technique for Raman spectroscopic imaging that
enables the real-time analysis of cellular processes and states without the need for labeling.
This approach uses parallel detection, which allows for the mapping of lipid droplets in
individual live cells, the examination of retinoid metabolism, differentiation between fat
droplets and protein-rich organelles, and the monitoring of drug diffusion in vivo [93].
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Bratchenko et al. explored the potential of a cost-effective and portable spectroscopy
setup for in vivo skin cancer diagnosis. They achieved a biopsy ratio of 3.95:1 with 90%
sensitivity for Raman classification, and a biopsy ratio of 3.33:1 with 90% sensitivity for
autofluorescence classification [89]. Two methods for classifying skin cancer based on
Raman spectra analysis were compared by the researchers: convolutional neural networks
and projection on latent structures with discriminant analysis [94]. The success of classifying
skin tumors with high accuracy using convolutional neural network analysis indicates the
potential for widespread adoption of Raman setups in clinical settings.

Current studies are investigating the potential of Raman spectroscopy for in vitro can-
cer diagnosis, with recent research focused on the development of portable systems for the
real-time measurement of skin lesions and the analysis of serum for gastric cancer [42,81,95].
The accurate correlation between Raman spectra and enzymatic test results, as well as
the differentiation between healthy and cancerous tissues, heavily relies on the use of
multivariate data analysis techniques, including partial least squares regression and partial
least square discriminant analysis.

Farries et al. reported a prototype using MIR spectral imaging for the quick assessment
of cells for cytological diagnosis [96]. The prototype, known as the Minerva, was created
based on a fiber optic supercontinuum source with large spectral brightness, coupled with
an acousto-optic tunable filter that collects data across a wavelength range selected for
higher sensitivity for a specific skin disease. The Minerva was tested with colon cells across
a wavenumber range of 2700 to 3500 cm−1, and proved to be advantageous over the state-of-
the-art FTIR system since it could capture spectral data about 500 times faster. The increased
speed in data collection can potentially allow for real-time screening in vivo, removing the
need for biopsy and the long wait time required for histopathological analysis. In addition,
the Minerva could produce high-resolution images and create three-dimensional images
with phase information.
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Kyriakidou et al. used ATR-FTIR spectroscopy to analyze the spectral differences
between healthy skin tissue and skin tissue affected by basal cell carcinoma, malignant
melanoma, and nevus for the early clinical diagnosis of skin cancer [97]. Seven patients
were studied and normal skin tissues adjacent to the affected regions were used as the
control. The study found characteristic “marker bands” for proteins, lipids, and nucleic
acids. For example, the intensity at approximately the 3062 cm–1 band was increased upon
cancer development, indicating the predominance of the β-sheet protein structure, and
two absorption wavenumbers at 841 cm−1 and 815 cm−1, which correspond to B- and
Z-DNA forms, respectively.

3.3. Gastric and Colorectal Cancer

Despite being the preferred screening method for colorectal cancer (CRC), colonoscopy
is not widely adopted due to its high cost and practical limitations, even though CRC is
the third most prevalent cancer worldwide and is also a significant contributor to cancer-
related deaths [98]. Raman spectroscopy has demonstrated high sensitivity and specificity
in differentiating normal mucosa, adenocarcinomas, and adenomatous and metaplastic
polyps, in vitro as well as in vivo. It has also been used to monitor tumor progression in
mice by measuring molecular changes in the tumor. High-frequency Raman spectroscopy
has discriminated between pathology subtypes in fresh ex vivo colon tissue samples with
one second acquisition times. Raman spectroscopy could be used as a supplementary
tool to histopathology, either for automated sample analysis or the digital staining of
tissue sections to aid pathologists in their analysis [20]. Lin et al. presented findings
on the capabilities of SERS to obtain blood serum biochemical information for the early
detection of colorectal cancer [99]. SERS measurements were able to identify characteristic
biomolecular changes associated with colorectal cancer, such as changes in protein and
lipid concentrations. The major vibrational bands for the colorectal cancer serum samples
are shown in Table 2.

Table 2. Major vibrational bands of the colorectal cancer serum samples. (Adapted with permission
from Lin et al. [99]).

Peak Positions (cm−1) Vibrational Mode Major Assignment

494 ν(S-S) L−arginine
589 Amide−VI
638 ν(C-S) Tyrosine
725 δ(C-H) Adenine
823 Ring breathing Tyrosine
881 δ(ring) Tryptophan

1004 νs(C-C) Phenylalanine
1074 ν(C-C) Phospholipids
1206 Ring vibration Tyrosine
1322 CH3CH2 twisting Collagen, tryptophan
1365 Tryptophan
1655 ν(C=O) Amide I

Ito et al. devised a rapid and straightforward process for producing silver nanoscale
hexagonal columns on a phosphor bronze chip, which could be used for SERS measure-
ments. Their findings indicated that the SERS spectra’s peak heights were markedly lower
in patients with benign diseases than in those with CRC [100]. Petersen et al. used a fiber-
optic Raman probe to diagnose CRC. The samples included normal tissues, hyperplastic
polyps, tubular adenomas, and adenocarcinoma tissues. The Raman spectra of low-risk
(LR) and high-risk (HR) lesions of different tissues are shown in Figure 5 [101]. Wang et al.
devised a label-free technique for detecting serum proteins using surface-enhanced Raman
spectroscopy (SERS). Their results showed alterations in the secondary structures and
amino acid contents of serum proteins during cancer progression [38].
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Salman et al. showed that FTIR spectroscopy could differentiate between control, local
and distant recurrence crypts in CRC relapse [102]. CRC relapse is common, with more
than half of CRC patients experiencing it. A total of 128 crypts from eight CRC patients
were used in this study, where 21 were classified as no recurrence, 53 were classified as
local recurrence, and 54 were classified as distant recurrence. These samples were formalin-
fixed and paraffin-embedded (FFPE), and FTIR spectral data was collected from 600 to
4000 cm−1. The data sent for PCA and LDA were used in helping to differentiate between
the classes of tissue samples. Employing the principal components recognized, a 92%
accuracy rate in distinguishing between control, local recurrence, and distant recurrence
crypts was attained.

Yao et al. described a pilot study on the use of ATR-FTIR for evaluating surgical
resection margins in CRC [103]. The samples were fresh tissue samples collected from
56 patients with CRC. It was found that the FTIR spectra of CRC and adjacent mucosa at
1 cm differed from those at 2 cm and 5 cm, as shown in Figure 6. The FTIR analysis revealed
a reduction in lipids and a rise in protein and nucleic acid content in both the tumor and
surrounding tissue within a 1 cm range. These findings suggest that FTIR spectroscopy has
potential as a quick and effective means of assessing surgical resection margins in cases of
colorectal cancer.
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locations in (a). (Adapted with permission from Yao et al.) [103].

Nallala et al. studied the area of identifying gastrointestinal (GI) cancers using MIR
spectral imaging [104]. It is known to be difficult to achieve inter and intra-observer
agreement for diagnosis in the early stages of GI cancer. Fifty tissue samples were measured
in this study, while 45 samples were analyzed: 16 were non-tumoral, 13 were tumoral, 7
were adenoma, and 9 were hyperplastic. FTIR spectral data was collected using an Agilent
620 FTIR microscope, which was coupled with an Agilent 670 FTIR spectrometer equipped
with a Globar light source. The microscope had a liquid-nitrogen cooled focal plane array
(FPA) detector for collecting the spectral data. The samples were measured using the
conventional pixel resolution of 5.5 × 5.5 µm2, and then smaller regions were imaged using
a higher resolution modality of pixel resolution 1.1 x 1.1 µm2. The collected data underwent
multivariate analysis, including PCA-LDA, paired with leave-one-out-cross-validation
(LOOCV) to build a classification model. Using the classification model with two groups:
tumoral and non-tumoral, sensitivity and specificity values ranged from 81 to 86%, with
increased performance from conventional to high-resolution images. The addition of the
intermediate group, including adenoma and hyperplastic tissues, resulted in a drop in
model performance.

Sheng et al. used FTIR spectroscopy as a potential diagnostic tool for gastric can-
cer [105]. Serum samples were collected from gastric cancer patients (27 cases before
surgery) and healthy individuals (19 cases), and FTIR spectroscopy was used to analyze
their biochemical compositions. An additional 12 samples were included for blind tests. A
test accuracy of 100% was achieved. The study also found that the H2959/H2931 ratio was
the most efficient in distinguishing gastric cancer patients from healthy individuals. The
RNA/DNA ratio was lower in gastric cancer patients than in healthy individuals.
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Kaznowska et al. proved that ATR-FTIR spectroscopy could provide valuable infor-
mation on the biochemical composition of samples of colon tissues, potentially serving as a
pathophysiological tool to monitor the effectiveness of chemotherapy treatment for cancer
patients [106]. A total of 56 paraffin-embedded colon specimens were used in the study
and were histologically analyzed and classified into several categories: healthy, cancerous,
post-chemotherapy cancerous, and healthy surgical margin. FTIR measurements with a
diamond ATR crystal were taken in the range of 400–4000 cm−1, but only data in the range
of 900–3500 cm−1 were selected. The obtained data were then analyzed using PCA-LDA.
A comparison between different tissue classes showed that the cancerous samples did
not show peaks belonging to functional groups in nucleic acids (1085 cm−1, 1249 cm−1),
proteins (1550 cm−1, 1648 cm−1), and water (3250 cm−1). Additional vibration at 1385 cm−1

was found to be present in cancerous, post-chemotherapy cancerous, and healthy surgical
margins of CRC. The differences in the biochemical composition of the tissue types could
potentially allow FTIR to become a tool in determining the margin of the tumor for clean
and proper resection of the tumor.

3.4. Breast Cancer

Normal and cancerous breast tissue differs primarily in their lipid and protein contents,
with normal breast tissue containing higher levels of lipids and cancerous tissue containing
higher levels of proteins. Raman spectroscopy has demonstrated the potential in the
non-invasive detection, grading, and classification of breast cancer according to research
findings [107]. Raman spectroscopy technology provides label-free, real-time, and non-
subjective chemical information that can differentiate between malignant and benign tissue.
Raman probes enable the in vivo acquisition of Raman spectra with an accuracy rate of
93.3% for in vivo measurements. [20]. Raman biomarkers such as carotenoids, proteins,
lipids, nucleic acids, collagen calcium compounds, and water can be utilized to identify the
primary differences between normal and cancerous tissue [20,107]. Raman spectroscopy has
been shown to have a higher sensitivity in detecting micro-calcifications when compared
to mammography. This increased sensitivity reduces the likelihood of false negatives
and miss-sampling. Furthermore, the SORS technique offers a non-invasive method for
analyzing calcifications at various depths in both human and chicken breast tissue.

The study by You et al. employed Raman micro-spectroscopy to investigate the impact
of fatty acids on cancer cell growth and metastasis. Their findings showed a significant
change in the tumor, as there was a shift from monounsaturated fatty acids to PUFAs on a
large scale, while only a minor subset of fatty acids underwent this transition in the tumor’s
micro- and macro-environment, as shown in Figure 7 [108].

A multivariate partial least squares regression model was developed by Bilal et al.
based on the Raman spectra of BRC-positive and healthy participants. The model’s R-square
value was 0.987, indicating promising results in terms of accuracy, sensitivity, specificity,
and the receiver operating characteristic curve [109].

Raman imaging of breast samples demonstrated excellent contrast, attributed to the ex-
istence of proteins, fatty acids, and carotenoids, with a more significant protein contribution
observed in cancerous samples, while normal breast tissue contained higher levels of lipids,
particularly oleic acid derivatives. An analysis of nodal sections using Raman mapping
revealed the potential for a comprehensive assessment of the biochemical modifications
linked to metastasis [110]. The use of Raman spectroscopy was applied to examine the
proliferation status of rat cells, demonstrating that actively dividing cells have a greater
concentration of nucleic acids and proteins. Furthermore, a Raman spectroscopy analysis
of serum samples obtained from breast cancer patients indicated changes in the intensity
and peak positions of various bands, such as beta-carotene, proteins, polysaccharides, and
phospholipids. By using LDA, discrimination between control and cancerous samples
was achieved with a sensitivity of 92.2% and a specificity of 78% [110]. The amide region
was identified as the main area of difference between normal and diseased breast tissue
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analyzed using FT-Raman spectroscopy, which is possibly attributable to the poor scattering
caused by the irregular surface of the tissue.
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SERS has also been utilized for the detection of oncogenes at low concentrations ranging
from micro to picomolar levels. The application of nanoparticle SERS probes has enabled
the identification and targeting of breast tumor components, facilitating the characterization
and evaluation of tissue both prior to and post-therapy [65,110]. SERS has also been used to
target HER2 on breast cancer cells and to identify other cancer markers such as PSA, BRCA1,
EGFR, and others. The use of gold nanoparticles in serum research has also been explored,
resulting in a 96% sensitivity and 87% specificity in detecting breast cancer [110].

Ozek et al. showcased their method for examining comprehensive alterations in cells
as a result of miRNA expression using a model cell line system [111]. The researchers
conducted a study using MCF7 cells to investigate the effects of miRNA-125b, which is
known to be down-regulated in breast cancer. Specifically, they compared cells transfected
with miRNA-125b (MCF7-125b) to cells transfected with an empty vector (MCF7-EV). The
study utilized ATR-FTIR and spin-labeling electron spin resonance spectroscopy to examine
the global structural changes of the cells over time. The results indicated that MCF7-125b
cells exhibited lower levels of RNA, protein, lipid, and glycogen content, as well as lower
membrane fluidity and proliferation compared to MCF7-EV cells. Using these changes as
features, cluster analysis was used to differentiate between MCF7-125b and MCF7-EV cells,
demonstrating a promising approach for understanding the effects of miRNA on cells. This
methodology could potentially be applied to diagnose deregulated miRNA expression in
patient samples in the future.

Tomas et al. demonstrated the effectiveness of neural networks trained using the
ATR-FTIR spectral data of breast tumors [112]. FFPE breast tissue blocks were obtained
from 166 patients, and 78 tissue blocks were histopathologically classified as benign, while
88 were classified as malignant. A platinum ATR single reflection diamond sampling
module was used, and data from the wavenumber range of 600–4000 cm−1 was collected.
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The data underwent several pre-processing steps via removing background noise, baseline
correction, and Z-score normalization before being processed by ML. The classification
models included PCA-LDA, SVM, decision tree, random forest, naive Bayes, logistic
regression, deep learning models, and feed-forward neural networks (FNN) of different
hyperparameters. The best model was the FNN, with two fully connected layers with
96.06% accuracy. The FNN method was used to determine that the significant regions
belonged to C–OH functional groups in carbohydrates.

Yang et al. conducted a study with the aim of using the FTIR spectroscopy of serum
along with machine learning algorithms such as SVM, KNN, and extreme learning ma-
chines (ELM) to classify breast cancer patients at different stages and non-cancer control
subjects [113]. They used serum samples from 120 breast cancer patients at different stages
and 60 non-cancer control subjects for the analysis. The study revealed that the technique
could quickly and effectively distinguish between breast cancer patients at different stages
and non-cancer control subjects. The accuracy rate for distinguishing between stage 1 breast
cancer patients and non-cancer control subjects was found to be 96.7%, while the accuracy
rate for distinguishing between stage 2–4 breast cancer patients and non-cancer control
subjects was 100%. The study offers a promising approach to breast cancer screening that is
both efficient and cost-effective, potentially allowing for the earlier detection and treatment
of breast cancer in a larger population. Additionally, this approach may be applicable to
other types of cancer screening through serum FTIR spectroscopy in the future.

Liu et al. investigated the feasibility of using FTIR spectroscopy combined with SVM
as a screening tool to identify invasive ductal carcinoma (IDC) in breast cancer [114]. The
samples were serum samples from healthy patients, IDC patients, and non-IDC patients.
It analyzed a total of 180 serum samples, including 60 healthy controls, 60 IDC patients,
and 60 non-IDC patients. Specific differences in the infrared spectra of the three groups of
serum were observed due to differences in the contents of specific substances, which led to
changes in peak intensity and spectral shape. The results showed that the SVM algorithm
had a high accuracy rate of 92.5% in identifying IDC. The sensitivity and specificity were
91.7% and 93.3%, respectively. The study presents a promising approach to detecting breast
cancer using advanced technology that is rapid and noninvasive.

Depciuch et al. proposed a physics-based computational model for analyzing FTIR
spectra to assess the effectiveness of chemotherapy in treating breast cancer [115]. The study
involved examining breast tissue samples from 33 females diagnosed with triple-negative
breast cancer who underwent pre-operative chemotherapy. Two patients showed a partial
response after four chemotherapy cycles. The team analyzed deparaffinized breast tissue
specimens using ATR-FTIR spectroscopy, including pre-chemotherapy, post-operative, and
post-chemotherapy specimens. The results revealed significant differences in the FTIR
spectra between healthy and cancerous breast tissue, as well as between pre- and post-
chemotherapy breast tissue. Cancerous tissue exhibited three unique peaks at 1051 cm−1

(vibration of glycogen-derived C-O bonds), 1417 cm−1 (protein-derived COO bonds), and
1645 cm−1 (the stretching of C-O and C-N bonds found in primary amide structures) that
were absent in healthy tissue. On the other hand, healthy breast tissue showed peaks at
1411 and 1654 cm−1 wavenumbers. The results illustrate how computational models based
on FTIR spectroscopy have the potential to monitor the effectiveness of chemotherapy
treatment in breast cancer patients in a non-invasive manner. This could lead to improved
diagnostic tools for assessing treatment efficacy during the course of therapy.

Multimodality sensing combining both technologies was also reported. For example,
Depciuch et al. compared the differences between the measurements obtained from Raman
and FTIR spectroscopy for healthy and cancerous breast tissues for paraffin-embedded
and deparaffinized samples [116]. Tissue samples are often prepared by embedding the
tissue with paraffin, which can result in background signals. A total of 16 samples of breast
tissues were used for this study, including eight paraffinized and eight deparaffinized
samples. This study compared the differences between paraffined and deparaffinized tissue
samples by two spectroscopy modes: FTIR and Raman in the range of 500–3000 cm−1.
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Paraffin was measured as the background for paraffined samples, while the air was used
as the background for deparaffinized samples. Through performing Gaussian and Lorentz
analyses, the percentage of alpha-helices and beta-harmonica was determined, and the
values for the paraffined and deparaffinized samples were similar, while the differences
were statistically insignificant. Hence, sample preparation had no impact on the mid-infrared
(MIR) range, and only had a minor effect on the intensity of the Raman peak. Deparaffinized
tissues, however, provide higher intensities using the Raman spectroscopy method, which
could be beneficial for extracting more useful information in the spectrum data.

Another example was by Brozek-Pluska et al., who proved that the sample preparation
method of tissue samples affects the spectrum measured [117]. This study analyzed the
impact of sample preparation on the spectrum presented from two spectroscopy modes:
infrared and Raman in the wavenumber range of 2800–3000 cm−1. A total of 18 breast
tissue samples were used, with six fresh samples, six paraffin-embedded samples, and
six deparaffinized samples from three patients. For the infrared mode, spectral data
was captured using the Nicolet Avatar 330 FTIR Spectrometer. Gauss functions were
implemented on the spectral data to find the expected characteristic frequencies of different
sample types. Through this analysis, variations in the spectrums were observed between
tissue samples that underwent different preparation methods. Paraffin-embedded samples
were dominated by paraffin peaks, hence disturbing the biochemical composition of tissues.
Deparaffinization of the samples would also affect the intensities of the different peaks in
both IR spectra, reducing lipid hydrocarbon peaks, where the noncancerous fresh tissue is
dominated by the peaks at 2854 cm−1 and 3009 cm−1 belonging to the unsaturated bonds of
lipids; however, in the deparaffinized tissues, the intensity of the spectrum was much lower
than expected. These methods of preparation hence affect the output spectrum presented,
disturbing the spectra in such a manner that the biochemical composition of the tissues
cannot be accurately identified.

In summary, vibrational spectroscopy techniques such as Raman spectroscopy and
Fourier-transform infrared spectroscopy have potential advantages as tools for the clinical
diagnosis of breast cancer [118]. These techniques can detect subtle biochemical changes
relating to pathology and can be used in tissue diagnosis [118]. Raman spectroscopy can be
used to analyze both ex-vivo tissue and liquid biopsy samples [119]. The combination of
vibrational spectroscopy with AI creates a pathway with significant potential for predicting
various stages of different disease processes, specifically in cancer diagnosis, staging, and
treatment design [120].

3.5. Oral Cancer

The oral cavity is composed of various components such as the lips, the mucosal
lining, the buccal cavity, the upper and lower alveolar ridges, gingiva, the hard palate, the
retromolar trigone, the floor of the mouth, and the front part of the tongue [109]. In their
work, Ibrahim et al. explored the possibility of using Raman spectroscopy as a diagnostic
tool for oral cancer [121]. There are three majority biomarkers for the diagnosis of oral
cancer that can be used [122]:

Deoxyribose: This is a component of DNA that is different in cancerous and healthy tissues.
Collagen: This protein provides tissue structure and is known to be altered in cancer-

ous tissues.
Lipids: Lipids are a class of biomolecules known to be altered in cancerous tissues and

that can be used as biomarkers for cancer diagnosis.
The detection of oral cancer, particularly in various sub-sites including the tongue,

buccal mucosa, and gingiva, was examined by Jeng et al. using Raman spectroscopy. The
most effective classifier model was found to be the PCA-QDA, which yielded an accuracy
rate of 87.5%, with a sensitivity of 90.90% and a specificity of 83.33% [123]. The primary
biomolecular markers for detecting oral cancer were found to be variations in protein,
amino acids, and beta-carotene. Serum Raman spectroscopy is one approach in oral cancer
screening. Several studies have demonstrated the possibility of detecting premalignant
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and cancer-specific indications with high levels of sensitivity and specificity. These rates
have been reported to be as high as 64% and 80%, respectively, which are comparable to
established screening technologies [124].

Zlotogorski-Hurvitz et al. investigated the potential of the ATR-FTIR spectra of
salivary exosomes in the diagnosis of oral cancer [125]. The study involved collecting whole
saliva samples from 21 cancer patients and 13 healthy individuals, isolating exosomes and
measuring their IR absorbance spectra. Machine learning techniques were employed to
develop discrimination models for the absorbance data, including the PCA–LDA and
SVM classification. The results showed that the IR spectra of oral cancer exosomes were
consistently different from those of healthy individuals, indicating specific IR spectral
signatures for cancer salivary exosomes. The relative intensity ratios of I1033/1072, I2924/2854,
I1404/2924 could be used for classification with statistical significance. These bands are
associated with fatty acids and proteins. The PCA-LDA discrimination model was able
to classify the samples accurately, with a sensitivity of 100%, a specificity of 89%, and
an overall accuracy of 95%. The SVM exhibited a training accuracy of 100% and a cross-
validation accuracy of 89%. The study concludes that this non-invasive method should
be further investigated for the diagnosis of oral cancer at its very early stages, or in oral
lesions with the potential for malignant transformation.

3.6. Lung Cancer

Bangaoil et al. proved that ATR-FTIR was promising as an alternative to diagnosing
lung cancer [126]. There were two primary lung cancer tumor categories: NSCLC and
small cell lung carcinoma (SCLC). Both tumors were classified as malignant, and the non-
cancerous samples were classified as benign. A total of 97 samples were used in this study,
with 44 malignant samples and 53 benign samples. The tissue samples were obtained
from a lung tissue block, where samples were cut from the outer sections and stained
with hematoxylin and eosin. Samples cut from the inner section were deparaffinized with
xylene. The spectral profiles of samples were measured in the range of 850–1800 cm−1

using a platinum single-reflection diamond sampling module. The spectra were then
processed using PCA and hierarchical cluster analysis to differentiate between the tissue
types. Figure 8 shows the five distinct spectral profiles that were identified, representing
proteins, lipids, nucleic acids, carbohydrates, and phosphorylated proteins. Using the
significant wavenumbers identified, a linear discriminant analysis (LDA) was conducted to
develop a classification model for differentiation between malignant and benign samples.
The model was tested to be 97.73% sensitive, 92.45% specific, 94.85% accurate, and 91.49%
correct with regard to its positive predictions, and 98% correct with regard to negative
predictions, with strong agreement observed with histopathologic classification.
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Yang et al. proved that ATR-FTIR spectroscopy could be combined with chemometrics
for a straightforward screening and diagnosis of lung cancer [127]. Samples were the blood
serums of lung cancer patients and healthy patients, which were dried using a vacuum
oven. In this study, 92 serum samples were collected from individuals with lung cancer,
while 155 samples were obtained from healthy subjects. A deuterated triglycine sulfate
(DTGS) detector was utilized to take ATR-FTIR measurements, wherein the pressure tip
was used to press the dried serum sample. Raw data were pre-processed before being
sent for a chemometrics analysis, including principal component regression (PCR) and
partial least squares discriminant analysis (PLS-DA). The most prominent difference was
identified in the first derivative of the spectral data, from 1000 to 1250 cm−1 and belonging
to nucleic acids, in which the PLS-DA models were 80% sensitive, 91.89% specific, and
87.10% accurate. With the high performance indicated by the metrics and the low root
mean square error (RMSE), ATR-FTIR spectroscopy with chemometrics is a promising and
straightforward method for screening and diagnosis.

Lugtu et al. investigated the potential of artificial neural networks in the discrimination
of lung cancer based on ATR-FTIR spectroscopy [128]. In the case of lung cancer detection,
this technique can identify specific molecular changes associated with cancerous cells. The
advantages of using artificial neural networks were to improve the accuracy and efficiency
of lung cancer diagnosis, especially in cases where pathologists may have discordant
readings or uncertainties. This approach has been tested in clinical trials using lung tissue
specimens on glass slides obtained from patients undergoing surgery for suspected lung
cancer. A total of 70 samples were collected, including 39 malignant and 31 benign samples.
The results showed that the artificial neural network models had high accuracy rates
in discriminating between benign and malignant lung tissue samples based on infrared
spectroscopy data. The best-performing model achieved an accuracy rate of 94.3%, a
sensitivity of 94.9%, a specificity of 93.5%, a positive predictive value of 92.7%, and a
negative predictive value of 95.6%.

Kaznowska et al. proposed the use of ATR-FTIR spectroscopy combined with PCA-
LDA and a physics-based computational model to classify lung cancers and determine
their degree of malignancy [129]. The study used lung cancer tissue slices, including
adenocarcinoma and squamous cell carcinoma, as well as control tissue samples, mounted
on CaF2 slides for FTIR spectroscopic analysis. The findings revealed a shift in the spectral
pattern of adenocarcinoma tissue compared to control and lung cancer tissues. Notably,
the adenocarcinoma tissue spectra lacked peaks for functional groups of glutamate or
phospholipids. The study concluded that FTIR spectroscopy, coupled with PCA-LDA
analysis and the physics model, is a sensitive tool for not only diagnosing tumor types but
also for classifying their malignancy.

Exhaled breath analysis is a promising non-invasive approach for diagnosing and
monitoring airway diseases. Mastrigt et al. developed a broadband quantum cascade
laser (QCL) spectroscopy technique to detect volatile organic compounds (VOC) in exhaled
breath samples [130]. They utilized a QCL and a multipass cell to evaluate the repeatability
of the measurements for exhaled breath VOC profiling and to analyze its usability to
differentiate 35 healthy subjects, 39 asthmatic patients, and 15 children with cystic fibrosis
(CF). The authors showed that it was possible to differentiate classes of children with CF by
analyzing the spectral profiles using PCA. A group of VOCs was identified between healthy
children and children with asthma in wavenumber ranges of 1181.80–1182.55 cm−1 and
1261.40–1262.05 cm−1, and between healthy children and children with CF in 1260.70 and
1261.65 cm−1. While repeatability could be improved, broadband QCL-based spectroscopy
is a relatively easy and fast technique.

3.7. Brain Cancer

Anna et al. utilized Raman spectroscopy to compare normal tissue with medulloblas-
toma, low-grade astrocytoma, ependymoma, and metastatic brain tumors. According to
the study, Figure 9 shows that high-grade medulloblastoma samples have reduced levels
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of saturated fatty acids compared to low-grade astrocytoma and non-tumor brain samples.
High-grade brain tumors exhibited significantly lower levels of oleic acid [64]. Tobias
Meyer utilized label-free vibrational microspectroscopic imaging as a promising technique
for the quick and accurate in vivo diagnosis of brain tumors. The study demonstrated that
second harmonic generation (SHG) imaging offered high chemical selectivity, two-photon
excited fluorescence (TPEF) allowed for label-free imaging of the morphology, and CARS
was promising for imaging the chemical composition [131]. The efficacy of a portable
Raman scanner in detecting brain tumors during surgical resection was investigated by
Karabeber et al. The findings indicated that the use of a SERS image-guided resection
was more precise than relying solely on white light visualization. The hand-held Raman
probe successfully identified the microscopic foci of cancer that would have otherwise have
gone undetected [132].

Lilo et al. investigated the use of ATR-FTIR spectroscopy and chemometric techniques
for distinguishing between different grades of meningioma tumors based on their biospec-
trochemical profiles [133]. The samples used were FFPE brain tissue samples on slides from
99 patients with meningioma tumors. The results showed that the combined technique
could successfully distinguish between grade I, grade II, and grade III meningiomas, with
an accuracy of classification of 79% for PLS-DA and 80% for PCA-LDA for discriminating
between grade I and grade II meningiomas, while the accuracy was 94% for PLS-DA and 97%
for PCA-LDA for discriminating between grade I recurrence and grade II recurrence. The
analysis also indicated the spectral fingerprints related to changes in molecular composition
associated with different grades of meningioma tumors. These spectral fingerprints were
associated with alterations in lipids, proteins, DNA/RNA, and carbohydrates. The study
offers a potential non-destructive, low-cost, and sensitive tool for clinical settings to aid in
determining the grade and biospectrochemical profiling of meningioma tumors, which could
improve patient outcomes and advance our understanding of these types of tumors.

Hands et al. investigated the potential of ATR-FTIR spectroscopy in discriminating
between different levels of brain tumor severity using serum samples [134]. ATR-FTIR
spectroscopy was used to analyze the molecular composition of serum samples from
patients with different grades of brain tumors. Serum samples from 112 patients with
different grades of brain tumors, including 38 low-grade gliomas, 38 high-grade gliomas,
and 36 metastatic brain tumors were measured. The authors identified spectral fingerprints
related to changes in molecular composition that were associated with different levels of
brain tumor severity. Specifically, changes in lipid composition were found to be associated
with higher-grade tumors. The sensitivity and specificity for distinguishing between
low-grade gliomas and high-grade gliomas were 94% and 97%, respectively, while the
sensitivity and specificity for distinguishing between high-grade gliomas and metastatic
brain tumors were 100% and 97%, respectively. The study provides a non-invasive method
for diagnosing and monitoring brain tumors using serum samples. It shows that ATR-FTIR
spectroscopy could potentially be used to improve patient outcomes by enabling earlier
detection and more accurate monitoring of tumor progression.

Gajjar et al. investigated the use of ATR-FTIR and Raman spectroscopy combined
with multivariate analysis as a potential diagnostic tool for brain tumors [135]. A total of
278 samples were analyzed, which were tissue sections from normal brain tissue, menin-
gioma, glioma, and brain metastases. The spectral data analysis showed changes in the
brain’s biochemical structure in relation to different tumor types. Specifically, there was
a tentative link between a decrease in the lipid-to-protein ratio and increased tumor pro-
gression. Additionally, an alteration in the ratio of cholesterol esters to phenylalanine was
visible in metastatic and grade IV glioma tumors. These changes were detected using
biospectroscopy techniques with high sensitivity (up to 100%) and specificity (up to 98%).
This study has significant implications for the diagnosis and treatment of brain tumors by
providing a more objective and precise diagnosis compared to current methods, potentially
improving patient outcomes by aiding in surgical planning and treatment decisions.
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Figure 9. Images and analyses used to study a tumor in the central nervous system. These include
an MRI image (a), a histological image stained with hematoxylin and eosin (b), a microscopy image
created by stitching together smaller images (c), a microscopy image at higher magnification (d),
Raman images at a resolution of 50 µm × 50 µm (e,h), cluster analysis of the Raman data (f,i), and
characteristic vibrational Raman spectra (g,j) in the high−frequency region. Red is the protein-rich
region, blue is the lipid-rich region, and green is the mixed lipid-protein region. (Adapted with
permission from Anna et al.) [64].

3.8. Thyroid Cancer

O’Dea et al. used a benign thyroid cell line and seven thyroid cancer cell lines to
develop a diagnostic algorithm using Raman spectroscopy. The variances in spectra
observed between cancer and benign cells were attributed to differences in the composition
of nucleic acids, lipids, carbohydrates, and proteins. Raman spectroscopy was accurate in
identifying thyroid cancer, with sensitivities ranging from 74% to 85%, specificities from
65% to 93%, and diagnostic accuracy from 71% to 88% [136].

Santillan and colleagues conducted a study on the use of artificial neural networks
in predicting thyroid cancer using ATR-FTIR spectroscopy [137]. They identified specific
peaks and cluster patterns in the fingerprint IR regions that could effectively distinguish
between benign and cancerous thyroid lesions. The samples were thyroid tissues on glass
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slides obtained from 164 patients with either benign or malignant lesions. The study
found that the neural network models designed using ATR-FTIR input data showed high
accuracy in diagnosing thyroid malignancy, with an overall accuracy of 94.5%, sensitivity
of 93.8%, and specificity of 95.2%. The study presents a method that is more objective and
efficient in distinguishing between benign and malignant thyroid tissues by utilizing FTIR
spectroscopy and artificial neural networks. This method has potential applications in
clinical practice for disease diagnosis and prognosis.

3.9. Leukemia

Sheng et al. conducted a study to explore the feasibility of FTIR spectroscopy for
distinguishing between serum samples from patients with leukemia and those from healthy
individuals [138]. The researchers analyzed a total of 30 serum samples, including 15 from
leukemia patients and 15 from healthy individuals. While the IR spectra of both groups
showed similarities, specific ratios exhibited notable differences. In particular, leukemia
patients had a higher H2964/H2926 ratio but a lower RNA/DNA ratio compared to healthy
individuals. The study suggests that FTIR spectroscopy could serve as a promising method
for diagnosing leukemia by detecting differences in specific ratios between serum samples
from leukemia patients and healthy individuals. However, further research is needed to
confirm these findings and determine the full potential of FTIR spectroscopy as a diagnostic
tool for leukemia.

3.10. Bladder Cancer

Crow et al. investigated the potential of Raman spectroscopy in detecting and grad-
ing bladder cancer. Raman spectra were collected from 75 bladder samples, including
normal bladder, cystitis, carcinoma in situ, transitional cell carcinoma, and adenocarci-
noma. The spectral data were then analyzed using multivariate technologies to create
diagnostic algorithms [139].

De Jong et al. studied the use of Raman spectroscopy to differentiate between nontu-
mor and tumor bladder tissue. The study also showed that the spectral differences were
due to the higher collagen content in nontumor tissue and higher lipid, nucleic acid, protein,
and glycogen content in tumor tissue [140].

Gao et al. suggested that a mathematical model based on the biochemical character-
istics of normal and cancerous tissues needs to be constructed to improve the diagnostic
accuracy of Raman spectroscopy [65]. The paper by Auner et al. detailed the potential
clinical applications of Raman spectroscopy for cancer detection. They explained how this
technique could be utilized to identify different types of cancer [67].

An optical fiber probe for real-time in vivo cancer diagnosis was developed by Wang et al.
This probe can be utilized for the diagnosis of various types of cancer, including skin, lung,
stomach, esophageal, colorectal, cervical, and breast cancer [14]. Khan et al. combined
Raman spectroscopy and a support vector machine (SVM) to analyze human serum and
identify nasopharyngeal cancer (NPC) [141].

Gok et al. proposed FTIR spectroscopy as a more sensitive, rapid, non-destructive, and
operator-independent diagnostic method for bladder cancer recurrence from bladder wash
samples [142]. The study recruited 136 patients and compared the results of transmission
FTIR and ATR-FTIR spectroscopy with those of urine cytology and cystoscopy. For the
transmission FTIR measurements, the samples were in powder form mixed with KBr.
For the ATR-FTIR measurements, the samples were liquid bladder wash samples. A
statistical analysis and PCA were carried out for classification. The study found significant
differences in molecular content between the bladder cancer and control groups using
FTIR spectroscopy, with the best discriminations in the 1500–1340 cm–1, 1100–900 cm–1,
and 900–800 cm–1 bands. FTIR spectroscopy coupled with chemometrics was able to
successfully differentiate the diseased group from the control group with a sensitivity value
of 100% for the carcinoma group. The study found that FTIR spectroscopy offers quicker
and more reliable results than cytology, and it can enable the early detection of bladder
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tumors non-invasively and determine the bladder tumor patients that require cystoscopy
during the follow-up period.

3.11. Ovarian Cancer

Lima et al. identified spectral biomarkers for the accurate diagnosis of ovarian cancer,
including the cancer stages, histological type, and age differences using ATR-FTIR and
the genetic algorithm or successive projection algorithm combined with LDA [143]. The
samples used in the study were plasma or serum specimens from 30 patients with ovarian
cancer. The study showed that when using plasma blood, the sensitivity and specificity
levels were 100% for segregating stage I vs. stage II-IV, up to 94% for the serious vs. non-
serious category, and complete accuracy (100%) was achieved for the 60 years and >60 years
categories using the selected wavenumbers. For example, in plasma samples, the variables
at 1323 and 1350 cm−1 were found to be of particular interest in distinguishing between
stage I and stage II-IV, representing the symmetric stretching of the carboxyl groups of
amino acid side chains and collagen, respectively. For serum samples, high sensitivity and
specificity results were achieved (up to 91.6% stage I vs. stage II–IV; up to 93.0% serious
vs. non-serious; and up to 96.0% for 60 years vs. >60 years). This suggests that ATR-FTIR
spectroscopy can be used as a screening tool for ovarian cancer.

Grzelak et al. utilized synchrotron radiation-based Fourier transform infrared spec-
troscopy (SR-FTIR) to investigate the molecular composition of ovarian neoplastic tissues
based on their biological potential, as presented in Figure 10a [144]. The team placed
thin tissue sections on BaF2 substrates and analyzed the spatial distribution of various
biochemical markers for ovarian tumors, as depicted in Figure 10b. The study examined
eight samples of ovarian tissues, and it was revealed that malignant tumors had higher
lipid/protein ratios compared to benign tumors. The team employed the mean intensities
of biomolecules to distinguish between different tissue types and levels of malignancy in
ovarian tumors. The Mann-Whitney U test was used for statistical evaluation, and the
results showed significant differences between benign and malignant tumors in terms
of amide I intensity ratios (p < 0.05) and lipid/protein ratios (p < 0.01). The potential
benefits of using SR-FTIR spectroscopy in diagnosing ovarian cancer include improved
accuracy and efficiency compared to traditional methods (histology), as well as the ability
to differentiate between different tissue types and malignancy levels based on the mean
intensities of biomolecules.

3.12. Biliary Tract Cancer

Untereiner et al. described a pilot study that aimed to determine whether FTIR spec-
troscopy is able to distinguish bile samples from patients with and without malignant
biliary strictures [145]. FTIR spectroscopy was used as a new diagnostic tool for differenti-
ating patients with malignant bile duct strictures from those with benign biliary diseases.
A total of 57 bile samples were collected during endoscopic procedures (38 with benign
biliary diseases and 19 with malignant diseases). The spectral analysis revealed signifi-
cant differences between the spectra of malignant and benign bile samples, which were
attributed to changes in the molecular composition. For example, the intensity ratio of the
lipid carbonyl C=O vibration to the amide I band of proteins (I1742/1669) was 1.64 in the bile
organic phase spectrum compared to 0.22 in the bile aqueous phase spectrum. The results
showed that FTIR spectroscopy could be used to differentiate between biliary tract cancer
and benign biliary diseases, with an accuracy rate of 89%. The study demonstrates the
potential of FTIR spectroscopy as a non-invasive diagnostic tool for detecting biliary tract
cancer, which could lead to earlier diagnosis and improved patient outcomes. However,
further studies on a larger population are required to evaluate the potential of this classifier
for differentiating between biliary and pancreatic cancers.
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(b) Spatial distribution maps for the malignant type of tumor obtained from the microscopic view. A:
distribution of the proteins, amide I band (1660 cm−1), B: distribution of the proteins, amide I band
(1553 cm−1), C: structural changes of proteins (1660 cm−1/1553 cm−1), D: distribution of phosphate
bond(s) including nucleic acids (1080 cm−1), E: distribution of phosphate bond(s) including nucleic
acids (1240 cm−1), F: protein massif (1700–1500 cm−1), G: distribution of lipids (2955 cm−1), H:
distribution of lipids (2920 cm−1), I: distribution of lipids (2850 cm−1) Scale bar: 100 µm. (Adapted
with permission from Grzelak et al.) [144].

3.13. Ewing Sarcoma Cancer

Chaber et al. concluded that spectral data obtained from paraffined and deparaffinized
bone tissue samples were not significantly different, and the deparaffinization process was
not required before spectroscopy [146]. The samples used were bone specimens, where
20 samples were obtained from 10 Ewing sarcoma patients. This study aimed to verify
if the FTIR spectrum could detect Ewing sarcoma without deparaffinization. Bone tissue
samples were embedded in paraffin, and some sections were deparaffinized before the
tissue samples were sliced to produce slides. The ATR-FTIR technique was used for spectral
measurement, and paraffin was used as the background for paraffined samples. Gaussian,
Lorentz, statistical and computational analyses was performed on the original spectrum
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data. The analysis conducted on the data found that the peak at 1234 cm−1 showed some
statistically significant differences in the absorbance, surface area, and half-width of the
peak. The analysis using an imaginary dielectric function confirmed that the Lorentz
function parameters for individual peaks were the same and did not depend on the sample
preparation methods. Hence, deparaffinization does not have to be performed on samples
before the spectroscopy results are acquired.

3.14. Kidney Cancer

Bogomolov et al. demonstrated the advantages of combining fluorescence and MIR
fiber spectroscopy to diagnose kidney tumors through the synergy effect [147]. In this
study, eight cryo biopsies were collected from four patients after nephrectomy, with each
kidney providing four pairs of non-tumor and tumor tissues. The researchers utilized a
polycrystalline infrared (PIR) fiber-based ATR probe with a mercury-cadmium-telluride
(MCT) detector for MIR spectroscopy measurements. Fluorescence spectroscopy measure-
ments were conducted using a needle-shaped probe consisting of an aluminum-coated
400 µm core detection fiber and 13 silica illumination fibers of 100 µm in diameter, in
addition to a 25 mW laser. The collected data was analyzed using PCA and PLS-DA,
which showed that combining the two spectroscopy techniques had a synergistic effect on
kidney tumor diagnosis. The accuracy of the combined method was found to be higher
than that of the individual spectroscopy methods in calibration, cross-validation, and
random-subset validation.

3.15. Multiple Cancers

Paraskevaidi et al. recognized the need for an affordable and non-invasive screening
and diagnostic test for gynecological cancers [148]. Spectroscopic techniques have demon-
strated their potential in disease investigation and diagnosis. To this end, they employed
ATR-FTIR spectroscopy to examine urine samples from women with endometrial and
ovarian cancer, in addition to healthy individuals, with 10 samples from each group. The
researchers analyzed the spectral features associated with proteins, lipids, and nucleic acids,
and discussed their findings. For instance, in comparing ovarian cancer patients to healthy
controls, they found that the main differentiating factors were peaks related to proteins and
nucleic acids. These biomolecules were present in higher concentrations in cancerous sam-
ples, except for a peak at 1597 cm−1 that corresponds to the C-C phenyl ring of proteins. By
using multiple machine learning models, the researchers achieved high levels of accuracy
and sensitivity for both types of cancer. This cost-effective and non-destructive method
holds promise as a potential diagnostic tool for endometrial and ovarian cancers. Urine
collection and subsequent analysis is quick and non-invasive, making it ideal for repeated
measurements to monitor disease progression or therapeutic response. A larger study is
needed to validate these preliminary results.

Großerueschkamp et al. proposed a new diagnostic tool that integrates FTIR imaging
and a trained random forest classifier to identify lung tumor classes and subtypes of
adenocarcinoma in fresh-frozen tissue slices mounted on LowE slides, without the need for
markers [149]. A total of 101 patients were analyzed. The decision tree classified healthy
and pathologically relevant regions in the first level (healthy/pathologic), five tumor classes
in the second level (pathological classification), and subtypes for each tumor class in the
third level (subtypes of adenocarcinoma), as shown in Figure 11. The authors highlighted
that this is a significant achievement, as they were able to differentiate not only between
different types of cancer with a high level of accuracy (97%), but also between different
subtypes of adenocarcinoma with an accuracy of 95%. The method is more accurate and
reproducible compared to previous studies, and the differentiation of subtypes is important
for the prognosis and therapeutic decision. This approach has the potential to reduce
variability and improve accuracy in lung tumor diagnostics for personalized medicine, and
future validation is required.
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Figure 11. The second level tumor classification. (a) Small cell cancer (cyan), (b) hamartochondroma
(yellow), (c) squamous cell carcinoma (olive), (d) carcinoid (magenta), (e) pleura mesothelioma (red),
(f) adenocarcinoma (pink), and (g) thymoma (light green), and inflammation/necrosis (blue and dark
green). (Adapted with permission from Großerueschkamp et al.) [149].

Menzies et al. explored the possibility of using FTIR spectroscopy as an affordable and
non-invasive diagnostic tool to identify head and neck cancer in its early stages [150]. The
authors collected sputum samples from patients with oral and oropharyngeal (16 cases),
laryngeal cancer (eight cases), as well as from normal controls (15 cases), and used FTIR
to generate spectra in the biochemical fingerprint region. The study found that FTIR was
able to discriminate between cancer and normal sputum using the infrared wavenumbers
1650 cm−1, 1550 cm−1, and 1042 cm−1, and that the method had the potential to detect
laryngeal tumors that are hidden from noninvasive observation.

Leng et al. proved that the fusion technology of spectroscopy data and deep learning
for cancer prediction resulted in better performance than single spectral data [151]. A total
of 164 blood samples were collected, with 45 from the control group, 44 from non-small
cell lung cancer (NSCLC) patients, 38 from glioma patients, and 37 from esophageal cancer
patients. These samples were measured using two spectroscopy methods: FTIR and Raman,
as shown in Figure 12. The spectrum from these two methods was then fused using low-
level and feature fusion. Several classification models based on deep learning, such as SVM,
convolutional neural network-long-short term memory (CNN-LSTM), and multi-scale
fusion convolutional neural networks (MFCNN) were created and evaluated. Each model
was trained using single spectral data—Raman and FTIR, as well as low-level fused spectral
data and feature-fused data. The highest overall accuracy achieved was 82.51%, from the
CNN-LSTM model using low-level fusion data. The authors found that the accuracy of
these fused models resulted in a 10% increase compared to single spectral models.
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4. Conclusions

Molecular fingerprint detection using the Raman and infrared spectroscopy technolo-
gies has become increasingly popular for biomedical applications. These technologies
provide detailed information about the chemical composition and structure of biological
samples, such as tissues, cells, and fluids. Both technologies provide unique “fingerprints”
of the molecules in the sample which can be used to identify the chemical bonds, functional
groups, and structures of the molecules.

In this article, we first reviewed both technologies in detail, including the different
modifications to improve sensitivity and functionality, after which we surveyed a variety
of biomedical applications which employed either one technique or a combination of both
and discussed the important findings. Table 3 is a list of abbreviations. Raman spectroscopy
is an invaluable tool for studying molecules and their interactions, and its use is likely
to continue to grow in the future. Research has demonstrated that Raman spectroscopy
can accurately diagnose various types of cancer, including gastric, bladder, colon, oral,
prostate, breast, ovarian, and cervical cancers. The method is non-invasive, real-time, and
requires no additional reagents, making it a valuable alternative to traditional diagnostic
methods such as endoscopy. Raman spectroscopy is generally more sensitive to bonds
involving heavy atoms such as C-H, C-N, and C-O bonds, while infrared spectroscopy is
more sensitive to bonds involving light atoms, such as C-C, C-H, and O-H bonds. This
difference in sensitivity can affect the ability of the technologies to provide information
about the functional groups and the bonds of the molecules in a sample. In addition,
Raman spectroscopy can suffer from autofluorescence signals, and infrared spectroscopy
can suffer from water interferences. Hence, we have seen a trend whereby multimodality
measurements provide a complete characterization of the sample and generally yield high
sensitivity and accuracy in medical diagnoses.

Table 3. List of abbreviations.

Attenuated total reflection ATR

Attenuated total reflection surface-enhanced infrared
absorption spectroscopy ATR-SEIRAS

Basal cell carcinoma BCC

Chalcogenide infrared CIR

Coherent anti-Stokes Raman spectroscopy CARS

Colorectal cancer CRC

Convolutional neural network-long-short term memory CNN-LSTM

Cystic fibrosis CF

Deuterated triglycine sulfate DTGS

Electrochemical-SERS EC-SERS

Electromagnetic EM

Extreme learning machine ELM

Femtosecond stimulated Raman spectroscopy FSRS

Focal plane array FPA

Formalin-fixed and paraffin embedded FFPE

Fourier transform FT

Fourier transform infrared FTIR

Gastrointestinal GI

Hepatitis B virus HBV

High-risk HR
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Table 3. Cont.

Immunoglobulin IgG

Invasive ductal carcinoma IDC

Laser absorption spectroscopy LAS

Leave-one-out-cross-validation LOOCV

Linear discriminant analysis LDA

Localized surface plasmon resonance LSPR

Low-risk LR

Machine learning ML

Mercury-cadmium-telluride MCT

Mid-infrared MIR

Multi-scale fusion convolutional neural networks MFCNN

Nasopharyngeal cancer NPC

Near-infrared NIR

Non-small cell lung cancer NSCLC

Octadecanethiol ODT

Partial least squares discriminant analysis PLS-DA

Point-of-care POC

Polycrystalline infrared PIR

Principal component analysis PCA

Principal component regression PCR

Quantum cascade laser QCL

Radial basis function RBF

Resonance Raman spectroscopy RRS

Root mean square error RMSE

Second harmonic generation SHG

Signal-to-noise ratio SNR

Single nucleotide polymorphism SNP

Small cell lung carcinoma SCLC

Spatially offset Raman spectroscopy SORS

Stimulated Raman spectroscopy SRS

Support vector machine SVM

Surface-enhanced infrared absorption SEIRA

Surface-enhanced Raman spectroscopy SERS

Synchrotron radiation-based FTIR SR-FTIR

Tetrahedral DNA nanostructure TDN

Tip-enhanced Raman spectroscopy TERS

Two-photon excited fluorescence TPEF

Ultraviolet UV

Urinary extracellular vesicles UEV

Vertically coupled complementary antennas VCCA

Visible VIS

Volatile organic compounds VOC
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The use of multivariate data analysis technologies, such as partial least squares regres-
sion and partial least square discriminant analysis, further improves the accuracy of the
diagnostic results. The results have shown that Raman and infrared spectroscopy combined
with multivariate data analysis can be used as a reliable and efficient tool for health screen-
ing. However, it is also important to consider the limitations. While these methods have
demonstrated promising results in distinguishing between healthy and diseased samples,
it is not accurate to claim that they can diagnose a specific disease. Binary classification
between healthy and diseased states is typically used, and can be affected by physiological
conditions and medical treatments. It is therefore important to carefully interpret the results
of these studies and to consider the potential confounding factors. Future research should
aim to explore the ability of Raman and IR spectroscopy to distinguish between different
types of cancers and to identify specific disease patterns, while controlling for the effects of
medical treatment.

Overall, vibrational spectroscopy involving Raman and infrared spectroscopy is a
valuable tool for molecular fingerprint detection, and can provide important information
about the chemical composition and structure of biological samples. The choice of which
technique to use will depend on the specific needs and goals of the research, as well as
the type of molecules and functional groups that are of interest. Finally, technological
developments could lead to improvements in the speed, portability, and cost of the systems,
because these are the determinant factors for the likelihood of technology adoption in a
future clinical setting.
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144. Grzelak, M.M.; Wróbel, P.M.; Lankosz, M.; Stęgowski, Z.; Chmura, Ł.; Adamek, D.; Hesse, B.; Castillo-Michel, H. Diagnosis of
ovarian tumour tissues by SR-FTIR spectroscopy: A pilot study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 203, 48–55.
[CrossRef]

145. Untereiner, V.; Dhruvananda Sockalingum, G.; Garnotel, R.; Gobinet, C.; Ramaholimihaso, F.; Ehrhard, F.; Diebold, M.-D.; Thiéfin,
G. Bile analysis using high-throughput FTIR spectroscopy for the diagnosis of malignant biliary strictures: A pilot study in
57 patients. J. Biophotonics 2014, 7, 241–253. [CrossRef]

146. Chaber, R.; Łach, K.; Depciuch, J.; Szmuc, K.; Michalak, E.; Raciborska, A.; Koziorowska, A.; Cebulski, J. Fourier Transform
Infrared (FTIR) spectroscopy of paraffin and deparafinnized bone tissue samples as a diagnostic tool for Ewing sarcoma of bones.
Infrared Phys. Technol. 2017, 85, 364–371. [CrossRef]

147. Bogomolov, A.; Belikova, V.; Zabarylo, U.; Bibikova, O.; Usenov, I.; Sakharova, T.; Krause, H.; Minet, O.; Feliksberger, E.;
Artyushenko, V. Synergy Effect of Combining Fluorescence and Mid Infrared Fiber Spectroscopy for Kidney Tumor Diagnostics.
Sensors 2017, 17, 2548. [CrossRef]

148. Paraskevaidi, M.; Morais, C.L.M.; Lima, K.M.G.; Ashton, K.M.; Stringfellow, H.F.; Martin-Hirsch, P.L.; Martin, F.L. Potential
of mid-infrared spectroscopy as a non-invasive diagnostic test in urine for endometrial or ovarian cancer. Analyst 2018, 143,
3156–3163. [CrossRef]

149. Großerueschkamp, F.; Kallenbach-Thieltges, A.; Behrens, T.; Brüning, T.; Altmayer, M.; Stamatis, G.; Theegarten, D.; Gerwert, K.
Marker-free automated histopathological annotation of lung tumour subtypes by FTIR imaging. Analyst 2015, 140, 2114–2120.
[CrossRef]

150. Menzies, G.E.; Fox, H.R.; Marnane, C.; Pope, L.; Prabhu, V.; Winter, S.; Derrick, A.V.; Lewis, P.D. Fourier transform infrared for
noninvasive optical diagnosis of oral, oropharyngeal, and laryngeal cancer. Transl. Res. 2014, 163, 19–26. [CrossRef] [PubMed]

151. Leng, H.; Chen, C.; Chen, C.; Chen, F.; Du, Z.; Chen, J.; Yang, B.; Zuo, E.; Xiao, M.; Lv, X.; et al. Raman spectroscopy and FTIR
spectroscopy fusion technology combined with deep learning: A novel cancer prediction method. Spectrochim. Acta-Part A Mol.
Biomol. Spectrosc. 2023, 285, 121839. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/ac061417b
https://www.ncbi.nlm.nih.gov/pubmed/17105169
https://doi.org/10.1016/j.ijleo.2017.11.097
https://doi.org/10.1002/jbio.201500322
https://www.ncbi.nlm.nih.gov/pubmed/27041149
https://doi.org/10.1002/btpr.2084
https://www.ncbi.nlm.nih.gov/pubmed/25832726
https://doi.org/10.1016/j.saa.2018.05.070
https://doi.org/10.1002/jbio.201300166
https://doi.org/10.1016/j.infrared.2017.07.017
https://doi.org/10.3390/s17112548
https://doi.org/10.1039/C8AN00027A
https://doi.org/10.1039/C4AN01978D
https://doi.org/10.1016/j.trsl.2013.09.006
https://www.ncbi.nlm.nih.gov/pubmed/24095955
https://doi.org/10.1016/j.saa.2022.121839
https://www.ncbi.nlm.nih.gov/pubmed/36191438

	Introduction 
	Technology Review 
	Raman Spectroscopy 
	Infrared Spectroscopy 

	Cancer Diagnosis 
	Prostate Cancer 
	Skin Cancer 
	Gastric and Colorectal Cancer 
	Breast Cancer 
	Oral Cancer 
	Lung Cancer 
	Brain Cancer 
	Thyroid Cancer 
	Leukemia 
	Bladder Cancer 
	Ovarian Cancer 
	Biliary Tract Cancer 
	Ewing Sarcoma Cancer 
	Kidney Cancer 
	Multiple Cancers 

	Conclusions 
	References

