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Abstract: The development of antiretroviral drugs (ARVs) was a great milestone in the management
of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and
prolonging life. However, an effective treatment has remained elusive for four decades due to the
successful immune evasion mechanisms of the virus. A thorough understanding of the molecular
interaction of HIV with the host cell is essential in the development of both preventive and curative
therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote
its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of
MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access,
and how they collaboratively render the immune system unable to mount an effective response.
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1. Introduction

The human immunodeficiency virus (HIV) is a Lentivirus belonging to the retroviridae
family, responsible for the HIV/AIDS pandemic [1]. Although discovered and declared
a pandemic in the 1980s, there is evidence that pre-epidemic strains of HIV existed as far
back as the 1920s [2–4]. Based on genetic and antigenic variations, HIV is divided into
two types: HIV-1 and HIV-2. HIV-1 is the most virulent and widespread [5,6]. HIV-1 is
responsible for the global pandemic, whereas HIV-2 is mainly confined to West Africa [7,8].

HIV targets and infects Cluster of Differentiation 4-positive (CD4+) cells, predomi-
nately CD4+ T helper lymphocytes [9]. To mount a successful invasion, HIV requires the
presence of the CD4 receptor and the C-C chemokine receptor type 5 (CCR5) or C-X-C
chemokine receptor type 4 (CXCR4) co-receptor on the host cell [10,11]. Infection terminates
in the death of the host cell; thus, infection invariably leads to the depletion of CD4+ T
lymphocytes [12]. Since CD4+ T lymphocytes are the regulators of the adaptive immune
system, their depletion effectively weakens the immune system, leading to the acquired
immune deficiency syndrome (AIDS) stage of the infection [9]. Two biological phenotypes
of HIV-1 exist, and these differ in terms of receptor tropism: X4 HIV-1 has an affinity for
the CXCR4 receptor, whereas R5 HIV-1 has an affinity for the CCR5 receptors [13,14].

The most common mode of HIV transmission is unprotected sexual intercourse with an
infected person [15,16]. Other modes of transmission include mother-to-child transmission,
the use of contaminated needles and transfusion with infected blood [17–21]. Men who
have sex with men and injectable drug users are at a higher risk of HIV infection [22–25].
Body fluids such as semen, vaginal fluids and blood of infected persons contain free-floating
viruses and virus-infected CD4+-positive cells that facilitate the transmission of infection to
the next cell or host [26–29].
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An estimated 38.4 million people are living with HIV infection worldwide [30–32].
About 84.2 million have been infected, and 40.1 million have died since the beginning
of the epidemic [30–32]. Sub-Saharan Africa has the highest prevalence of HIV infection,
accounting for more than 70% of the global burden [33].

Tremendous progress in the understanding of the HIV molecular interaction with
the host cell, the host cell responses to the virus and potential therapeutic implications
of this interaction has been made since its discovery [34,35]. Vigorous research heralded
the development of antiretroviral drugs a very important milestone in controlling the HIV
pandemic [36]. Despite much progress in understanding the HIV–host cell interactions, the
cure for HIV infection has remained elusive for four decades now [35,37]. There are still
a lot of areas that we do not fully understand concerning the virus–host cell interaction
mechanisms, which could be key to the development of novel therapeutic strategies for the
cure of HIV infection [35,38].

The aim of our review, therefore, is to provide an in-depth overview of the current
knowledge on the HIV life cycle and its multiple interactions with cellular proteins that
promote or inhibit viral progression. The significance of such an undertaking is to highlight
important interactions that help us to understand the pathogenesis of HIV. This information
is important for future studies focused on targeted therapy.

2. Structure of HIV

The HIV-1 virion is spherical, with viral glycoprotein spikes (glycoprotein 120 (gp120)
and gp41) that protrude from the viral envelope (env) [39]. The other structures include the
Group antigens (Gag) responsible for directing the formation of virions from productively
infected cells and the Pol protein containing enzymes critical for viral replication such as
reverse transcriptase, protease and integrase [40,41]. The viral proteins such as viral protein
R (vpr), viral protein U (vpu) and virion infectivity factor (Vif) are important for regulating
nuclear import, replication, the degradation of CD4 molecules, virion release from cells
and enhancing viral pathogenesis [42].

3. HIV Life Cycle

The HIV life cycle consists of 11 phases and includes binding/attachment, fusion,
trafficking, nuclear import, reverse transcription, integration, transcription/translation,
assembly, budding and release [43,44] (Figure 1).

The initial step of HIV infection is the attachment of the virus to the CD4+ T cell
receptor and co-receptor. The viral envelope glycoprotein, gp120, interacts with the CD4
receptor on the T cell surface, which triggers a conformational change in gp120, allowing it
to bind to the co-receptor, either CXCR4 or CCR5 [45–48]. This binding leads to the exposure
of the gp41 subunit, which mediates the fusion of the viral and cellular membranes [45–48].
After the viral envelope fuses with the host cell membrane, the core containing the viral
genome and enzymes such as reverse transcriptase (RT), integrase (IN) and protease (PR)
is released into the host cell cytoplasm and transported to the nucleus. The RT converts the
viral RNA genome into double-stranded DNA (dsDNA), which is subsequently integrated
into the host cell genome by the integrase enzyme with the aid of the Pre-integration
Complex (PIC), a nucleoprotein complex comprising host and viral proteins, and the viral
genome [49–51]. The integrated viral DNA is called a provirus, which remains dormant
until activated by the host cell [52,53]. The provirus is transcribed by the host cell RNA
polymerase II enzyme into messenger RNA (mRNA), which is then spliced and transported
out of the nucleus into the cytoplasm [54,55]. The viral mRNA is translated into viral
proteins by the host cell ribosomes. The Gag polyprotein is cleaved by the viral protease
enzyme to form the structural proteins, including the matrix (MA), capsid (CA) and
nucleocapsid (NC). The Gag-Pol polyprotein is also cleaved to produce the viral enzymes,
including reverse transcriptase, integrase and protease [56,57]. The viral proteins and RNA
genome are assembled into virions at the host cell membrane. The viral proteins, including
Gag and Gag-Pol, bind to the viral RNA genome, forming the nucleocapsid core [35,58–60].
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The core is surrounded by a lipid bilayer, which is derived from the host cell membrane
and contains the viral envelope glycoproteins. Finally, the mature virions bud out of the
host cell membrane, acquiring their envelope as they exit [35,58–60].
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clear import start to occur (4). The viral components are brought into the nucleus at the nuclear pore, 
where they are localized to transcriptionally active chromatin while uncoating and reverse tran-
scription are carried out (5). Integration follows (6); then, viral genes are transcribed (7) and trans-
lated (8) into the Gag polyproteins, which assemble (9) and localize to the host membrane, followed 
by the occurrence of the budding of an immature virion (10). The viral protease cleaves the Gag 
polyprotein into its component, functional proteins during the last stage of the HIV-1 lifecycle, 
known as maturation (11). 
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Figure 1. The life cycle of HIV-1.The early stage begins with virus interaction with the host cell
receptors (1), which causes the virus to fuse and release its viral core into the host cell’s cytoplasm (2).
Following this, the core is transported across the cytoplasm (3) as reverse transcription and nuclear
import start to occur (4). The viral components are brought into the nucleus at the nuclear pore, where
they are localized to transcriptionally active chromatin while uncoating and reverse transcription are
carried out (5). Integration follows (6); then, viral genes are transcribed (7) and translated (8) into the
Gag polyproteins, which assemble (9) and localize to the host membrane, followed by the occurrence
of the budding of an immature virion (10). The viral protease cleaves the Gag polyprotein into its
component, functional proteins during the last stage of the HIV-1 lifecycle, known as maturation (11).

HIV Receptors, Fusion and Uncoating Mechanism

Host cell receptors and co-receptors play a crucial role in determining the HIV tropism
and pathogenesis. The role of the co-receptor of HIV is determined by the viral Env protein,
and R5 strains are associated with early-stage disease, while X4 strains are associated with
advanced disease [1,46,61–63]. Viral fusion and entry mechanisms are crucial for enabling
the virus to infect host cells. Viral fusion proteins undergo significant conformational
changes during the fusion process, overcoming energy barriers to fuse the membranes of
the host cell and the virus [64–66]. Some viruses can also mediate cell–cell fusion, resulting
in the creation of multinucleated cells that express significant amounts of viral antigens [67].
This process is dependent on the cellular environment and tissue structure. In order to
develop effective vaccines and antibody-based treatments and minimize the spread of
pathogenic viral variations, it is imperative to comprehend the mechanisms of viral fusion
and entry [68].
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The HIV capsid uncoats in the nucleus, and this contradicts a long-held theory that
reverse transcriptase transforms HIV RNA to DNA in the cytoplasm [69]. Before viral
genomic DNA is integrated into the host chromosomes, the coating must be removed [69,70].
The capsid interacts with nucleoporin 153 (NUP153), an essential component of nuclear pore
complexes (NPCs) in vertebrates, and is required for the anchoring of NPCs. It also acts as
the docking site of an importing karyopherin, and its phenylalanine-glycine motifs engage
a common binding site on the HIV-1 capsid protein (CA) to facilitate the nuclear import
of the viral nucleoprotein complex [71–73]. Nucleoporin 358 (NUP358) is a nuclear pore
complex protein that is involved in the nuclear import of HIV-1 pre-integration complexes
(PICs) [74]. Transportin-3 (TNP03) is a karyopherin that is involved in the nuclear import
of HIV-1 PICs [75]. Cleavage and Polyadenylation Specificity Factor 6 (CPSF-6) is a cellular
protein involved in pre-mRNA 3′ end processing that binds the HIV-1 capsid protein (CA)
to facilitate the nuclear import of the viral nucleoprotein complex [76]. These molecules
allow the viral complex to be imported and localized in the nucleus [71].

4. HIV-Related Factors Promoting Infection and Immune Evasion

The ability of HIV to evade the immune system is the core reason it has remained
without a cure for decades [77,78]. HIV has various inherent mechanisms designed to
escape or uncouple the host immune system [79].

HIV infection is characterized by progressive immune system impairment, leading to
opportunistic infections, autoimmune diseases and malignancies [80]. The virus targets
CD4+ T cells, macrophages and dendritic cells, leading to their depletion and dysfunction,
with a CD4+ T cell count below 200 cells/mm3 considered diagnostic of AIDS [80–82]. The
virus evades the immune system through several mechanisms, with the major ones being
the downregulation of major histocompatibility complex (MHC) class I and II molecules,
non-neutralizing antibody production and immune exhaustion [80]. Understanding the
factors promoting HIV infection and immune evasion is crucial for the development of
effective therapies and vaccines [83,84]. HIV can persist and evade the immune system due
to several factors discussed below.

4.1. Downregulation of MHC Class I and II

HIV can evade the host immune system by downregulating the expression of MHC
class I and II molecules, which are proteins that are essential for antigen presentation
and recognition by immune cells [85,86]. This occurs at a molecular level through several
mechanisms, including the ability of HIV to interfere with the transcription and translation
of MHC class I and II genes, which reduces the overall expression of these molecules on
the surface of infected cells [87,88]. This effect is mainly mediated by the HIV-1 accessory
protein Nef [89], which is essential for viral pathogenesis and hence a potential target for
antiretroviral drug discovery [42].

Nef interacts with the cytoplasmic tail of MHC I and II molecules and redirects them to
the endocytic pathway for degradation [90,91]. One proposed mechanism for the HIV-1 Nef-
mediated downregulation of cell surface MHC-I molecules is that Nef and Phosphofurin
Acidic Cluster Sorting Protein 1 (PACS-1) combine to usurp the ADP ribosylation factor 6
(ARF6) endocytic pathway by a phosphatidylinositol-3 kinase (PI3K)-dependent process
and downregulate the cell surface MHC-I to the trans-Golgi network [92].

The HIV Vpu protein also facilitates the degradation of MHC class I molecules. Vpu
targets MHC I molecules for degradation by interacting with the host protein beta-TrCP,
which recruits the E3 ubiquitin ligase complex to tag MHC I for degradation in the pro-
teasome. The Vpu protein [93,94] interferes with the transport of newly synthesized
MHC I molecules to the cell surface, where they are required for recognition by immune
cells [83,95,96] by sequestering MHC-I intracellularly in the early stages of endocytosis and
recycling [97]. Vpu interferes with the transport of newly synthesized MHC I molecules
from the endoplasmic reticulum (ER) to the cell surface by targeting the host protein,
tetherin (also known as BST-2 or CD317) [98]. Tetherin is a membrane protein that inhibits
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the release of virus particles from infected cells, thus limiting the spread of the virus. Vpu
counteracts this antiviral mechanism by binding to tetherin and promoting its degradation
through the proteasome pathway [99]. By degrading tetherin, Vpu enhances the release of
viral particles from infected cells [100,101]. However, recent studies have shown that teth-
erin also plays a role in the transport of MHC I molecules to the cell surface [102]. Tetherin
interacts with newly synthesized MHC I molecules and promotes their transport to the cell
surface, where they can present viral antigens to the immune system [103]. Therefore, by
targeting tetherin for degradation, Vpu impairs the transport of newly synthesized MHC I
molecules from the ER to the cell surface, leading to a reduction in MHC I expression on
the cell surface [104,105]. This impairs the presentation of viral antigens to cytotoxic T cells
and thus helps the virus to evade immune surveillance [101].

As a result, the ability of the immune system to recognize and respond to HIV-infected
cells is compromised, which allows the virus to evade immune clearance and persist in the
host [83,95,96].

4.2. Production of Non-Neutralizing Antibodies

The viral envelope glycoprotein, gp120, is highly variable, and it can quickly mutate
to escape recognition by neutralizing antibodies that target specific regions of the protein,
thus leading to the production of non-neutralizing antibodies that can bind to gp120 but
are unable to block virus entry [11,46].

Non-neutralizing antibodies can still play a role in HIV immune evasion. By binding
to gp120, they can prevent the recognition of viral epitopes by neutralizing antibodies or
T cells, effectively shielding the virus from immune surveillance [106]. Non-neutralizing
antibodies can also trigger Fc receptor-mediated signaling, which can downregulate im-
mune effector cells, such as Natural Killer (NK) cells and macrophages, leading to de-
creased antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis of infected
cells [107,108]. In addition, HIV can also use the immune system to its advantage by
inducing polyclonal B-cell activation, which leads to the production of non-neutralizing
antibodies that can distract the immune system and further facilitate viral evasion [109,110].
Overall, the production of non-neutralizing antibodies by HIV contributes to its ability
to persist and evade the host immune system by several mechanisms, including blocking
neutralizing antibody recognition, downregulating immune effector cells and inducing
polyclonal B-cell activation [109,110].

4.3. Induction of Immune Exhaustion

HIV can induce immune exhaustion, which is a state of functional impairment of
T cells, at a molecular level by several mechanisms. First, persistent antigen stimulation
caused by HIV infection leads to T cell activation and proliferation, eventually leading to
T cell exhaustion [12]. Second, HIV upregulates inhibitory receptors on T cells, such as
programmed cell death receptor 1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4) and
T-cell immunoglobulin domain- and mucin domain-containing protein 3 (TIM-3), which
negatively regulate T cell activation and function [12]. Third, HIV downregulates the
expression of key transcription factors and cytokines, such as the T-Box protein expressed
in T cells (T-bet), interferon-gamma (IFN-γ) and IL-2, that are necessary for effector T cell
function [12,111]. These mechanisms collectively contribute to the development of T-cell
exhaustion, leading to decreased immune surveillance and clearance of HIV-infected cells
and ultimately allowing the virus to persist in the host [112].

4.4. Destruction of Virus-Specific T Helper Cells

HIV can evade the host immune system by destroying virus-specific T helper cells,
which are important for coordinating the immune response against the virus [79]. This
occurs at a molecular level through several mechanisms [113]. First, HIV can directly kill
infected T helper cells by inducing apoptosis or programmed cell death [114]. Second,
HIV-infected cells can also cause the bystander killing of uninfected T helper cells through
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the release of viral proteins, such as Tat, Nef and gp120, which activate apoptosis pathways
in nearby cells through several mechanisms such as the upregulation of Fas, FasL and
TNFα expression [115], the reduced expression of Bcl-2 and the activation of p53 [116].
Third, HIV proteins can induce cell death pathways by disrupting the normal functioning
of cellular proteins and organelles, such as the mitochondria, which can lead to the death
of infected and uninfected T helper cells [79,117,118]. The loss of T helper cells impairs
the ability of the immune system to mount an effective response against HIV, allowing the
virus to persist and replicate in the host [81].

4.5. The Emergence of Antigenic Escape Variants

HIV can evade the host immune system through the emergence of antigenic escape
variants, which are viral strains that have mutations in the viral proteins that are recognized
by the immune system [119]. Several mechanisms favor this. First, HIV replicates at a high
rate, which results in the generation of a large number of viral particles that can potentially
acquire mutations [120]. Second, the HIV reverse transcriptase, the enzyme responsible for
copying the viral genome, is highly error-prone, which increases the likelihood of mutations
occurring during replication [121]. Third, the immune system exerts selective pressure
on HIV by targeting specific viral proteins, which can result in the emergence of variants
that are less recognizable by the immune system [79]. As a result, HIV can accumulate
mutations that allow it to evade immune recognition and continue to replicate. This results
in a diverse population of HIV variants that can persist in the host and avoid immune
clearance [119,122].

4.6. Expression of an Envelope Complex That Minimizes Antibody Access

HIV can evade the host immune system by expressing an envelope complex that
minimizes antibody access, which refers to the outer surface of the virus that is recognized
by the immune system [123]. The envelope protein of HIV undergoes molecular-level
changes through various mechanisms. The envelope protein of HIV is covered in sugar
molecules, making it highly glycosylated, and this can prevent antibodies from binding to
and neutralizing the virus by shielding vulnerable regions of the envelope protein from
antibody recognition [124]. Another mechanism of evasion is that HIV undergoes rapid
mutation of the envelope protein, which allows the virus to constantly evade antibody
recognition [122,125]. By frequently changing the shape of the envelope protein, HIV can
avoid recognition by antibodies that were produced against previous strains of the virus.
This makes it difficult for the immune system to produce effective antibodies against HIV,
which contributes to the ability of the virus to persist in the host [124].

4.7. Dysregulation of the JAK/STAT Pathway

Interferons are primarily produced and released by host cells such as immune cells
(macrophages, dendritic cells, T cells) and non-immune cells (fibroblasts, epithelial cells)
in response to viral infections, certain bacterial infections or other immune triggers [126].
Upon detecting viral particles, the host production of interferons creates an antiviral
atmosphere which suppresses viral replication through the mechanism of inducing the
expression of antiviral proteins and activating immune cells [127–130]. However, the virus
can uncouple this host defense mechanism [131] by blocking the Janus kinase (JAK)/signal
transducer and activator of the transcription (STAT) pathway, resulting in the termination of
interferon production [132,133]. The JAK/STAT pathway plays a critical role in regulating
inflammation during viral infections such as HIV [134]. Activators of the pathway could
potentially help control HIV, but HIV Vpu and Nef disrupt the activation of JAK/STAT
by IFN-α stimulation, reducing its induction [132]. HIV also promotes the degradation
of Type 1 IFN JAK/STAT pathway components, suppressing the induction of specific
Interferon-stimulated genes (ISGs) [135]. Various viruses have mechanisms for evading
JAK/STAT signaling, and abnormal JAK/STAT signaling is associated with immune system
dysregulation [83].
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4.8. Other Factors That Promote HIV Infection

The HIV-1 viral infectivity factor (Vif) is a 23-kDa protein found within the HIV-1
virion that plays a crucial role in the survival/invasion of host tissue by HIV [136]. It
counteracts the APOBEC3 family of proteins, which are host cellular defense mechanisms
that can mutate the genetic material of viruses, including HIV. Vif targets Apolipoprotein B
mRNA Editing Catalytic Polypeptide-like (APOBEC3) proteins for degradation, allowing
the virus to continue to replicate and spread [137]. Without Vif, HIV is much less able
to infect and replicate in host cells [137]. Additionally, the Elongin–Cullin–SOCS (ECS)
box site is involved in several HIV-related factors that promote infection and immune
evasion [138,139]. The HIV-1 Vif can interact with the ECS box site on SOCS proteins,
leading to the dysregulation of cytokine signaling pathways and promoting viral replica-
tion and immune evasion [138,139]. The ECS box site is also involved in the regulation
of interferon signaling pathways, and the dysregulation of these pathways by HIV can
contribute to immune evasion and pathogenesis of the virus [138,140,141]. Overall, the ECS
box site plays a critical role in the regulation of immune responses, and understanding its
role in HIV infection is important for developing new therapies for the virus [138,140,141].

Restriction by S-adenosylmethionine-dependent demethylase 1 (SAMHD1) limits the
cGAS/STING-dependent innate and adaptive immune responses to HIV-1, and the Cyclic
GMP-AMP synthase (cGAS) and the stimulator of interferon genes (STING) are involved
in these responses [133]. SAMDH1 is a restriction factor for HIV-1 infection that has been
shown to prevent innate sensing of infection via cGAS/STING, subsequently limiting
innate and adaptive responses [142]. Furthermore, a class of NOD-like receptors (NLR),
which are primarily associated with the inflammasome, have recently been associated with
the production of interferons, which are significant in the fight against viral infections [143].
The NLRX1 subtype of NLR has been reported to appropriate STING to negatively regulate
the interferon response, facilitating the replication of HIV-1 and DNA viruses [143].

5. Host Cell Mechanisms That Control Infection and Replication

HIV-1 infection progression is determined by both the virus and the host cells, with
pattern recognition receptors (PRRs) playing a vital role in initiating the host immune
response [144]. Early HIV-1 infection, the first hours to days after infection, in which the
virus replicates in the cells such as the dendritic cells and macrophages/monocytes and is
not detectable in the blood, is referred to as the “eclipse phase” [145]. The characteristics of
early/recent infection include a high viral load and immune cell depletion. This eventually
leads to immunodeficiency, and without treatment, individuals die of AIDS [146]. However,
at the onset of infection, innate immune cells such as dendritic cells, NK cells, NKT cells,
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Sentinel dendritic cells and macrophages are powerful, professional antigen-present-
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with IFN-regulatory factor 9 (IFR9) to form an IFN-stimulated gene factor 3 (ISGF3) tran-
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sponse elements (ISREs) in gene promoters, leading to the expression of IFN-stimulated 
genes to establish the host antiviral status that impairs viral replication and promotes the 
maturation of dendritic cells, promoting the activation of adaptive immune response 
[154].  

Sentinel dendritic cells and macrophages are powerful, professional antigen-present-
ing cells that not only play a significant role in the initial response to infection but also 
activate adaptive immunity [149]. While sentinel dendritic cells are the first cells in re-
sponse to infection, macrophages are the main effector cells involved in the late innate 
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kines such as IL-1 and TNF-α [157]. Other cytokines, such as IFN-α and IL-15, which are 
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genes to establish the host antiviral status that impairs viral replication and promotes the 
maturation of dendritic cells, promoting the activation of adaptive immune response 
[154].  

Sentinel dendritic cells and macrophages are powerful, professional antigen-present-
ing cells that not only play a significant role in the initial response to infection but also 
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genes to establish the host antiviral status that impairs viral replication and promotes the 
maturation of dendritic cells, promoting the activation of adaptive immune response 
[154].  

Sentinel dendritic cells and macrophages are powerful, professional antigen-present-
ing cells that not only play a significant role in the initial response to infection but also 
activate adaptive immunity [149]. While sentinel dendritic cells are the first cells in re-
sponse to infection, macrophages are the main effector cells involved in the late innate 
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β pathway
by the phosphorylation and translocation of p65 [154].

The secreted IFNs produce an antiviral effect by autocrine and paracrine ligation to
interferon-alpha/beta receptors (IFNAR) on cell surfaces [155]. This activates the down-
stream JaK/STAT signaling pathway through receptor-associated Jak1/TyK2 (tyrosine
kinase) [156]. The phosphorylated STAT1 and STAT2 then form a heterodimer that inter-
acts with IFN-regulatory factor 9 (IFR9) to form an IFN-stimulated gene factor 3 (ISGF3)
transcription complex. ISGF3 translocate to the nucleus, where it binds to IFN-stimulated
response elements (ISREs) in gene promoters, leading to the expression of IFN-stimulated
genes to establish the host antiviral status that impairs viral replication and promotes the
maturation of dendritic cells, promoting the activation of adaptive immune response [154].

Sentinel dendritic cells and macrophages are powerful, professional antigen-presenting
cells that not only play a significant role in the initial response to infection but also activate
adaptive immunity [149]. While sentinel dendritic cells are the first cells in response to
infection, macrophages are the main effector cells involved in the late innate immune
response and support the recruitment of inflammatory cells by secreting cytokines such
as IL-1 and TNF-α [157]. Other cytokines, such as IFN-α and IL-15, which are secreted by
dendritic cells and monocytes are significant in the activation of NK cells [158].

5.1. Pathogen Recognition Receptors (PRRs)

Pathogen Recognition Receptors (PRRs) are immune receptors that recognize con-
served molecular patterns on pathogens, such as bacteria or viruses [159]. PRRs are
differentially expressed by various immune cells including macrophages and dendritic
cells [160]. PRRs are an essential component of the innate immune system and initiate
downstream signaling that leads to the production of cytokines, chemokines and molecules
capable of activating the adaptive immune response [161].

PRRs can be divided into several classes, such as Toll-like receptors (TLRs), Nod-
like receptors (NLRs), RIG-I-like receptors (RLRs) and C-type lectin receptors (CLRs),
among others [162]. TLRs (Figure 2) are the most studied and characterized PRRs and
recognize a broad range of pathogen-associated molecular patterns (PAMPs), including
lipopolysaccharides, lipoproteins and viral nucleic acids [163]. Once bound to their specific
ligands, TLRs activate multiple downstream signaling pathways, including the NF-kB
pathway and the interferon regulatory factor (IRF) pathway, leading to the expression of
genes that drive the inflammatory and antiviral immune response [164,165].
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In HIV infection, PRRs play a key role in recognizing the virus and initiating early
immune responses [151]. HIV is quickly recognized by several PRRs, which leads to the
production of cytokines, chemokines and type I IFN that stimulate immune cells, create an
antiviral atmosphere and activate the adaptive immune response [166]. For example, TLR7
and TLR8, expressed by plasmacytoid dendritic cells (pDCs), recognize the single-stranded
RNA of HIV, which triggers an antiviral cytokine response containing interferon-alpha
(IFN-α) [167].

However, HIV has inherent capabilities of evading PRR recognition and establishing a
persistent infection through the use of viral proteins such as Nef and Vpr, which can inhibit
PRR signaling by downregulating PRR expression or blocking downstream signaling
pathways [168].

5.2. Dendritic Cells

Dendritic cells (DCs) are among the first cells that encounter HIV, and being antigen-
presenting cells, they are significant in the fight against the virus and the stimulation of
the adaptive response [147,169]. While patrolling in the tissue, they can recognize antigens,
process them and present them to T cells in secondary lymphoid organs, thereby activating
the adaptive immune system. DCs can also secrete several diverse cytokines intended to
upregulate the immune response by the secretion of cytokines; the exact type of cytokines
secreted is dependent on the DC cell subtype and specific stimuli [148,170].

DCs are divided into three subtypes characterized by specific functions and markers,
namely, plasmacytoid DCs (pDCs) and two subtypes of “classical” or “conventional” DCs
(cDCs), cDC1 and cDC2 [171]. However, all DCs express CD4, a receptor involved in
the binding and entry of HIV, together with its co-receptors, CCR5 and CXCR4 [157]. In
addition to this, they also express CD83, a maturation marker, and CD80/CD86, which are
activation markers involved in the antigen presentation and T-cell activation [147,149,157].

5.2.1. Plasmacytoid Dendritic Cells (pDCs)

The most characteristic feature of the pDCs is the production of the type 1 interferon
that promotes a strong antiviral immune response [171]. Plasmacytoid DC expresses TLR7,
which enables it to recognize the virus after uptake by endocytosis and activate a signaling
cascade that leads to the maturation of pDCs, the production of IFN-α, IFN-β and TNF-α
and the expression of chemokine receptors such as the CCR5, CD40, CD80 and CD86
co-stimulatory molecules [148]. In addition to the expression of chemokine receptors, type
I interferons also promote the production of proteins, cell growth and survival to establish
an “antiviral state” [148,170]. When TLR7 recognizes the viral nucleic acid, it leads to the
recruitment of the cytosolic Toll-interleukin-1 receptor (TIR)-containing adaptor MyD88,
which is used by most TLRs [149]. The MyD88 forms a complex with members of the IL-1
receptor-associated kinase (IRAK) family and recruits the Interferon Regulatory Factor 7
(IRF7) [149]. When IRF7 is phosphorylated by IRAK1 and translocated to the nucleus, it
regulates the expression of the type 1 interferon [149].

5.2.2. Conventional Dendritic Cells (cDCs)

Conventional DCs function mainly as specialized APCs; however, they also produce
several cytokines upon recognition of an antigen, mainly inflammatory cytokines including
IL-6, IL-12, IL-15, IL-23, TNF and IL-1β all, of which are significant in restraining HIV-1
infection as compared to pDCs, which are known for the secretion of a large amount of type
I interferons [147]. Conventional DCs are important in bridging innate immunity and adap-
tive immunity by presenting antigens to T cells [147]. Whereas cDCs1 are distinguished by
their effective MHC class I-mediated priming of CD8+ T cells, cDC2 have a broad variety
of factors generated and high cross-presenting abilities, promoting a potent activation of
Th1, Th2 and Th17 as well as CD8+ T cell responses [147,149,157,170].

While DCs play a key role in mounting a strong immune response, they are widely
thought to contribute to the immune exhaustion seen in chronic HIV infection through
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several mechanisms [172]. In acute HIV infection, DCs are activated and produce high levels
of type I IFNs, which are key in viral control [157,173]. However, the persistent stimulation
of DCs to secrete IFN 1 seen in HIV infection leads to the continuous activation of the
innate and adaptive immune system; furthermore, IFN 1 has direct pro-apoptotic activity
and upregulates TNF-related apoptosis-inducing ligand (TRAIL) on CD4+ T cells [174].
The upregulation of TRAIL in DCs during chronic HIV infection promotes the apoptosis
of uninfected CD4+ T cells via the NF-kB pathway activation [175]. Some TLR receptors,
including TLR 7, which are usually elevated in chronic HIV infection, activate the NF-kB
pathway in DCs and induce TRAIL expression [176]. Additionally, the upregulation of
TRAIL expression can also be mediated by the IFN-1: binding of TNF-1 to its receptor
TNFR-1, and DCs can activate the JAK/STAT pathway, which can in turn upregulate
TRAIL expression [177,178]. Second, DCs may also contribute to immune exhaustion by
inducing regulatory T cells (Tregs): Tregs suppress the functions of many immune cells
including T cells and dendritic cells [179]. In HIV infection, DCs have been shown to
induce the differentiation and expansion of Tregs by the activity of the immunoregulatory
enzyme, indoleamine 2,3 dioxygenase (IDO), which they express [172,180]. IDO breaks
down tryptophan to kynurenine, a factor required for the conversion of inflammatory
T cells to Tregs; thus, IDO is important in the expansion of Tregs in chronic HIV [181].

5.3. Macrophages

Macrophages are key players in innate immune responses to pathogens, and their
ability to destroy a wide range of pathogens while doubling as APCs makes them a vital
component of the innate immune system [182]. Unlike most cells of the myeloid lineage,
macrophages have a longer life span, ranging from months to years [183]. Macrophages are
widely distributed in the body and reside in almost every tissue of the body [184]. While
initially thought to be incapable of self-renewal, there is evidence that tissue macrophages
can and do replenish themselves [185–187].

Viral interaction with macrophages is very important in the HIV disease course [188].
In the sexual transmission of HIV, macrophages encounter HIV in the genital mucosa along
with CD4+ T cells and DCs [189,190]. Macrophages play a crucial role in the immune
response to HIV infection in the early stages of the disease, as their primary function is to
engulf and clear viral particles and infected cells [191,192].

One pathway that plays a critical role in macrophage immune responses during early
infection is the Toll-like receptor (TLR) pathway [193,194]. Macrophages express several
TLRs, and upon the binding of PAMPs to the TLRs, several signaling pathways are initiated,
such as the activation of NF-κB, and interferon regulatory factors (IRFs) [163,195]. These
transcription factors lead to the production of cytokines, chemokines and type I interferons
(IFNs), which can inhibit viral replication and activate the adaptive immune response [129].

Macrophages also use the inflammasome pathway to destroy the virus in acute infec-
tion: the inflammasome is a cytosolic multimolecular complex that serves as a platform for
the activation of caspase-1 and the processing and release of pro-inflammatory cytokines
such as IL-1β and IL-18 [196]. Macrophages activate the inflammasome following the recog-
nition of PAMPs or damage-associated molecular patterns (DAMPs) released by infected
cells [197]

Additionally, autophagy in macrophages also plays a crucial role in controlling HIV
replication. Autophagy is a cellular process that is involved in the degradation of cytoplas-
mic contents, including viral particles [198]. In macrophages, HIV can be sequestered within
the autophagosome and subsequently degraded in the lysosome [199]. However, HIV can
evade this mechanism and promote its replication within the macrophage by hijacking the
autophagy machinery and continue surviving and replicate in macrophages [200].

Like the CD4+ T cells, macrophages possess the CD4 receptor and the receptors CCR5
and CXCR4, thus making them equally susceptible to HIV infection [201]. Macrophages
are particularly susceptible to R5 viruses, and coincidentally, most sexually transmit-
ted HIV viruses are R5 [202]. Macrophages are believed to play a vital role in HIV la-
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tency and cell-to-cell viral spread, even in persons on antiretroviral drugs for several
reasons [77,203]. It has been shown that HIV-infected macrophages have longer and more
stable interactions with CD4+ T cells compared to uninfected macrophages, implying that
some viral mechanisms enhance their T cell interactions, thus aiding viral spread [204].
Compared to CD4+ T cells, macrophages are more resistant to HIV cytopathic effects and
survive longer with the infection; thus, they have an increased likelihood of interacting with
and infecting uninfected cells [205]. Macrophages tend to reside in secondary lymphoid
organs, which, due to their design, have reduced penetration of antiretroviral drugs; thus,
viral replication may be active even in the presence of antiretroviral therapy (ART) [206,207].
Finally, unlike infected CD4+ T cells, infected macrophages have virus-filled membrane-
connected compartments that appear to aid the release of viruses [208,209].

5.4. CD4+ T Cells

CD4+ T cells are crucial components of the immune system and play a key role in
mounting an effective response against viruses such as HIV [9]. However, HIV specifically
targets and infects CD4+ T cells, leading to a gradual depletion of this cell population and
ultimately resulting in the onset of AIDS [81].

The mechanisms underlying the CD4+ T cell response to HIV infection involve a vari-
ety of signaling pathways and biochemical interactions [210]. Upon the initial encounter
with HIV, CD4+ T cells become activated and initiate a series of intracellular signaling
events, including calcium flux and protein kinase C activation [136,211,212]. These signal-
ing pathways culminate in the mobilization of transcription factors, such as NF-κB, which
promote the expression of pro-inflammatory cytokines and chemokines that recruit and
activate other immune cells [213].

5.5. CD8+ T Cells

CD8+ T cells recognize and directly eliminate virus-infected cells. In the acute phase
of HIV infection, there is an increase in CD8+ T cell activity due to APCs and CD4 T cell
stimulation, resulting in CD8+ T cells killing virus-infected cells by releasing granzymes,
which can induce apoptosis in the target cell and a pore-forming protein called perforin,
which perforates the cell membrane of the target cell, thereby killing the cell [214].

CD8+ T cells recognize infected cells through the presentation of viral peptides on
major histocompatibility MHC 1 molecules [215]. Once they encounter an antigen on
MHC 1 molecules, they become activated, gain cytotoxic activity and additionally secrete a
variety of cytokines including IFN-γ, which inhibit viral replication and create an antiviral
environment [79,216].

When activated, CD8+ T cells can produce cytokines such as IFN-γ that enhance the cy-
totoxic activity of the CD8+ T cell and activate other immune cells, such as macrophages [217].
IFN-γ is produced by the CD8+ T cell following activation and can directly inhibit viral
replication by inducing antiviral activity in infected cells [218].

In addition, CD8+ T cells can differentiate into different subsets, such as effector and
memory T cells, which differ in their functions and responsiveness to signals [219]. Effector
T cells are short-lived and have potent cytotoxic activity against target cells [220]. Memory
T cells can persist for years and mount a rapid and enhanced response upon re-exposure
to an antigen [221]. In early HIV infection, the production of an effector CD8+ T cell
is crucial for the control of viral replication, while long-lived memory CD8+ T cells are
essential for the resolution of the infection [215,222]. However, in chronic infection, the
CD8+ T cell functionality becomes progressively impaired, contributing to the failure of the
immune system [223]. The CD8+ T cell impairment in chronic HIV could be driven by a
variety of factors, including CD4+ T cell depletion, CD8+ T cell exhaustion, the expansion
of dysfunctional CD8+ T cell subsets and the expansion of Tregs that suppress CD8+ T cell
activity [9,223,224].

CD8+ T cell exhaustion is characterized by the loss of effector functions and the
upregulation of inhibitory receptors such as the programmed cell death-1 (PD-1) and T cell
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immunoglobulin and mucin domain-containing protein 3, which inhibit T cell activation
and proliferation [12,225]. Chronic stimulation by persistent viral antigen is a major driver
of CD8+ T cell exhaustion in chronic HIV infection [226]. The dysfunctional CD8+ T cell l
subsets that accumulate in chronic HIV infection include terminally differentiated CD8+

T cells and CD8+ T cells with reduced cytokine production, and these, while physically
present, have little or no impact on the infection [226]. The accumulation of Tregs, partially
driven by the DC immune regulatory enzyme, indoleamine 2,3 dioxygenase enzyme
activity, suppresses immune CD8+ T cell immune responses [227,228].

6. Influence of Sex on HIV Transmission and Immune Responses

There are notable sex differences in HIV infection transmission and progression. HIV
infection in females is marked by a stronger initial immune response, characterized by a
high CD4+ T cell count, low viral load and high CD8+ T cell activity, while infection in
males is marked by high viral load, a lower CD4+ T cell count and low CD8+ T cell cytotoxic
activity [229,230]. However, there is early immune exhaustion in females, accelerating the
progression to AIDS at a rate comparable to that of males, and progression to AIDS occurs
at a lower viral load compared to that of males [231].

Both the foreskin and the vaginal mucosa contain CD4+ T cells, which can be infected
by HIV during sexual intercourse with an infected person; however, male CD4+ T cells
express higher CCR5 receptors when compared to females, which implies that males are
more likely to be infected in one sexual encounter with higher viral particles, thus partially
explaining the higher viral loads in males in primary HIV infection [232,233]. Further-
more, the Langerhans cells in the vagina and foreskin transport viral particles to the local
lymphatics, where they present the viruses to the CD4+ T cells in the process of infecting
them and spreading the infection [234]. Therefore, males who undergo circumcision have
up to 60% reduced chances of contracting HIV because of the loss of the foreskin, which
significantly reduces both CD4+ T cells and Langerhans cells [235–237]. The female genital
tract mucosal membrane structure, cells and microbiota are influenced by hormones that
regulate the menstrual cycle [238,239]. Estrogen thickens the mucosal membranes and
enhances stronger immune responses against infection; thus, during the menstrual phases
of estrogen influence, women are at a lower risk of HIV infection compared to the periods
under progesterone influence [240–242]. Female genital tract mucosal damage significantly
increases the likelihood of acquiring HIV infection during sexual intercourse; hence, a
thicker and stronger mucosal membrane is important in HIV prevention [243].

It is a well-established fact that females generally mount stronger immune responses to
both self and non-self-antigens, including viral infection: therefore, females are more prone
to autoimmune disease than males [244]. While the mechanisms behind the sex differences
are not fully understood, several genetic and physiological mechanisms are thought to be
responsible for the stronger immune responses mounted by females compared to males in
response to HIV infection and for how this may influence disease progression [245].

The first mechanism that can explain the stronger immune responses in females is
the presence of X chromosome-linked genes that contribute to the higher expression of
TLRs in females [246]. TLR7, which is higher in females, is located on the X chromosome,
and females have two copies of the X chromosome, as opposed to males, who only have
one [247]. For one copy of the X chromosome, it is proven that up to 23% of the genes
escape inactivation; thus, females potentially have higher levels of TLR7 due to gene dosage
effects [248]. The male Y chromosome carries very few genes, which mainly are involved
in sex determination; thus, males possess no gene dosage advantage like females do, thus
leading to weaker immune activity [249,250].

The differences in immune response between sexes could also be attributed to sex
hormones. Sex hormones have been shown to regulate the expression of TLRs, particularly
TLR7 and TLR8, which recognize single-stranded RNA viruses such as HIV; this can lead
to a stronger innate immune response against HIV and may help to control viral replica-
tion [251–253]. Several studies have shown that estrogen can upregulate TLR expression in
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immune cells, which could contribute to the higher expression of TLR in females [254–256].
On the other hand, testosterone has been shown to downregulate TLR expression, which
could contribute to lower TLR expression in males [257,258].

Estrogen has also been shown to stimulate immune response by increasing the number
and activity of immune cells such as T cells and B cells, and it achieves this by stimulating
the secretion of cytokines from a variety of cells, including immune cells such as monocytes,
macrophages, dendritic cells and T cells [259–261]. Estrogen modulates the production of
cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6), TNF-alpha and IFN-γ, among
others [262–267]. These cytokines are important in regulating immune responses and play
a role in inflammatory and autoimmune diseases [268–271]. Estrogen stimulates cytokine
release by binding to the Estrogen receptors (ERs), ER-alpha (ERα) and ER-beta (ERβ),
which are expressed on the surface of immune cells [272]. Once activated by estrogen
binding, these receptors translocate to the nucleus and bind to estrogen response elements
(ERE) on the DNA, leading to the transcription of target genes that can regulate cytokine
production [273]. Overall, these processes will result in the proliferation and activation
of T cells by the activity of IL-2, TNF-alpha and IFN-γ, B cell proliferation and differentiation
through IL-6 activity, DC maturation and activation by TNF-alpha activity and macrophage
activation via TNF-alpha and IL-1 activity [255,259,274].

Estrogen can also bind to membrane-associated estrogen receptors (mERs), such as
G protein-coupled receptor 30 (GPR30), which activate intracellular signaling cascades,
such as the mitogen-activated protein kinase (MAPK) pathway [275–277]. These signaling
pathways regulate cytokine production by immune cells [278,279]. The MAPK pathway can
activate the c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and
p38 MAPK sub-pathways, which regulate different aspects of immune cell activation [279].
For example, the JNK pathway activates the transcription factor AP-1, which can regulate
cytokine gene expression: several cytokines, including IL-1, IL-2 and IFN-gamma, are
activated by AP-1 [280–282]. The ERK pathway activates the transcription factor Elk-1,
which regulates the genes involved in proliferation and survival [283,284]. The p38 MAPK
pathway can also regulate cytokine gene expression and is involved in the activation of
innate immune responses; therefore, the net effect of estrogen activity is a stronger immune
response to infection [285].

To demonstrate the activity of estrogen, post-menopausal women living with HIV
(WLH) have weaker immune responses to HIV and a higher viral load when compared to
pre-menopausal WLH: therefore, estrogen is key to mounting stronger immune responses
in females [286,287].

On the other hand, androgens inhibit the activation of T cells by reducing the ex-
pression of key signaling molecules, such as CD28 and CD4, which are necessary for
T cell activation and also inhibit the production of interleukin-2 (IL-2), which is important
for T cell proliferation and survival [288]. Androgens can modulate cytokine production
by immune cells [258]. For example, they reduce the production of pro-inflammatory cy-
tokines such as IL-1, IL-6 and TNF-alpha and increase the production of anti-inflammatory
cytokines such as interleukin-10 (IL-10).

Furthermore, androgens promote the development of Tregs, which suppress immune
responses and enhance the expression of molecules that promote Treg development, such as
transforming growth factor-beta (TGF-beta) and interleukin-10 (IL-10) [289,290]. Androgens
can inhibit the function of dendritic cells, which are important for initiating immune
responses by reducing the expression of molecules that are necessary for dendritic cell
maturation and function, such as CD80, CD86 and MHC class II molecules [291–293].
Finally, androgens also suppress natural killer (NK) cell activity by reducing the expression
of activating receptors on the surface of NK cells, such as NKG2D and NKp46; the net effect
is the weaker immune response seen in males [293–295].

Overall, the gender-related dynamics of HIV immunopathology may have implica-
tions for the management of HIV, which may include the reduced bioavailability of active
forms of the drugs to hormonal or other biological influences [296].
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7. Strengths and Limitations

The strength of our review is that we have highlighted several key issues that influence
the HIV–host cell interactions which include the role of viral products in manipulating the
host cell responses, how the host immune system responds to the infection and further
coupling the former with sex differences in HIV-induced immunopathology.

The limitations are as follows: we did not investigate the influence of race, genetics
(non-sex-related), coinfection and environmental factors. All these factors are important
in the disease outcome. The HIV host cell interactions are complex and thus often diffi-
cult to understand; however, understanding the HIV–host cell interactions is key to the
development of an effective cure for HIV infection [297,298].

8. Conclusions

The pathogenesis of HIV is determined by an intricate interaction between the host
and the virus. HIV has evolved to escape immune surveillance, infect human cells and
continue to replicate within host cells through several complex mechanisms such as the
downregulation of MHC molecules, the production of non-neutralizing antibodies and
other HIV-related proteins to induce immune exhaustion, the activation of apoptosis and the
dysregulation of the JAK/STAT pathway. Host defense mechanisms promote control and
decreased HIV viral replication through the downstream activation of several transduction
pathways that serve to eliminate the virus and infected cells. Sex differences are important
in both infection and HIV disease progression, with females being more vulnerable to
infection while on the other hand being capable of mounting a stronger immune response
to the infection compared to men.

For future studies, it may be of value to thoroughly investigate how race, genetics and
environmental factors (such as climate) influence host–cell interactions. This would be of
great importance in improving HIV disease management and finding a cure. For example,
since the monocyte has been identified to be a key driver of latency, medications are being
developed and modeled to target viruses housed in macrophages [299,300].
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