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Abstract

Biological research is becoming more computational. Collecting, curating, processing, and 

analysing large genomic and imaging datasets poses major computational challenges, as does 

simulating larger and more realistic models in systems biology. Here we discuss how a relative 

newcomer among computer programming languages – Julia – is poised to meet the current and 

emerging demands in the computational biosciences, and beyond. Speed, flexibility, a thriving 

package ecosystem, and readability are major factors that make high-performance computing and 

data analysis available to an unprecedented degree to “gifted amateurs”. We highlight how Julia’s 

design is already enabling new ways of analysing biological data and systems, and we provide 

a, necessarily incomplete, list of resources that can facilitate the transition into the Julian way of 

computing.
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Computers are tools. Like pipettes or centrifuges, they allow us to perform tasks more 

quickly or efficiently; and like microscopes, they give us new, more detailed insights into 

biological systems and data. Computers allow us to develop, simulate and test mathematical 

models of biology and compare models to complex datasets. As computational power 

evolved, solving biological problems computationally became possible, then popular, and 

eventually, necessary [1]. Entire fields such as computational biology and bioinformatics 

emerged. Without computers, the reconstruction of structures from X-ray crystallography, 

NMR, or cryo-EM methods would be impossible. The same goes for the 1000 Genome 

Project [2], which used computer programs to assemble and analyze the DNA sequences 

generated. More recently, vaccine development has benefited from advances in algorithms 

and computer hardware [3].

Programming languages are also tools. They make it possible to instruct computers. Some 

languages are good at specific tasks – think Perl for string processing tasks; or R for 

statistical analyses – whereas others – including C/C++, and Python – have been used with 

success across many different domains. In biomedical research the prevailing languages have 

arguably been R [4] and Python [5]. Much of the high-performance backbone supporting 

computationally intensive research, hidden from most users, however, continues to rely 

on C/C++ or Fortran. Computationally intensive studies are often initially designed and 

prototyped in R, Python or Matlab, and subsequently translated into C/C++ or Fortran for 

increased performance. This is known as the two-language problem [6].

This two-language approach has been successful but has limitations. When moving an 

implementation from one language to another, faster, programming language, “verbatim” 

translation may not be the optimal route: faster languages often provide the programmer 

higher autonomy to choose how memory is accessed or allocated, or to employ more 

flexible data structures [7]. Exploiting such features may involve a complete rewrite of the 

algorithm [8, 9] to ensure faster implementations or better scaling as datasets grow in size 

and complexity. This requires expertise across both languages, but also rigorous testing of 

the code in both languages.

Julia [12] is a relatively new programming language that overcomes the two-language 

problem.Users do not have to choose between ease-of-use and high performance – Julia 

has been designed to be easy to program in and fast to execute [13]. This and the growing 

ecosystem of state-of-the-art application packages and introductions [9, 14] make it an 

attractive choice for biologists.

Biological systems and data are multifaceted by nature, and to describe them, or model 

them mathematically, requires a flexible programming language that can connect different 

types of highly structured data, see Figure 1. Three hallmarks of the language make Julia 

particularly suitable to meet current and emerging demands of biomedical science: speed, 

abstraction and metaprogramming.

Here we discuss each language feature and its biological relevance in the context of one 

concrete example per feature. An additional example per feature can be found in the 

Supplementary material. Further, we provide a summary of why we believe Julia is a good 
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programming language for biologists in the Supplementary material (Table 2). Supporting 

online material is provided in the GitHub repository Perspective_Julia_for_BiologistsI. First, 

the online material shows code for the examples discussed here. Code examples have 

been chosen and designed to be accessible to a wide audience: we group them based 

on computational focus (high-level and low-level user case) and access points (e.g. Julia 

files and interactive notebooks). Second, a summary of helpful resources for starting with 

Julia and for building Julia solutions is provided. The latter include, for example: platform-

specific Julia installation guides; links to introductory Julia courses; and a selection of 

pointers to relevant Julia communities.

Speed

The speed of a programming language is not just a matter of convenience that allows us to 

complete analyses more quickly. It can enable new and better science: speed is important for 

analysing large datasets [15, 16] that are becoming the norm across many areas of modern 

biomedical research [17]. Slow computations might not hold back scientific discovery 

when performed a small number of times. However, when performed repeatedly on large 

datasets, the execution speed of a programming language can become the limiting factor. 

Similarly, simulating large and complex computational models is only possible with fast 

implementations; digital twins [18, 19] in precision medicine, for example, will be useless 

without fast computation.

The speed of the programming language also determines how extensively we can test 

statistical analysis or simulation algorithms before using them on real data. Thorough testing 

of a new statistical algorithm can be expected to be around 2–3 orders of magnitude more 

costly in computational terms than a single “production run” [16]. Furthermore, the quality 

of approximations depends on many factors (e.g. number of tested candidates [20, 21] and 

grid step sizes [22]) and faster code enables better analysis. Here and in the Supplementary 

material we provide insights into the design features underlying Julia’s speed [6]. The 

speed rivals that of statically compiled languages such as Fortran and C/C++. Higher-level 

language features — hallmarks of R, Python, Matlab, and Julia — typically lead to shorter 

development times; going from an initial idea to working code can be orders of magnitude 

faster than for e.g. C/C++; this is in no small measure helped by the flexible Jupyter and 

Pluto.jl notebook user interfaces (which fulfil similar functions to e.g. R’s Shiny) and 

flexible software editing environments. Julia combines fast development with fast run-time 

performance and is therefore appropriate for both algorithm/method prototyping, and time 

and resource intensive applications.

Example: Network Inference from Single Cell Data.

In single cell biology, we can measure expression levels of tens of thousands of genes in 

tens of thousands of cells[24]. Increasingly we are able to do this with spatial resolution. 

But searching for patterns in complex and large data-sets is computationally expensive: even 

I https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists 
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apparently simple tasks, such as calculating the mutual information (MI) across all pairs of 

genes in a large dataset can quickly become impossible.

Gene regulatory network (GRN) inference from single cell data is a statistically demanding 

task, and one where Julia’s speed helps. Chan et al. [16] use higher-order information 

theoretical measures to infer GRNs from transcriptomic single cell data of megakaryocyte-

erythroid progenitor cells during human hematopoiesis [25], early embryonic development 

[26], and embryonic hematopoietic development [27]. The MI has to be calculated for gene 

pairs; but a multivariate information measure, partial information decomposition (PIDC), 

is also considered to separate out direct and indirect interactions [28], and this requires 

considering all gene triplets [29].

The run-time of algorithms implemented in the Julia package InformationMeasures.jl 

can be compared to the minet R package [30] (Figure 2(a) left). For small numbers of 

genes, differences are significant but not prohibitive: inferring a network with 100 genes 

takes around 0.3 seconds in Julia compared to 1.5 seconds in R; but already for 1,000 

genes the inference times differ substantially: 17 seconds in Julia and 390 seconds (>20-fold 

difference) in R; for – by today’s standards small – datasets with 3,500 genes and 600 

cells R needs over 2.5 hours, compared to Julia’s 134 seconds (64-fold difference); and 

in real-world applications [29] 400-fold speed differences are possible (this corresponds to 

computing times of hours versus weeks). Here we reach the threshold of what can be tested 

and evaluated rigorously in many highlevel languages. Overall, multivariate information 

measures would almost certainly be unfeasible in pure R or Python implementations.

The reason for this performance difference is Julia’s ability to optimize “vectorizable” 

code [6]; cf. Figure 2(b). Users of Python and R are familiar with vectorized functions, 

such as maps and element-wise operations. Julia’s performance improves by combining 

Just-in-Time (JIT) compilation – where computer code is compiled at run-time (and the 

compiler can therefore be informed by the current state of the program and data) rather than 

ahead of execution – with vectorized functions via a trick known as operator fusion. When 

writing a chain of vector expressions, like D=A*B+C (where A, B, C and D are n-dimensional 

vectors), libraries like NumPy call optimized code, which is typically written in languages 

like C/C++, and these operations are computed sequentially. For this example, A*B, C 

code is called to produce a temporary array, tmp, and then tmp+C is evaluated (using 

C) to produce D. Allocating memory for the temporary intermediate, tmp, and the final 

result D is O(n) (which means that the time it takes to complete the computation increases 

approximately linearly with n, the length of the vectors), and scales proportionally to the 

compute cost; thus no matter what the size of the vectors is, there is a major unavoidable 

overhead. Julia uses the “.” operator to signify element-wise action of a function, and 

we write D.=A.*B.+C. When the Julia compiler sees this so-called broadcast expression, 

it fuses all nearby dot operations into a single function, and JIT compiles this function a 

run-time into a loop. Thus NumPy makes two function calls and spends time generating 

two arrays, whereas Julia makes a single function call and reuses existing memory. This and 

similar performance features are now leading package authors of statistical and data science 

libraries to recommend calling Julia for such operations, such as the recommendation by 
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the principal author of the R lme4 linear mixed effects library to use JuliaCall to access 

MixedModels.jl in Julia (both written by the same author) for an approximately 200x 

acceleration [31].

The code for this example can be found under the attached linkII.

Abstraction

Julia allows an exceptionally high level of abstraction [32]. We can illustrate the advantages 

of abstraction[33] by drawing an analogy to a standard lab tool: the pipettor. Pipettors 

produced by different manufacturers have slightly different designs; nevertheless they all 

perform the same task in a similar way. It thus takes minimum effort to get used to a new 

pipettor, without having to retrain on every aspect of an experimental protocol. Abstraction 

achieves the same for software [33]. Similar to the described abstract interface “pipettor”, 

in Julia we have interfaces such as the AbstractArray interface (discussed in detail 

in the SI). All its implementations are array-like structures that provide the same core 

functionalities which an array-like structure is expected to have. This allows us to easily and 

flexibly switch between different implementations of the same interface [34].

Abstraction is especially advantageous in the biological sciences where data is frequently 

heterogeneous and complex [35, 36, 37]. This can pose challenges for software developers 

[34] and data analysis pipelines as changes to data may require substantial rewriting of 

code for processing and analysis. We may either end up with separate implementations 

of algorithms for different types of data; or we may remove details and nuance from 

the data to enable analysis by existing algorithms. With abstraction we do not have to 

make such choices. Julia’s abstraction capabilities provide room for both specialisation and 

generalisation through features such as abstract interfaces and generic functions that can 

exploit the advantages of unique data formats with varying internal characteristics without 

an overall performance penalty. Here we illustrate the effect of Julia’s abstraction via an 

example of a structural bioinformatics pipeline. Additionally, we provide a second, more 

technical abstraction example focusing on image analysis in the Supplementary material.

Example: Structural bioinformatics with composable packages.

Julia’s flexibility means that packages from different authors can generally with ease 

be combined into workflows, a feature known as composability. Users benefit from 

Julia’s flexibility just as much as package developers. For example, we consider a 

standard structural bioinformatics workflow, where we want to download and read the 

structure of the protein crambin from the Protein Data Bank (PDB). This can be 

done using the BioStructures.jl package [38] from the BioJulia organisation, which 

provides the essential bioinformatics infrastructure. Protein structures can be viewed using 

Bio3DView.jl, which uses the 3Dmol.js JavaScript library [39] as Julia can easily 

connect to packages from other languages. We can show the distance map of the Cβ atoms 

using Plots.jl; while Plots.jl is not aware of this custom type, a Plots.jl recipe 

II https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/examples/Speed/
Example_Network_Inference_from_Single_Cell_Data 
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makes this straightforward. BioSequences.jl provides custom data types of sequences and 

allow us to represent the protein sequence efficiently. With this BioAlignments.jl can 

be used to align our sequences of interest. This suite of packages can be used to carry 

out single cell full-length total RNA sequencing analysis [40] quickly and with ease. A 

few lines of code in BioStructures.jl allow us to define the residue contact graph 

using Graphs.jl, giving access to optimised graph operations implemented in Graphs.jl 

for further analysis, such as calculating the betweenness centrality of the nodes. If coding 

and analysis are performed in Pluto.jl, then updating one section updates the whole 

workflow, which assists exploratory analysis.

Packages can be combined to meet the specific needs of each study; for example to 

generate protein ensembles and predict allosteric sites [41], or to carry out information 

theoretical comparisons using the MIToS.jl package [42]. In this example we have used 

at least five different packages together seamlessly. Plots.jl, BioAlignments.jl and 

Graphs.jl do not depend on, or know about BioStructures.jl but can still be used 

productively alongside it. Abstraction means that the improvements in any of these packages 

will benefit users of BioStructures.jl, despite the packages not being developed with 

protein structures in mind.

Package composability is common across the Julia ecosystem and is enabled by abstract 

interfaces supported by multiple dispatch, i.e. the ability to define multiple versions of 

the same function with different argument types (see e.g. [43] for examples of multiple 

dispatch). Programmers can define standard functions such as addition and multiplication for 

their own types; abstraction means that functions in unrelated packages often “just work” 

despite knowing nothing about the custom types. This is rarely seen in languages such 

as Python, R and C/C++, where the behaviour of an object is tightly confined [33] and 

combining classes and functions from different projects requires much more (of what is 

known as) “boilerplate” code.

For example, the Biopython project [44] has become a powerful package covering much of 

bioinformatics. But extensions to Biopython objects are generally added to (an increasingly 

monolithic) Biopython, rather than to independent packages. This can lead to objects and 

algorithms that have the difficult task of fitting all use cases, including their dependencies, 

simultaneously [45]. By contrast, Julia’s composability facilitates writing generic code that 

can be used beyond its intended application domain[43]. Tables.jl, for example, provides 

a common interface for tabular data, allowing generic code for common tasks on tables; 

currently, some 131 distinct packages draw on this common core for purposes far beyond 

the initially conceived application scope. This is an example that showcases how abstraction 

ensures interoperability and longevity of code.

The code for this example can be found under the attached linkIII.

III https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/examples/Abstraction/
Example_Structural_bioinformatics_with_composable_packages 
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Metaprogramming

As our knowledge of the complexity of biological systems increases so does our need to 

construct and analyse mathematical models of these systems. Currently, most modeling 

studies in biology rely on programming languages that treat source code as static: once 

written, it can be processed into loaded and executing code, but it is never changed while 

running. We can compare this linear control process to the central dogma of biology 

[46, 47]: Source code (DNA) is transformed into loaded code (RNA), and executing 

code (protein). We now know that this process (DNA→RNA→Protein) is not linear and 

unidirectional: RNA and proteins can alter how and when DNA is translated. Programming 

languages that support metaprogramming break the linear flow of the computer program in 

a analogous manner. With metaprogramming, source code can be written that is processed 

into loaded and executing code and that can be modified during run-time. This shifts our 

perception from static software to code as a dynamic instance where the program can modify 

aspects of itself during run-time (Figure 6(a)).

Metaprogramming originated in the LISP programming language, in the early days of 

artificial intelligence research. It enables a form of reflection and learning by the software, 

but the ability of a program to modify computer code needs to be channelled very carefully. 

In Julia, this is done via a feature called hygenic macros [48]. These are flexible code 

templates, specified in the program, that can be manipulated at execution time. They are 

called “hygenic” because they prohibit accidentally using variable names (and thus memory 

locations) that are defined and used elsewhere. These macros can be used to generate 

repetitive code efficiently and effectively.

But there are other uses that can enable new research, and this includes the development of 

mathematical models of biological systems. Unlike in physics, first principles (conservation 

of energy, momentum, etc.) offer little guidance as to how we should construct models 

of biological processes and systems. For these notoriously complicated biological systems, 

trial and error, coupled to biological domain expertise, and state-of-the-art statistical model 

selection are required [49]. Great manual effort is spent on the formulation of mathematical 

models, the exploration of their behavior, and their adaptation in light of comparisons to 

data. Metaprogramming, or the abilities of introspection and reflection during runtime [48], 

and the ability to automate parts of the modeling process opens up enormous scope for 

new approaches to modeling biological systems (Figure 6(b)), including whole cells (see 

Supplementary material).

Example: Biochemical reaction networks.

Mathematical models of biochemical reaction networks allow us to analyze biological 

processes and make sense of the bewilderingly complex systems underlying cellular function 

[51, 52, 53]. But the specification of mathematical models is challenging and requires us 

to specify all of our assumptions explicitly. We then have to solve these models based on 

these assumption. Analysing a given reaction network can involve solution, for example, of 

ordinary differential equations (ODEs), delay differential equations, stochastic differential 

equations (SDEs), or discrete-time stochastic processes. To create instances of each of 

these models would typically – in languages such as C/C++ or Python – require writing 
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different snippets of code for each modelling framework. In Julia, via metaprogamming, 

different models can be generated automatically from a single block of code. This simplifies 

workflows and makes them more efficient, but also removes the possibility of errors due to 

model inconsistencies.

For example, we can consider the ERK phosphorylation process shown in Figure 6(b) [54]. 

Here ERK is doubly phosoporylated (by its cognisant kinase, MEK), upon which it can 

shuttle into the nucleus and initiate changes in gene expression. Its role and importance have 

made ERK a target of extensive further analysis, and modelling has helped to shed light on 

its function and role in cell-fate decision making systems [55]. This small system – albeit 

one of great importance and subtlety – forms a building blocks for larger, more realistic 

biochemical reaction [51] and signal transduction [56] models.

In Julia, using Catalyst.jl [57], this model can be written directly in terms of its 

reactions, with the corresponding rates {k1, k2, k3}: source code is human readable and 

differs minimally from the conventional chemical reaction systems shown in Figure 6(c).

The science is encapsulated in this little snippet; solving the reaction systems then proceeds 

by calling the appropriate simulation tool from DifferentialEquations.jl: for a 

deterministic model specified the reaction network is directly converted into a system of 

ODEs (via ODESystem). The same reaction network can be directly converted into a model 

that is specified by SDEs (via SDEProblem) or a discrete-time stochastic process model (via 

DiscreteProblem). Each of these cases leads to the creation of a distinct model that can 

be simulated or analyzed; yet all of the models share the underlying structure of the same 

reaction network. To simulate one of the resulting models, the user needs to specify only 

the necessary assumptions required for a simulation – i.e. the parameter values and initial 

conditions – as well as any further assumptions required that are specific to the model type, 

e.g. the choice of noise model for a system of SDEs. Adapting the model to include nuclear 

shuttling [50] of ERK as in Figure 6(c), or extrinsic noise upstream of ERK [54] is easily 

achieved using metaprogramming.

Fitting models to data, or estimating their parameters, is also supported by the Julia package 

ecosystem. Parameter estimation by optimizing the likelihood, posterior or a cost-function 

is straightforward using the Optim.jl [58] or JuMP.jl [59] packages. And because of 

Julia’s speed it has become much easier to deploy Bayesian inference methods; here, 

too, metaprogramming helps tools such as the probabilistic programming environment, 

Turing.jl [60]. Approximate Bayesian computation approaches [61] also benefit from 

Julia’s speed, abstraction and metaprogramming and are implemented in GpABC.jl [20].

The code for this example can be found under the attached linkVI.

VI https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/examples/Metaprogramming/
Example_Biochemical_reaction_networks 
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Outlook

Computer languages, like human languages, are diverse and changing to meet new demands. 

When choosing a programming language we have many choices, but often they reduce to 

essentially two options: do we want to use a widely used language with everybody else 

is using? Or do we want to use the best language for our problem? Traditional languages 

have an enviable track record of success in biological research. A frightening proportion of 

the internet and the modern information infrastructure probably depends on legacy software 

that would not pass modern quality control. But it does the job, for the moment. Similarly, 

scientific progress is possible with legacy software. Python, R are far from legacy and have 

plenty of life in them. And there are tools, which allow us to overcome their intrinsic 

slowness [62].

Here we have tried to explain why we consider Julia a language for the next chapter in the 

quantitative and computational life-sciences. Julia was designed to meet current and future 

demands of scientific and data-intensive computing [63]. It is an unequivocally modern 

language, and it does not have the ballast of a long track record going all the way to 

the pre-big-data days. The deliberate choices made by the developers furthermore make it 

fast and give developers and users of the language a level of flexibility that is difficult to 

achieve in other common languages such as R, Python, but also C/C++ and Fortran. On 

top of all of that is a state-of-the-art package manager; all packages and Julia itself are 

maintained via Git, which makes installing and updating the Julia language, packages and 

their dependencies straightforward [6].

Julia has a growing but still smaller user base than R and Python, and in some domains these 

languages have truly impressive package ecosystems. R and the associated Bioconductor 

project, in particular, have been instrumental in bringing sophisticated bioinformatics, data 

analysis and visualisation methods to biologists. For many they have also served as a 

gateway into programming. In other application areas, notably simulation of dynamical 

systems, Julia has leapfrogged the competition [64]. Many of the speed-advantages of 

Julia come from just-in-time compilation, which underlies and enables good run-time 

performance. This, however, takes time and causes what is known as latency. Latency can be 

a problem for applications with hard real-time constraints, such as being the embedded code 

on a medical device that requires strict accurate updates at 100ms intervals.

Julia was designed to meet current and future demands of scientific and data-intensive 

computing. The Julia alternative, which arguably has the most traction is Rust. Rust is 

emerging language that has syntactic similarity to C++ but is better at managing memory 

safely: it detects discrepancies of type assignments at compile time and not just at run time 

as is the case for C/C++. For this reason it is being used in e.g. the Linux kernel; in the 

biological domain it could become a choice for medical devices (as we can control latency), 

or bioinformatics servers that would previously have been developed in Java or C/C++.

These advantages of a new language need to be balanced against the convenience of 

programmers who are able to tap into the collective knowledge of vast user communities. 

All languages have started small and had to develop user bases. The Julia community is 
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growing, including in the biomedical sciences; and, it appears to be acutely aware of the 

needs of newcomers to Julia (and underrepresented minorities in the computational sciences 

more generally [65], see e.g. https://julialang.org/diversity/ for details), which makes the 

switch to Julia easier [14].

We have described the three main language design features that make Julia interesting 

for the scientific computing: speed, abstraction, and metaprogramming. We have provided 

some intuition that fills these concepts with life, and we have illustrated how they can be 

exploited in different biological domains, and how speed, abstraction and metaprogramming, 

together enable new ways of doing biological research. Even though we have introduced 

these features separately, they are deeply intertwined. For example, a lot of the speed-up 

opportunities of Julia derive from the languages abstraction powers; abstraction in turn 

makes metaprogramming easier.
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Appendix

Here we provide supplementary material related to the main manuscript. This includes a 

table outlining advantages and resources that ease the transition to the Julia language (Table 

2); an illustration of Julia’s speed in the context of quantitative systems pharmacology; a 

discussion of Julia’s abstraction capability in the context of image processing; an outline of 

the advantages Julia’s metaprogramming capabilities offer to efforts to model whole cells.

Speed

Supplementary Example: Accelerating Dynamical Systems Modeling in Systems Biology 
and Pharmacology.

Systems biology and related fields, including quantitative systems pharmacology (QSP), 

are also benefiting from Julia’s speed. Modeling and simulation are transforming the 

drug discovery pipeline, lowering the risk of failed trials, and allowing efficiency gains 

in drug development and substantial financial savings in the drug development process [66]. 

However, even with these successes most trials do not undergo in-depth preclinical analysis. 

The major reason why is time: any delay in the start of the clinical trial increases the overall 

cost. Improvements in QSP can remedy this situation.

Solving large systems of ordinary differential equations (ODEs) (and increasingly also 

stochastic dynamical systems) lies at the core of these modelling studies. We typically 

have nonlinear functions, f, and solving them in high-level languages such as R, Python 
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or Matlab can be slow. Therefore solver libraries are often written in a faster language, 

such as C/C++ or Fortran. The limiting factor then is the user’s non-linear set of equations, 

f. In languages like Python or R, there is a high function call overhead: every operation 

that is called is more expensive than in a fast language (approximately 150–350ns per call 

[67] while the function calls can take approximately 5ns in Julia or C). Scalar operations, 

like evaluating a Hill kinetic function [A]′ = [B]n

ω + [B]n
, can take microseconds instead of 

nanoseconds, see Figure 2. “Vectorization”, as recommended in languages such as Python 

or R, packs more floating point operations into each C function call and can help to speed 

this up somewhat. Even accelerators like Numba still require a context change from Python 

to the compiled C function, which can hamper performance, especially for sparse reaction 

networks. Furthermore, vectorization requires a certain level of regularity and simplicity in 

the equations, and the nonlinear systems typically found in biology can be anything but 

simple; therefore traditional interpreted languages will always tend to perform poorly for 

nonlinear models.

When solving an ODE, the function f is called thousands or millions of times, exacerbating 

this difference. Figure 2 showcases some examples of biological models where such 

simulations are 50x-400x faster than those using leading packages in R and Python. In a 

typical preclinical drug development pipeline this has led to 175-fold acceleration of QSP 

model analysis once the model had been translated from a combination of MATLAB and 

C code into Julia [68]. Julia’s speed enables more efficient clinical trial analyses and its 

libraries have been shown to be even faster than commonly used Fortran libraries in this 

domain of ODE modeling [64].

The code for this example can be found under the attached linkVII.

Abstraction

Supplementary Example: Flexibility and performance in image processing.

Microscopy in its many forms underlies much of modern biology. But extracting information 

from imaging data is challenging for two main reasons. The first challenge lies in the nature 

of the raw data. Scientific images can be very large, and it is not uncommon for datasets 

to reach a size of multiple terabytes [69, 70]. In such instances, initially minor performance 

inconveniences can quickly extrapolate to become limiting factors for scientific discovery. 

Also, the images – typically internally represented as arrays – often exhibit great diversity: 

for example, a single imaging dataset may have two or three spatial dimensions, zero or 

one temporal dimensions, and a color- or modality-channel. This is further exacerbated 

by the complexity of the accompanying meta information on the imaging conditions and 

technologies which also influence down stream analysis and interpretation. Having the 

flexibility to accommodate for this level of diversity whilst also providing the necessary 

performance needed when dealing with data of this size, is a non-trivial challenge for any 

programming language with significant implications for outcomes [71, 72].

VII https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/examples/Speed/
Supplementary_Example_Accelerating_Dynamical_Systems_Modeling_in_Systems_Biology_and_Pharmacology 
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The second reason for carefully thinking about the choice of software for image processing 

pipelines, lies in the nature of processing pipelines themselves. Typically the data are 

sequentially manipulated over multiple steps. In a naive approach, a new, slightly altered 

version of the large raw dataset is created and stored for each step in the pipeline. 

This is inherently inefficient and becomes quickly infeasible or impossible as data sizes 

grow beyond storage capacities. Documenting and tracking different combinations of data 

manipulation steps is also non-trivial as each step could lose information.

Efficient data representation combined with flexible processing is of essence to extract 

meaningful conclusions from the data. Abstraction is Julia’s key feature that enables 

state-of-the-art image processing [73, 74]: by keeping a high level of abstraction in the 

internal data representations, the diversity in image data can be captured and exploited, 

and modifications to the data become easier, too. A core component for implementing the 

relevant abstraction in Julia is provided by the AbstractArray interface [75], especially in 

its combination with lazy operations. In a normal, “eager”, operation, each computation 

is executed immediately upon being invoked. By contrast, lazy operations delay their 

computations until the latest possible moment in time, i.e. the execution is separated from 

the declaration of a computation. In some cases, this can be delayed all the way to the 

moment where we wish to visualize the processed data, so that no computation needs to 

occur on any data not being inspected.

As previously described, the AbstractArray interface can be thought of as a template 

which creates an agreement between existing software and the user’s software. We can use 

the template, i.e. implement the AbstractArray interface, in order to define a new array 

type which optimally fits their data format. By using the interface, we also agree to provide 

certain functionalities for this new object. Providing both high levels of customization and 

standardization of operations that need to be supported by an array-like object, allows for 

the composition of complex and highly specialised pipelines. The specifics of the array no 

longer matter because of the abstraction. Many AbstractArray interface implementations 

helpful in image processing already exist and we do not have to start from scratch for each 

new imaging modality. Examples include SubArrays (region-of-interest “view” selection), 

MappedArrays (lazy-modification of values), “ReshapedArrays” (lazy-modification of 

dimensionality), and WarpedViews in the ImageTransformations.jl package (lazy 

coordinate transformations).

With effective lazy operations, it becomes possible to manipulate and inspect massive 

datasets even with relatively modest computing hardware, because the hardware only 

needs to load, process, and display the small subset of the data being actively explored. 

Preprocessing stages that might require tuning several parameters to the particulars of the 

dataset can be refined quickly, with each iteration perhaps comprising only a few seconds 

or minutes, rather than the hours, days, or weeks that might be required if each step had to 

cached to disk between manipulations.

Other languages support the concepts of abstraction and lazy operations, too, but despite 

considerable investment they do not provide the same level of comfort and capability 

available in Julia. For example, in Python, the most widely-used lazy-operation package 
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is Dask [76], which has a sophisticated engine for managing computational graphs and 

applying them across distributed datasets. However, when using Dask to process large image 

datasets, one frequently encounters severe limitations on composability (Figure 5.c): some 

algorithms may not support outputs of previous stages, while others may force an eager 

intermediate step in the pipeline potentially exhausting memory resources, and yet others 

may attempt to allocate an unachievable output array. By contrast, with Julia, one can 

routinely expect that arbitrary combinations of processing “just work” together, and we can 

use lazy operations along the whole image processing pipeline. Because Julia aggressively 

optimizes computations at a granular level (all the way to the single pixel), this flexibility 

comes with little or no overhead, in marked contrast to languages such as Python (Figure 5.a 

and additional information in the accompanying Repository 1).

The objective of the software as a tool in the instance of image processing should be to 

provide the adequate level of flexibility a biologist needs in order to discover new science 

without being limited by data storage and performance issues caused by the software. Julia 

and its high level of abstraction provides this flexibility to biologists and therefore enables 

new analyses and experiments. For example, Julia has previously been adopted by labs 

processing large images acquired by light sheet microscopy in mice [73] and fish [70]. Julia 

also enabled a real-time two-photon pipeline to perform calcium imaging in intact neural 

tissue and then select and phototag specific cells that exhibited specific response properties 

[73].

The code for this example can be found under the attached linkVIII.

Metaprogramming

Supplementary Example: Whole cell modeling.

An additional application area for metaprogramming is the development of physiologically 

more realistic models, whether at the levels of whole cells, tissues, or even the physiology of 

whole organisms. In whole cell modeling, models potentially scale up to the size of 103–105 

species [77] and a key problem is that constructing models of this size is extremely difficult 

[78, 79]. In fact even small parts of such models, see Figure 6, such as signalling cascades 

have a large number of (generally unknown) parameters. Here model development cannot 

rely on manual curation or inspired guesswork [78]. Instead automated model development 

will be required [77]. The reasons for this is that the bookkeeping efforts required to keep 

track of molecular species, their interactions, and the ways in which molecule numbers 

change as a result of biochemical interactions, are simply not manageable by conventional 

means. We do not know the model structure and therefore have to experiment with different 

model-setups. Without metaprogramming we would have to write or adapt the cellular 

simulation code for each new attempt. Plus, of course, nobody is able to check the validity 

of such a large model in the way we can check a simple mathematical model of the type that 

has traditionally dominated theoretical biology.

VIII https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/examples/Abstraction/
Supplementary_Example_Flexibility_and_performance_in_image_processing/images_lazy 

Roesch et al. Page 13

Nat Methods. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/examples/Abstraction/Supplementary_Example_Flexibility_and_performance_in_image_processing/images_lazy
https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/examples/Abstraction/Supplementary_Example_Flexibility_and_performance_in_image_processing/images_lazy


Developing a whole cell model will almost certainly involve piecing together sub-models, 

for which we can build on Catalyst.jl [57]. Calibrating such (sub-) models against data 

– that is to infer parameters from data – is a demanding task, that has yet to be solved for 

such large systems (it is a priori not clear to what extent this can be solved). Approximations 

to the dynamics and/or the inference process can help; and for many sufficiently small 

systems (say signalling networks) current tools will allow us to determine their parameters 

from literature and/or data, as described in the example above. We may, in addition, want 

to use efficient approximations to the stochastic dynamics [80, 81], such as provided by 

MomentClosures.jl [82]. This can be coupled to parameter inference, as described above, 

via optimization (Jump.jl [59]) or Bayesian inference (Turing.jl [60] and GpABC.jl 

[20]).

Catlab.jl is a package that makes composing and combining smaller models into a 

larger model possible, and relatively straightforward. The toolset that we can use to 

construct such models continues to grow. For example, hypergraphs provide a much 

more flexible representation for mathematical models that conventional networks, and 

For such comprehensive models, grown in a principled way, the SciML suite, via e.g. 

SciMLSensitivity.jl [83], allows us to quantity uncertainty and assess sensitivity of 

model outputs both locally and globally. Metaprogramming alleviates the need to “hard-

code” such large models. Instead they can be generated automatically without sacrificing the 

runtime efficiency of the simulation models.

The model development process enabled by the pipeline, Sub-model formulation → 
Sub-model fitting → Composition of Large Model from Sub-models → Sensitivity and 

Uncertainty Analysis,

Overall, metaprogramming in Julia enables the automated construction of models of all 

sizes: from small biochemical reaction network models to whole cell models. Simulation, 

inference, and analysis of these models can all be performed with great paucity of code, 

reducing opportunities for errors to arise, and greatly enhancing our ability to describe and 

predict complex biological processes with mathematical models.
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Figure 1: 
Julia is a tool for biologists to discover new science. (a) In the biological sciences, the 

most obvious alternative to the programming language Julia is R, Python or Matlab. Here, 

we contrast the two potential pathways to new biology with a mountaineering analogy: 

The top of the mountain represents “New Biology”[10, 11]. There are two potential base 

camps for the ascent: Base camp 1 (left, red) is “R/Python/Matlab”. Base camp 2 (right, 

green) is “Julia”. To get to the top, the mountaineer – representing a researcher – needs to 

overcome certain obstacles such as a glacier and a chasm. They represent research hurdles 

such as large and diverse datasets or complex models. Starting at the “Julia” base camp, 

the mountaineer has access to efficient and effective tools such as a bridge over the glacier 

and a rocket to simple fly over the chasm. They represent Julia’s top three language design 

Roesch et al. Page 19

Nat Methods. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



features: Abstraction, speed and metaprogramming. With these tools, the journey to the top 

of the mountain becomes much easier for the excursionist. Julia allows biologists to not be 

hold back by problems discussed in (b) and (c). (b) The “Two-language problem” refers to 

having separate languages for algorithm development and prototyping (such as R or Python), 

and production-runs, such as (C/C++ or Fortran), respectively. Julia was designed to be 

good at both tasks, which can reduce programming efforts and software complexity. (c) The 

“Expression problem” refers to the effort required to define new (optimised) data types and 

functions that can be defined by users and added to existing external code bases.
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Figure 2: 
Julia’s speed feature. (a) Examples relevant to biology. Left: Comparison of time to calculate 

the mutual information for all possible pairs of genes of a single cell dataset [16]. Right: 

Benchmark of ODE solvers implemented in Julia and Fortran, C, MATLAB, Python, and 

R for the Lotka-Volterra model (More systems in [23]). (b) Illustration of speed-up of 

vectorisable code (as in (a)). (c) Intuition for speed up of non-vectorizable code (as in b).
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Figure 3: 
Interfaces in Julia: Switching between different pipettors without recreating whole 

experimental protocols is possible for experimental scientists because a common 

understanding, or interface, exists that specifies tasks which pipettors should be able to 

perform in a similar manner. In Julia, we can define interfaces such as the AbstractArray 

class where we specify rules any array-like computational object has to follow. Interfaces 

allow us to share methods developed for abstract types to custom types. By building our 

algorithms around interfaces we can make use, reuse, and refinement of code easier.

Roesch et al. Page 22

Nat Methods. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
An overview of Julia’s package ecosystem presented by topic groups.
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Figure 5: 
The abstraction feature in Julia. (a) We show a structural bioinformatics pipeline which 

combines multiple Julia packages seamlessly together. This gives developers and users the 

flexibility is that the effort and time to generate new models and complex workflows is 

significantly reduced and collaboration is made easier. (b) From the pipeline, we highlight 

the step “Graph of contacting residues” as an example of Julia’s solution to the first part of 

the expression problem (Illustration of expression problem in Figure 1) which is the easy 

code base extension to new functions. (c) The second highlighted step from the pipeline is 

“Plot distance map” where a new plot recipe is defined for a domain specific type, i.e. we 

demonstrate the extension of an existing code base to new types. Along this, we show the 

Julia code for defining a new type and and a new plot recipe: As an example, this is the 

structure MyBioStruc which captures results of prediction algorithms of amino acid (AA) 

sequences based on data. It is defined with the fields predicted_AA a vector of characters 

which are the predicted AAs, certainty_AA a vector of numbers, quantifying the certainty 

for each predicted AA, the string study naming the respective data study the prediction 

is based on and the string alg naming the respective prediction algorithm. With the macro 

@recipe we can specify how the function plot(…) should work for our newly specified 

example type. Here, we define that this should create a line plot of the predicted amino 

acids with the mean of the certainty of the prediction as opacity of the line specified by the 
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Plots.jl package as α More details on the selected example code is in this referenced 

online materialIV.

IV https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/examples/Abstraction/Figure_code 
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Figure 6: 
Julia’s Metaprogramming feature. (a) Illustration of metaprogramming and an analogy to 

the central dogma of molecular biology. Similar to how a transcription factor, initially 

encoded in DNA, can control gene expression and modify RNA levels of an organism, 

with metaprogramming we can create code with feedback effect. (b) Example application 

of metagprogramming in biology. Metaprogramming is especially helpful for large scale, 

automated model development. We can write code that adapts the model definition 

automatically e.g. in light of new data or based on how they interact with other sub-

models (V1, …, Vn: the different versions of the model definition). For example when 

constructing models of cellular systems we can combined structurally similar models for the 

different MAP kinases present in human cells, and build compartmental models by explicitly 

modelling the kinase dynamics in the nucleus and the cytosol [50]. (c) Example workflow 

of model construction. The adaption process of models could for example start with a 
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theoretical inferred mathematical description, captured via the @reaction_network syntax 

of the Julia package Catalyst.jl. Subsequently, given experimental data, we evaluate an 

objective function of the current model capturing the descriptiveness of the model in light 

of the data. Depending on the outcome of this evaluation, the model will be updated, e.g. 

via adding new reactions to the model via the macro @add_reactions. More details on the 

selected example code is in the referenced online materialV.

V https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/tree/main/examples/Metaprogramming/Figure_code 
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Figure 7: 
Julia’s Abstraction feature and performance gains in image processing: We 

demonstrate (a) contrasting (i) and segmenting (ii) images as examples for 

high performance vectorizable (i) and non-vectorizable (ii) image manipulations, 

respectively. Performance comparison with Python is provided (ms: millisecond, v: 

voxel, n: n x n patch of array).(b) Example of robustness in image processing 

via a 2-step image processing pipeline on contrasting and resizing of images 

in Julia and Python. For more details see the README.md document under 

https://github.com/ElisabethRoesch/Perspective_Julia_for_Biologists/blob/main/examples/

Abstraction/Supplementary_Example_Flexibility_and_performance_in_image_processing/

images_lazy.
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