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Abstract: Recent studies have revealed that soluble amyloid-β oligomers (AβOs) play a pathogenetic
role in Alzheimer’s disease (AD). Indeed, AβOs induce neurotoxic and synaptotoxic effects and
are also critically involved in neuroinflammation. Oxidative stress appears to be a crucial event
underlying these pathological effects of AβOs. From a therapeutic standpoint, new drugs for AD
designed to remove AβOs or inhibit the formation of AβOs are currently being developed. However,
it is also worth considering strategies for preventing AβO toxicity itself. In particular, small molecules
with AβO toxicity-reducing activity have potential as drug candidates. Among such small molecules,
those that can enhance Nrf2 and/or PPARγ activity can effectively inhibit AβO toxicity. In this review,
I summarize studies on the small molecules that counteract AβO toxicity and are capable of activating
Nrf2 and/or PPARγ. I also discuss how these interrelated pathways are involved in the mechanisms
by which these small molecules prevent AβO-induced neurotoxicity and neuroinflammation. I
propose that AβO toxicity-reducing therapy, designated ATR-T, could be a beneficial, complementary
strategy for the prevention and treatment of AD.

Keywords: Alzheimer’s disease; amyloid beta; neuroinflammation; Nrf2; oligomer; PPARγ; small
molecule; toxicity

1. Introduction

Alzheimer’s disease (AD) is considered a critical health problem in an aging soci-
ety. The neuropathology of AD is characterized by the presence of senile plaques and
neurofibrillary tangles. Senile plaques are extracellular deposits principally composed
of amyloid-β (Aβ) peptides, and neurofibrillary tangles are intraneuronal aggregations
mainly composed of abnormally phosphorylated tau protein. Aβ is generated by two-step
proteolytic processing of amyloid precursor protein (APP) by β-secretase, BACE1 (β-site
APP cleaving enzyme 1), and γ-secretase complexes, comprising presenilin1 (PS1) or 2 (PS2)
and nicastrin, Aph1, and Pen2. Aβ40 and Aβ42 are major Aβ species, with the latter being
more aggregable and pathogenic [1,2]. Aβ is cleared from the brain through various mech-
anisms, including proteolytic degradation, clearance by glial cells, transport across the
blood–brain barrier (BBB), perivascular drainage, and clearance through the glymphatic
system. Although Aβ production is known to be affected in familial AD, an imbalance
between the production and clearance of Aβ appears to be involved in sporadic AD [3].

Recent AD research has established that significant Aβ accumulation has already
occurred at the prodromal stage of AD, known as mild cognitive impairment (MCI) due
to AD, followed by the spreading of abnormal tau protein to parietotemporal areas in
the cerebral cortices [4,5]. Further, recent evidence indicates a significant contribution
of neuroinflammation to AD pathogenesis. For example, genetic studies have identified
gene variants of the microglial receptor TREM2 (triggering receptor expressed on myeloid
cells 2) as risk factors for developing AD [6,7]. The link between Aβ and tau has been
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a matter of intense investigation. One important and plausible theory is that soluble
assemblies of Aβ called Aβ oligomers (AβOs) are potent toxic species that not only induce
tau abnormalities but also promote synaptic disturbances and neuroinflammation [8–11].
It has been accepted that AβOs exert much greater toxicity than Aβfibrils [12]. AβOs exist
in AD brain tissues [8,9], are tightly linked to Aβ plaque pathology in AD brains [13],
and may be sequestered into senile plaques [14]. Because the Aβoligomer hypothesis
offers a reasonable explanation for the pathophysiological alterations in AD brains, it
has led to the design of new therapeutic approaches that target AβOs. Such approaches
include eliminating AβOs through immunological methods and inhibiting the formation
of AβOs by modulating Aβ assembly [9,15,16]. In addition to these approaches, reducing
the intrinsic toxicity of AβOs using certain small molecules is also a potential strategy.
Indeed, a number of recent preclinical studies have suggested the viability of this latter
approach [17]. Since Aβ accumulation has reached a substantial level by the prodromal
stage of AD, it is particularly important to start therapeutic intervention as early as possible
to prevent the clinical progression to AD dementia.

In a previous review, I discussed potential mechanisms underlying the action of AβO
neurotoxicity-reducing small molecules [17]. Notably, almost all of these small molecules
possess antioxidative properties, and most can stimulate the activity of Nrf2 (nuclear factor
erythroid 2-related factor 2) [18], which is essential in antioxidative defense mechanisms.
Furthermore, some of these molecules are capable of activating peroxisome proliferator-
activated receptor-gamma (PPARγ), which has a wide spectrum of functions that include
antioxidative defense [19,20]. Indeed, these two pathways are interrelated, as described
below. In the present mini-review, I first briefly discuss the significance of AβOs in AD
pathogenesis and the characteristics of the small molecules that can reduce AβO toxicity.
Then, I specifically review those small molecules that can activate Nrf2 and/or PPARγ and
discuss their characteristic properties as well as their potential as drug candidates for the
prevention of AD.

2. AβOs Play a Key Role in AD Pathogenesis

It is well recognized that AβOs play significant roles in the pathogenetic mechanisms
of AD, reflecting their ability to elicit neurotoxicity, synaptotoxicity, and neuroinflammation
and the fact that these effects can account for the neuropathological features of AD [8,9].
AβOs are mixtures of heterogeneous species, ranging from small to large; however, which
species are the most toxic remains to be elucidated [9,11]. Despite these uncertainties,
targeting AβOs is a reasonable strategy for developing therapeutic drugs for AD, as
mentioned above.

The first point to emphasize regarding mechanistic aspects of AβO toxicity is that the
neurotoxicity of AβOs involves synaptic degeneration and tau abnormalities. Although the
mechanisms underlying these effects have not yet been clarified, the most plausible mech-
anism is that AβOs bind cell-surface receptors, such as NMDA (N-methyl-D-aspartate)
receptors and PrPc (cellular prion protein), inducing various downstream pathological
events, including oxidative stress, Ca2+ dyshomeostasis, mitochondrial dysfunction, apop-
tosis, synaptic disruption, and tau abnormalities [9,21,22]. Among these events, oxidative
stress appears to have a central role, given that oxidative stress is a pathological feature of
the earlier stages of AD, including MCI due to AD [23,24]. The mechanisms by which AβOs
induce oxidative stress remain to be elucidated, but many studies have shown that exposure
to AβOs causes the production of reactive oxygen species (ROS), most likely as a result of
mitochondrial dysfunction [25]. AβOs induce Ca2+ dyshomeostasis not only in the cytosol
but also in mitochondria, and an increase in Ca2+ influx into mitochondria via the mito-
chondrial Ca2+ unipolar complex may lead to mitochondrial dysfunction [26,27]. AβOs
also disrupt mitochondrial dynamics (e.g., fusion and fission) and energy metabolism [25].
Furthermore, cytochrome C release from mitochondria promotes apoptosis. It is also well
established that AβOs induce tau abnormalities that can be at least partly explained by
activation of tau kinases—a process in which oxidative stress plays a significant role [28].
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It is additionally noteworthy that AβOs induce neuronal insulin resistance, which may
underlie the impaired insulin signaling in AD [9,29,30].

The second point worth stressing is that AβOs trigger neuroinflammation through
the activation of glial cells, especially microglia. The binding of AβOs to microglia, which
appears to be mediated by the receptors CD36, TLR4 (Toll-like receptor 4), and TLR6,
results in their activation and consequent production of proinflammatory cytokines and
chemokines [6,7,31,32]. Oxidative stress also appears to mediate the proinflammatory
action of AβOs, given that AβOs induce ROS in microglia through activation of NADPH
oxidase (NOX) and promote mitochondrial damage, as well as the fact that ROS can
activate caspase 1 and NLRP3 (NOD-like receptor protein 3), the latter of which forms
an important component of the innate immune response to pathogens called the inflam-
masome [33]. Heneka and co-workers also demonstrated that AβOs activate NLRP3
inflammasomes in microglia [34]. In addition, a recent study found that conditioned
medium from AβO-stimulated microglia elicits necroptosis in neurons, further supporting
the important pathological role of microglia in AD [35].

Notably, recent studies have revealed that AβOs are closely associated with microglia
through TREM2, a cell-surface receptor on microglia that engages in innate immune re-
sponses, including phagocytosis, chemotaxis, and transcriptional changes [6,7]. Recent
studies have shown that TREM2 is a receptor of AβOs, demonstrating that binding of
AβOs to TREM2 activates TREM2-dependent signaling pathways and modulates microglial
responses such as migration and phagocytosis. Interestingly, AD-associated mutations in
TREM2 reduce TREM2 binding to AβOs [36,37]. The binding of AβOs to microglia also
induces the shedding of the TREM2 ectodomain. This leads to the production of soluble
TREM2 (sTREM2), which has recently been shown to bind AβOs and inhibit Aβ oligomer-
ization and fibrillization, blocking Aβ-induced neurotoxicity. These effects are lessened
with an AD-risk variant of sTREM2 [38,39]. TREM2 is suggested to play a protective role
by enabling microglia to surround Aβ plaques and alter their structure, thereby limiting
neuritic damage [40,41].

Taken together, these observations indicate that AβOs and microglia are closely asso-
ciated with each other and that this association is profoundly involved in AD pathology.
Accordingly, modulating AβO-induced microglial activation has become an emerging
strategy in the development of AD therapeutics.

Besides neurotoxicity and neuroinflammation, Aβ42 or Aβ42 oligomers were reported
to disrupt the BBB, which may be mediated by the upregulation of RAGE [42,43]. RAGE is
known to mediate Aβinflux across the BBB and is also implicated in Aβ cytotoxicity [44].

3. Small Molecules with AβO Toxicity-Reducing Activity

Among the small molecules capable of reducing AβO-mediated toxicity highlighted
in my previous review were the natural compounds tyrosol, honokiol, and rhynchophylline
(Rhy). Notably, almost all of these molecules have potent antioxidative activity, underscor-
ing the central role of oxidative stress in the pathophysiological cascade of AβO toxicity, as
described above [17]. In reviewing the signaling pathways involved in the AβO toxicity-
reducing activity of these molecules, it became apparent that most of these molecules have
the capacity to activate the Nrf2 pathway and initiate antioxidant defense responses. Nrf2
is a transcription factor that is well established as a key transcriptional regulator of cellular
responses to oxidative stress [18]. Phosphoinositide 3-kinase (PI3K)/Akt and glycogen
synthase kinase 3-beta (GSK3β) pathways appear to be relevant to the activation of Nrf2 by
some of these molecules. In addition, some of these molecules are also able to activate the
PPARγ pathway or modulate other pathways, such as SIRT3 (sirtuin 3), NF-κB (nuclear
factor kappaB), and c-Jun N-terminal kinase 3 (JNK3)/p38 pathways [17].

PPARγ is a member of the PPAR family of ligand-activated nuclear receptors that acts
as a transcription factor to regulate various functions, including mitochondrial function and
antioxidant defense [19,20]. Importantly, Nrf2 and PPARγ are interrelated [45]. Specifically,
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an Nrf2 deficiency leads to decreased expression of PPARγ [46], and conversely, Nrf2
activation enhances PPARγ expression [47]. Thus, Nrf2 can regulate PPARγ.

Notably, some small molecules can activate both Nrf2 and PPARγ pathways, a feature
that likely underlies their significant protective action against AβO toxicity [17].

4. Nrf2, AβO Toxicity, and AD Pathology

The Nrf2 system is a fundamental defense system against oxidative stress that is
regulated by both Keap1-dependent and Keap1-independent mechanisms [18,48]. In the
Keap1-dependent mechanism, activation of Keap1, a cytoplasmic inhibitor of Nrf2, by
certain stimuli causes Nrf2 release and translocation to the nucleus, where it binds to
antioxidant response elements (ARE) to induce the expression of antioxidant and metabolic
genes. In the Keap1-independent mechanism, Nrf2 is regulated by the signaling mediator,
GSK3β. GSK3β can phosphorylate Nrf2, leading to the recognition of phospho-Nrf2 by
an E3 ligase receptor and the F-box protein β-TrCP, followed by its proteosome-mediated
degradation [49]. GSK3β also can phosphorylate Fyn, which in turn regulates Nrf2 via
phosphorylation [50].

Intriguingly, Nrf2 appears to be dysregulated in the AD brain, as evidenced by a re-
duction in the levels of nuclear Nrf2 in cortical and hippocampal tissues of AD patients [51].
Another study by Bahn et al. found that Nrf2 expression is reduced in AD brain samples,
which may be related to Aβ accumulation [52]. Furthermore, studies using animal models
have suggested a direct association between Nrf2 and AD pathology. For example, AD
model mice lacking Nrf2 show an increase in astrocytes and microglia and increased lev-
els of interferon (IFN)-γ and exhibit worsened cognitive deficits [53,54]. Bahn et al. [52]
showed that Nrf2 can also negatively regulate BACE1 expression through binding to ARE
sites in the BACE1 promoter. These researchers showed that an Nrf2 deficiency increases
BACE1 expression and exacerbates Aβ plaque loads and cognitive deficits in 5XFAD mice.

Conversely, Uruno et al. [55] demonstrated that induction of Nrf2 in APP knock-in AD
model mice through a genetic reduction in Keap1 suppresses oxidative stress and activation
of microglia and astrocytes. These mice also show improvement in cognitive performance.
These authors further found that intraperitoneal administration of the natural compound
6-MSITC, an Nrf2 inducer, ameliorated cognitive impairment in AD model mice.

An interesting Nrf2-activating compound is carnosic acid (CA), a component of rose-
mary and sage. Lipton and coworkers showed that CA, an electrophilic drug, is activated
by ROS [56]. Upon activation, it reacts with a thiol group on Keap1, resulting in Nrf2
activation. CA was further shown to reduce AβO-induced spine loss in primary cortical
neurons, and when intranasally administered for 3 months, it rescued dendritic and synap-
tic loss, astrocytosis, and Aβ accumulation in hAPP-J20 mice. CA treatment also mitigated
cognitive impairment in these mice [57]. Thus, CA appears to be a promising candidate
molecule for counteracting AβO toxicity.

Honokiol, a phenolic compound found in Magnolia officinalis, has been shown by
several studies to prevent AβO toxicity through its antioxidative action, as summarized
previously [58,59]. A recent study by Hou et al. [60] revealed that honokiol alleviates oxida-
tive stress-induced neurotoxicity in PC12 cells through Nrf2 activation. They postulated
that honokiol forms a quinone intermediate upon oxidation that is reactive and modifies
sulfhydryl groups in Keap1, leading to the dissociation of Keap1 from Nrf2.

Other small molecules that can reduce AβO toxicity and activate Nrf2 include Rhy, caf-
feic acid phenyl ester (CAPE), nicotinamide mononucleotide (NMN), tyrosol/hydroxytyrosol,
and ferulic acid [17].

Jiang et al. [61] reported that Rhy, a biological component of Uncaria rhynchophylla,
protects against AβO-induced toxicity in AβO-injection model mice through activation
of Nrf2. Rhy administration was also shown to be capable of penetrating the BBB and
ameliorating Aβ pathology and neuroinflammation in APP/PS1 mice [62]. The protective
action of Rhy against AβOs may also be mediated by the antagonism of NMDA receptors
containing GluN2B subunits [63].
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CAPE, an active component of propolis, has a broad spectrum of pharmacological
activities, including antioxidant and anti-inflammatory properties [64]. CAPE administra-
tion was shown to prevent oxidative stress and neuroinflammation and reverse cognitive
impairment in AβO-injected mice—effects that appeared to be mediated by Nrf2 activa-
tion [65].

NMN is a precursor of NAD+ that has neuroprotective effects against various stimuli,
including oxidative stress [66]. NMN prevents AβO-induced neuronal death and inhibition
of long-term potentiation (LTP) in organotypic slices; it also decreases Aβ accumulation
and inflammatory responses in AD model mice. In an intracerebral hemorrhage mouse
model, NMN treatment was found to significantly reduce brain edema, brain cell death,
oxidative stress, and neuroinflammation, all of which were apparently mediated by Nrf2
activation [67].

Tyrosol and hydroxytyrosol, antioxidative phenols found in olives [68], and ferulic
acid, an antioxidant found in plant cell walls, exert protective effects against AβOs in vitro
and in vivo [69–73] and also have been shown to enhance the Nrf2 pathway in other
models [74–76].

Recent studies have reported a functional connection between Nrf2 and macroau-
tophagy, demonstrating, for example, that Nrf2 levels are regulated by the autophagy-
related adaptor protein p62 [77]. In this regard, it is of interest that Nrf2 activation may
also reduce phosphorylated tau protein via the autophagy-lysosome pathway through the
induction of the autophagy adaptor protein NDP52 [78]. Rojo et al. [79] reported that an
Nrf2 deficiency increased insoluble mutant tau levels in double transgenic mice express-
ing APP (V717I) and tau (P301L). Further studies are required to elucidate whether Nrf2
activation can reduce phosphorylated tau in the brains of tauopathy mice.

5. PPARγ, AβO Toxicity, and AD Pathology

As noted above, PPARγ acts as a transcription factor that regulates genes implicated in
various biological processes, including survival, glucose metabolism, oxidative stress, and
neuroinflammation. Accordingly, PPARγ confers protection under pathological conditions,
as reviewed elsewhere [19,20]. PPARγ is expressed in both neurons and glial cells in
the brain, and although PPARγ signaling targets multiple processes, its modulation of
mitochondrial function and neuroinflammation is particularly important in relation to AD.
In this context, PPARγ enhances the expression of PGC1-α (PPARγ coactivator), which
plays important roles in mitochondrial biogenesis and cellular energy metabolism [20].
PGC1-α is expressed in the brain, and its expression is reported to be decreased in brain
tissues of AD patients [80]. Consistent with this relationship, stimulation of PPARγ is
reported to promote mitochondrial biogenesis [20,81]. It is also suggested that Nrf2 is
controlled by PGC1-α [81].

A number of studies have also shown that PPARγ negatively modulates neuroinflam-
mation [82]. It is of particular significance that PPARγ negatively regulates NF-κB activity
through trans-repression mechanisms. One such mechanism that has been proposed is that
PPARγ interacts with NFκB p65/p50 to repress its transcriptional activity [83]. PPARγ may
also act as a ubiquitin ligase to promote the degradation of p65 [84].

Type 2 diabetes is a risk factor for AD, and systemic and brain insulin resistance appear
to be linked. Because amyloidogenesis and insulin resistance are intimately associated with
each other, brain insulin resistance is suggested to be critically involved in AD pathophysi-
ology [29]. In this regard, PPARγ is an important factor that can possibly ameliorate the
defective insulin signaling in AD.

A number of PPARγ activators have been reported to prevent AβO-induced toxicity
and/or neuroinflammation in various models. Thiazolidinediones (TZDs), the most popu-
lar PPARγ agonists, are used clinically in the treatment of diabetes mellitus. TZDs such
as pioglitazone (Pio) and rosiglitazone (Rosi) have been shown to have beneficial effects
in various in vitro and in vivo AD models. In particular, some studies have found that
TZDs can prevent Aβ toxicity, including AβO toxicity. For example, Inestrosa et al. [85]
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reported that Rosi or troglitazone prevented neuronal degeneration and increases in GSK3β
activity and cytoplasmic Ca2+ induced by Aβ40. Xu et al. [86] showed that Rosi prevented
AβO-induced synaptic disturbances in cultured hippocampal neurons and also attenuated
AβO-induced LTP deficits in hippocampal slices. These researchers further suggested that
the protective effects of Rosi are attributable to an increase in mitochondrial number. In
another study by Xu et al. [87], Rosi was found to prevent memory deficits in mice induced
by AβOs. Interestingly, they showed that Rosi inhibited microglia activation as well as
increases in IL-1β and TNFα. In addition, Landreth and co-workers reported that Pio
stimulated Aβ degradation by microglia and astrocytes and that treatment with Pio for
only 9 days suppressed neuroinflammatory responses, enhanced microglial phagocytosis of
Aβ, and reversed cognitive deficits in APP/PS1 mice [88]. Heneka and co-workers showed
that Pio and DSP-8658, a PPARα/γ agonist, specifically enhanced Aβ phagocytosis in
primary microglia, an effect that was mediated by upregulation of the pattern-recognition
receptor, CD36. They also demonstrated that oral administration of DSP-8658 for 3 months
not only induced Aβ phagocytosis and recruitment of microglia to Aβ plaques in APP/PS1
mice but also reduced Aβ burden and improved spatial memory performance in these
mice [89].

Du et al. [90] showed that Rosi increased mRNA and protein levels of insulin-degrading
enzyme (IDE), an Aβ-degrading protease, in neurons in a PPARγ-dependent manner. Fur-
ther, PPARγ was shown to contribute to the upregulation of IDE by insulin receptor
signaling. Quan et al. [91] also reported that Pio treatment of neurons treated with Aβ42
increased the expression of IDE mRNA and protein. Thus, it is likely that PPARγ activation
can promote Aβ degradation through the transcriptional regulation of IDE.

Another recent study showed that treatment with a low dose of Pio for 7 weeks in-
creased LRP1 expression and reduced Aβ40 levels in the hippocampus of SAMP8 mice [92].
LRP1 has a key role in clearing Aβ via transport across the BBB [93]. In this regard, it is
noteworthy that low doses of Rosi upregulated mRNA and protein levels of LRP1 and
increase Aβ uptake in endothelial cells [94]. Consistent with this, Wang et al. [95] observed
that treatment with Rosi or Pio induced LRP1 expression and suppressed expression of
RAGE in brain microvessels of ob/ob mice. It is also notable that Pio can activate Nrf2 in
some neuronal models [96,97]. A number of clinical trials have tested TZDs, such as Pio
and Rosi, for AD, but they failed to show clinical benefits [98].

In a further example, Wang et al. [99] reported that telmisartan, an angiotensin II re-
ceptor antagonist and PPARγ activator used as an antihypertensive medication, specifically
inhibited neuroinflammation induced by AβO in microglial BV2 cells. This effect was likely
mediated by PPARγ/PTEN pathways.

Curcumin, a natural constituent of turmeric, is known to exert neuroprotective ef-
fects in various models, including AD models, and to inhibit Aβ aggregation [100]. Liu
et al. [101] used neuronal and glial mixed cultures and APP/PS1 transgenic mice to show
that curcumin protected cholinergic neurons from Aβ toxicity and attenuated neuroinflam-
matory responses through NF-κB and PPARγ pathways. Zheng et al. [102] also showed that
oral administration of curcumin reduced BACE1 levels and Aβdeposition and improved
cognitive impairment in 5XFAD mice. Curcumin may also attenuate AβO toxicity through
modulation of Aβ aggregation [103]. A recent clinical study indicated that oral ingestion
of a bioavailable form of curcumin led to significant memory and attention benefits in
non-demented adult subjects [104].

Small molecules that are capable of reducing AβO toxicity and activating both Nrf2
and PPARγ are exemplified by astragaloside IV (ASIV) and cyanidin 3-glucoside (C3G).
ASIV was reported to act as a PPARγ agonist and to exert antioxidative and neuroprotective
effects through Nrf2 activation [105,106]. Wang et al. [106] showed that ASIV prevented
AβO-induced death of neuronal HT22 cells. They also demonstrated that oral administra-
tion of ASIV prevented neuronal loss and apoptosis and ameliorated cognitive impairment
in a PPARγ-dependent manner in AβO-injected mice. In a similar mouse model, Chen
et al. [107] showed that ASIV ameliorated microglial activation and cognitive impairment.
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ASIV was also shown to exert inhibitory effects on BACE1 expression, leading to reductions
in Aβ levels and Aβ plaques in APP/PS1 mice [108]. Notable in this context, BACE1 gene
expression was previously shown to be negatively regulated by PPARγ activation [109].

Studies have also tested the efficacy of C3G, a dietary anthocyanin that has been
reported to act as an antioxidant and anti-inflammatory agent, in mouse models of AD.
Treatment with C3G was shown to protect SH-SY5Y cells from AβO or Aβ25–35 neurotoxi-
city in association with the upregulation of PPARγ [110]. Notably, oral administration of
C3G alleviated cognitive deficits in APP/PS1 mice [111]. Sanjay et al. [112] reported that
C3G upregulated PPARγ expression and reduced inflammatory cytokines and ROS, shifted
the M1 phenotype of microglia to M2, and enhanced phagocytosis of Aβ42 in APP/PS1
mice. C3G and anthocyanins were also shown to activate Nrf2 in other models [113,114].

Honokiol has stimulatory effects not only on Nrf2 but also on PPARγ. Wang et al.
found that treatment with honokiol downregulated BACE1 and reduced Aβ deposition in
APP/PS1 mice; it also suppressed neuroinflammation and improved cognitive impairment
in these mice. Importantly, these ameliorative effects were blocked by GW9662, a PPARγ
antagonist [115].

6. Future Perspectives

It has been well established that AβOs are critically involved in the early pathogenesis
of AD. However, unanswered questions concerning the Aβ oligomer hypothesis remain.
For example, which receptors of AβOs are most critical? Which AβO species are most
toxic? Additionally, how do AβOs affect tau or microglia? Despite these uncertainties, it
is reasonable to target AβOs for the treatment and prevention of AD. In fact, a recently
developed Aβ antibody (BAN2401) specific for Aβ protofibrils was reported to significantly
delay the progression of cognitive impairment in early AD patients, including those with
MCI due to AD [116,117]. This antibody exhibits a strong binding preference for Aβ

protofibrils [116], which not only exert toxicity on neurons but also induce activation of
microglia [118,119]. The success of BAN2401 thus appears to reflect its specificity for Aβ

protofibrils. Smaller AβOs may also be important, and antibodies targeting them, such
as ACU193 [120], remain to be tested in clinical trials. However, these antibodies have
disadvantages, such as poor BBB penetration and liability for the development of vasogenic
edema [121].

In addition to such immunotherapeutic approaches, small molecule approaches for
reducing the toxicity of AβOs are also therapeutically beneficial [17]. In the previous and
present reviews of small molecules with AβO toxicity-reducing activity, I particularly em-
phasized the important roles of Nrf2 and PPARγ pathways in the mechanisms underlying
the reduction in AβO toxicity. These Nrf2- and/or PPARγ-activating small molecules
(Table 1) have several advantages. First, they are mostly of natural origin and can be used
safely without serious side effects. Such a safety profile is highly advantageous in case
they are used for a prophylactic purpose. Second, some of them can be administered orally
and are capable of penetrating the BBB. Third, they can be used in combination with other
drugs, including immunological agents, to produce a synergistic effect. Indeed, in light
of the complex pathophysiology of AD, combination therapy is considered to be more
feasible than monotherapy. Fourth, most of these small molecules have relatively simple
chemical structures; thus, their pharmacological manufacture is likely straightforward.
Finally, these molecules can act on both neuronal and glial cells to ameliorate neuronal
dysfunction and neuroinflammation (Figure 1). Despite these advantages, clinical trials
evaluating the efficacy of small molecules in reducing the toxicity of AβOs have been
limited to TZDs. In their review of clinical trials of TZDs, Saunders et al. [98] noted that
most of these studies were insufficiently powered or were not conducted long enough to
detect changes with statistical confidence. Thus, the failure of TZDs in clinical trials is not a
definitive indictment of their potential prophylactic effects.



Cells 2023, 12, 1386 8 of 14

Table 1. Small molecules that reduce AβO toxicity and activate Nrf2 and/or PPARγ.

Compound MW Nrf2
Activation

PPARγ

Activation

Refs

AD Models Other Models

Carnosic acid 332 + [57] [56]
Honokiol 266 + + [58,59,115] [60]

Astragaloside IV 785 + + [106–108] [105]
C3G 450 + + [110–112] [113]

Rhynchophilline 384 + [61,62]
CAPE 284 + [65]
NMN 334 + [67]

Tyrosol/H-Tyr 138/154 + [69–71] [74,75]
Ferulic acid 194 + [72,73] [76]

Pio/Rosi 356/357 + + [85–89] [96,97]
Telmisartan 515 + [99]
Curcumin 368 + [101–103]

C3G: Cyanidin 3-glucoside; CAPE: Caffeic acid phenyl ester; H-Tyr: Hydroxytyrosol; NMN: Nicotinamide
mononucleotide: MW: molecular weight; Pio: Pioglitazone; Rosi: Rosiglitazone.
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Carnosic acid 332 +  [57] [56] 
Honokiol 266 + + [58,59,115] [60] 

Astragaloside IV 785 + + [106–108] [105] 
C3G 450 + + [110–112] [113] 

Rhynchophilline 284 +    
CAPE  

384 + 
 

[61,62] 
 284 + [65] 

Figure 1. Important roles of Nrf2 and PPARγ pathways in the AβO toxicity-reducing effects of small
molecules. AβOs act on both neurons and microglia, inducing neurodegeneration and neuroinflam-
mation, respectively. Activated microglia produce various harmful factors that further aggravate
neurodegeneration. AβO toxicity-reducing small molecules activate Nrf2 and/or PPARγ pathways,
which can rescue both neurons and microglia through antioxidative and other mechanisms. These
small molecules will be beneficial in preventing the pathological progression of AD. Mito dysfunction:
Mitochondrial dysfunction.
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7. Conclusions

I propose that AβO toxicity-reducing therapy (ATR-T) is a potentially beneficial
strategy for the prevention of AD. Further preclinical and clinical studies are warranted to
clarify whether ATR-T is effective in preventing the clinical progression from the MCI stage
of AD to full manifestations of AD pathology. It will be essential to accurately diagnose
patients with MCI due to AD using appropriate biomarkers and evaluate their clinical
course for a sufficiently long period. Such clinical trials will hopefully verify the feasibility
of the ATR-T concept in the prevention of AD.
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