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Abstract: Knowledge about the anatomical structures of the left heart, specifically the atrium (LA)
and ventricle (i.e., endocardium—Vendo—and epicardium—LVepi) is essential for the evaluation
of cardiac functionality. Manual segmentation of cardiac structures from echocardiography is the
baseline reference, but results are user-dependent and time-consuming. With the aim of supporting
clinical practice, this paper presents a new deep-learning (DL)-based tool for segmenting anatomical
structures of the left heart from echocardiographic images. Specifically, it was designed as a combi-
nation of two convolutional neural networks, the YOLOv7 algorithm and a U-Net, and it aims to
automatically segment an echocardiographic image into LVendo, LVepi and LA. The DL-based tool
was trained and tested on the Cardiac Acquisitions for Multi-Structure Ultrasound Segmentation
(CAMUS) dataset of the University Hospital of St. Etienne, which consists of echocardiographic
images from 450 patients. For each patient, apical two- and four-chamber views at end-systole and
end-diastole were acquired and annotated by clinicians. Globally, our DL-based tool was able to
segment LVendo, LVepi and LA, providing Dice similarity coefficients equal to 92.63%, 85.59%, and
87.57%, respectively. In conclusion, the presented DL-based tool proved to be reliable in automati-
cally segmenting the anatomical structures of the left heart and supporting the cardiological clinical
practice.

Keywords: left heart segmentation; echocardiography; YOLOv7; deep learning; convolutional neural
networks; U-Net

1. Introduction

Echocardiography is a non-invasive medical technique able to acquire images of the
heart; it can be used to evaluate cardiac structure and function. Echocardiographic images
are frames of a video usually acquired during all phases of the cardiac cycle. The frames
with the highest information are the end-systolic (ES) and the end-diastolic (ED) frames. The
echocardiographic exam is still manually performed by clinicians who optimize the image
acquisition, detect the cardiac chambers and segment the anatomical structures. In practice,
they move an echocardiographic probe on the patient’s chest to optimize visualization,
and consequently, variations in imaging accuracy arise. When the quality of the image is
sufficiently strong, clinicians move a pointer on the echocardiographic screen and manually
segment and measure dimensions of cardiac anatomical structures. Thus, echocardiography
is still user-dependent and subjective [1]. In many clinical applications, echocardiographic
image segmentation is a crucial step [2]. For example, it allows the measurement of the
myocardial thickness in the case of myocardial ischemia [3], the estimation of valve area in
the case of ventricular stenosis [4] or the quantification of ventricular volume during the
cardiac cycle to assess the ejection fraction in the case of heart failure [5].

To reduce the subjectiveness of echocardiography and to support clinicians in cardiac
structure segmentation, the use of automatic algorithms as decision support systems is
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desirable. However, getting reliable ones remains challenging. Indeed, ultrasound images
are usually characterized by a low signal-to-noise ratio [6], location and dimensions of
anatomical structures may act as confounders due to intrasubject variability, and the
application of conventional image processing methods (e.g., edge detection and shape
models) may face many technical issues [7], such as the inference of physical properties
from pixel intensity. Moreover, an echocardiography test is usually composed of a sequence
of images, frames of a video, that represent all phases of a cardiac cycle; thus, automatic
processing of ultrasound images should be fast and able to deal with a high amount of
data.

Deep learning (DL) methods may appear as efficient alternatives to conventional
image processing methods [8–10]. In particular, convolutional neural networks (CNNs)
are powerful tools able to automatically learn and extract relevant features from the input
images [11]. Thus, in the context of echocardiography, the DL-method may support
identification and segmentation of the main anatomical structures of the left heart. Thus,
the aim of the present work is to present a new DL-based tool to identify and segment
the most important anatomical structures of the left heart, namely, the left ventricular
endocardium, the left ventricular epicardium and the left atrium.

2. Related Works

In the literature, nine papers [12–20] report the application of DL to segment echocar-
diography images. Leclerc et al. (2019) [13] compared multiple DL methods for left
ventricular endocardium and myocardium segmentation and demonstrated the superiority
of encoder–decoder-based architectures in relation to state-of-the-art non-DL methods.
Moradi et al. (2019) [14] used the U-Net to segment the left ventricle by improving the U-
Net architecture in MFP-U-Net. This new CNN had extra convolution layers for performing
feature maps and improving the left ventricular segmentation performance. Kim et al. [15]
aimed to segment the left ventricular endocardium and left ventricular myocardium. They
designed algorithms considering porcine images and tested it on human images. Despite
the adequate performance, the main limitation was related to the fact that the designed
method was performed upon open-chest pigs, a technique which has better quality than hu-
man echocardiographic images. Girum et al. [16] combined a modified U-Net architecture
with an FCN encoder in order to improve feature extraction and allow the system to learn
from its own mistakes. Liu et al. [12] used a bilateral segmentation network to extract deep
features and a pyramid local-attention algorithm to enhance features within compact and
sparse neighboring contexts. Lei et al. [17] proposed Cardiac-SegNet, a system combining
a U-Net (performing feature extraction), a fully convolutional single-state object detector
(segmenting the image into the region of interest) and a mask head network (performing
segmentation). Alam et al. [18] proposed a two-parallel pipeline for ES frame and ED frame
segmentation by using DeepResU-Net. Distinct from the others, Saeed et al. [19] used
self-supervised algorithms (DeepLapV3, SimCLR, BOYL and U-Net) to segment the left
ventricle in order to overcame the lack of labeled data. Finally, Zhuang et al. (2021) [20]
used an object-detection method, the YOLOv3 algorithm, to detect three points of ventricu-
lar chamber and segment the ventricles. Despite the innovativeness of the methods and
their high performance, all these studies focused on segmenting the ventricle but not all its
anatomical structures.

Comparison with the literature shows that the main innovative aspects of our DL-
based tool are: (1) it integrates the YOLOv7 algorithm as a module for chamber identifi-
cation and a module for chamber segmentation by U-Net, supporting the clinicians in all
phases of the echocardiographic exam, (2) it is able to segment three important anatomical
structures of the left heart simultaneously, and (3) it is implemented in a cloud-computing
environment, allowing the method to be easily-reproducible and machine-independent.
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3. Materials and Methods
3.1. Data

The CAMUS dataset [9] was published in 2019 and included echocardiographic images
acquired from 500 patients at University Hospital of St Etienne in France. The images
were acquired by a Vivid E95 ultrasound scanner (from GE Vingmed Ultrasound) with a
GE M5S probe (General Electrics Healthcare, Chicago, IL, USA). This dataset represents a
clinically realistic scenario, avoiding any prerequisites or data selection. Indeed, images
are characterized by different quality levels (manually classified as bad, medium and high
quality from clinicians) and representing different cardiac statuses (ejection fractions of
these patients vary from 6% to 86%).

For each patient, two sequences were acquired showing the apical four-chamber and
two-chamber views. According to the standard dimension criteria [17] (i.e., frames with the
largest and lowest dimensions were set as ED and ES, respectively), ES and ED frames were
determined. Each image was manually segmented into three regions, which were the left
atrium (LA), left ventricular endocardium (LVendo) and left ventricular epicardium (LVepi).
An annotation procedure was performed based on the opinions of three independent
cardiologists. The masks created by the manual annotation procedure were considered
‘ground truth.’ Finally, 2000 echocardiographic images (500 patients by two chamber view
by two frames) and the relative annotations were collected in the database.

Only 1800 images of 450 patients out of 500 were publicly available and were consid-
ered in this study. Then, this dataset was divided into training set (60%), validation set
(10%) and testing set (30%), including 270 patients (1080 annotated images), 45 patients
(180 annotated images) and 135 patients (540 annotated images), respectively.

3.2. Deep-Learning-Based Tool for Segmentation of Anatomical Structured of the Left Heart

The proposed DL-based tool, represented in Figure 1, is composed of four steps:
(1) the detection of the left heart by YOLOv7, (2) an image crop and resizing, (3) the U-Net
application and (4) the segmentation of anatomical structures of the left heart. Its imple-
mentation was performed on Google Colab Pro, a cloud service allowing the possibility of
selecting high system RAM (32 GB) and GPU hardware acceleration (NVIDIA Tesla P100
with 16 GB of video RAM) settings. Python language was used for all computation, by
considering the Keras library built on TensorFlow backend.

3.2.1. Detection of Anatomical Structures of the Left Heart by YOLOv7

The YOLO algorithm (i.e., You Only Look Once), was introduced in 2016 [21]. The
main idea behind this algorithm was framing detection as a regression problem, so only
one network is able to perform both predictions of the bounding box and its probability.
YOLO works by dividing the input image into a grid of cells, which serves as the basis for
predicting the presence and location of objects in the image; this makes it faster and more
efficient than other object-detection algorithms that perform region-based processing; after
predictions have been made for all cells, YOLO performs non-max suppression to eliminate
redundant detections and return the most likely object detections.

The most recent version of YOLO is version 7. The authors of YOLOv7 implemented
several structural modifications, such as the extended efficient layer aggregation network,
model scaling techniques, re-parameterization planning and auxiliary head coarse-to-fine.
All these modifications allowed YOLOv7 to overcome the previous versions, offering higher
accuracy, faster performance, improved scalability, and greater flexibility for customization.
YOLOv7 is free to use under GNU General Public License v3.0 license [22].

In this paper, we considered the free version of YOLOv7, which was trained on the
training dataset with the aim of localizing the LA and LV from both four-chamber and two-
chamber views. Input and output of YOLOv7 (Figure 1—step 1) are the echocardiographic
images and the coordinates of LA and LV, respectively. The architecture of YOLOv7 was
maintained unchanged; the initial learning rate and the number of epochs were set at
0.01 and 100, respectively.
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Figure 1. Block diagram of the proposed DL-based tool for segmentation of anatomical structures
of the left heart by the use of echocardiographic images. Electrocardiographic images are initially
analyzed by YOLOv7 (step 1) algorithm to identify the coordinates of the left atrium (LA, in blue)
and of the left ventricle (LV, in orange). The coordinates of LA and LV are used to image cropping and
resizing (step 2) and then, processed images are processed by U-Net (step 3). Finally, the obtained
4-class probability matrix is used to obtain the predicted segmented images by segmentation (step 4).

3.2.2. Image Crop and Resizing

Echocardiographic images have to be cropped to accord with the YOLOv7 output and
resized in order to match the settings of the segmentation algorithm. Thus, the electrocar-
diographic images were cropped to accord with the coordinates of LA and LV and resized
to 320 pixels × 320 pixels: if the image was bigger that normalized dimensions, it was
resized by interpolation; otherwise, if the image was lower than normalized dimensions,
it was zero-padded. The inputs of the image crop and resizing are the echocardiographic
images and the coordinates of the region of interest, while the outputs are the processed
images (Figure 1—step 2).

3.2.3. U-Net Application

U-Net is a CNN whose architecture was designed for image segmentation tasks [20].
This architecture has a U-shape and, thus, it is composed of two paths, which are the
encoder and the decoder. The encoder consists of multiple stages, and it has the aim of
extracting high-level features; at each stage, the spatial resolution is decreased, and the
number of channels is increased. The decoder also consists of multiple stages, but it has
the aim of reconstructing the information derived by encoder; at each stage, the spatial
resolution is increased, and the number of channels is decreased. The encoder path uses
max pooling to decrease the spatial resolution while increasing the number of feature
channels, and the decoder path uses transposed convolution layers to increase the spatial
resolution while decreasing the number of feature channels. ‘Skip connections’ allow U-Net
to combine low-level features from the early layers with high-level features from the later
layers, which improves object localization and segmentation. Finally, the architecture
includes a final layer that outputs a probability distribution over the classes for each pixel.

In this paper, the inputs of the U-Net were the processed images (Figure 1—step 3),
having a size of 320 pixels × 320 pixels. The architecture of the proposed U-Net (Figure 2)
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was composed of an encoder composed of 5 stages, the feature map of which converged to
20 × 20 × 512, and a decoder composed of 5 stages and using transposed layers to perform
up-sampling. The number of classes was set at 4, which are pixels belonging to LA, LVendo,
LVepi and background. Supervised learning was applied, as well as the Dice coefficient
(DCS) as loss function (Equation (1)):

LDCS= 1− 1
∑k αkk

[
∑k αkk

2 × ∑i∈I uk
i µ

k
i

∑i∈I uk
i + ∑i∈I µ

k
i

]
(1)

where u is the predicted output of the network, µ is a one-hot encoding of the ground
truth segmentation map, αk is the weight associated to class k ∈ 1, 2, 3 (class related
to background was ignored) being the pixel class. Adam was used as the optimization
algorithm [23] (learning rate equal to 0.001, β1 equal to 0.9, β2 = 0.999, momentum equal to
0.99 and batch size equal to 10), and the number of epochs was set at 60. Values of all hyper-
parameters were empirically selected [24]. Outputs of the U-Net were a four-class matrix
containing the probability of having a specific pixel in a specific class (Figure 1—step 3).
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Figure 2. Architecture of proposed U-Net.

3.2.4. Segmentation of Anatomical Structures of the Left Heart

U-Net provided a 4-class matrix containing the probability of having a specific pixel
in a specific class. In order to obtain the predicted segmented images by segmentation
(Figure 1—step 4), the pixels with the highest probability of belonging to LA, LVepi, LVendo
or background were selected to be part of LA, LVepi, LVendo or background, respectively.

3.3. Evaluation Metrics

With the aim of evaluating the strength of the method, each image’s Dice similarity
coefficients (DSC), Hausdorff’s distance (HD) and Jaccard index (JAC) were computed [25].
Calculation of all these evaluation metrics permitted a comparison between the LA, LVepi
and LVendo of the predicted segmented images and the ground truth.

DSC and JAC for each i class can be defined as following (Equations (2) and (3)):

DSCi =
2·TP

2·TP + FP + FN
(2)

JACi =
TP

TP + FP + FN
(3)
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where TP are the true positives (pixels correctly classified in class i according to the ground
truth), FP are the false positive (pixels wrongly classified in class i according to the ground
truth) and TN are true negatives (pixels correctly not classified in class i according to the
ground truth).

For each class, HD between the point P of the predicted class and the point GT of
the ground truth class consisteds of the maximum of Euclidean distances, as shown in
(Equation (4)):

HD(P, GT) = maxP{minGT{||P, GT||}} (4)

Considering the preprocessing of images (resizing), HD is represented in pixels. Dis-
tribution of DSC, JAC and HD of all patients are reported as mean value and standard
deviations and classified according to the dataset (training, validation, or testing).

4. Results

Distributions of DSC, JAC and HD of all patients were classified according to the
dataset (training, validation, or testing), and reported in Table 1. An example of cardiac seg-
mentation into LA, LVepi and LVendo for both ES and ED is reported in Figure 3. Our DL-
based tool provided very high results for cardiac segmentation of LA
(DSC = 87.57%, JAC = 79.75% and HD = 4.07 pixels), LVepi (DSC = 85.59%, JAC = 75.38% and
HD = 4.96 pixels) and LVendo (DSC = 92.63%, JAC = 86.76% and HD = 3.07 pixels). De-
spite the very high performance in all classes, the best recognized class was LVendo
(DSC = 92.63 ± 6.60%, JAC = 86.76 ± 8.40% and HD = 3.81 ± 1.09 pixels).

Table 1. Distribution of DSC, JAC and HD for all patients, classified according to the dataset (training,
validation, or testing). The number of patients and images presented in each dataset are also reported.

Training Dataset Validation Dataset Testing Dataset

Number of patients 270 45 135

Number of images 1080 180 540

O
ve

ra
ll

LA

DSC (%) 95.12 ± 3.91 93.76 ± 7.36 87.57 ± 13.48

JAC(%) 90.90 ± 5.41 88.86 ± 8.85 79.75 ± 15.76

HD (pixels) 3.60 ± 0.83 3.68 ± 0.82 4.07 ± 1.08

LVepi

DSC (%) 91.79 ± 2.47 89.08 ± 3.29 85.59 ± 7.14

JAC(%) 84.93 ± 4.12 80.47 ± 5.25 75.38 ± 9.17

HD (pixels) 4.32 ± 0.73 4.62 ± 0.81 4.96 ± 1.09

LVendo

DSC (%) 95.18 ± 2.24 92.76 ± 4.64 92.63 ± 6.60

JAC(%) 90.89 ± 3.90 86.81 ± 7.24 86.76 ± 8.40

HD (pixels) 3.41 ± 0.81 3.66 ± 0.87 3.81 ± 1.09

Diagnostics 2023, 13, x FOR PEER REVIEW  7  of  11 
 

 

segmentation into LA, LVepi and LVendo for both ES and ED is reported in Figure 3. Our 

DL-based tool provided very high results for cardiac segmentation of LA (DSC = 87.57%, 

JAC = 79.75% and HD = 4.07 pixels), LVepi (DSC = 85.59%, JAC = 75.38% and HD = 4.96 

pixels) and LVendo (DSC = 92.63%, JAC = 86.76% and HD = 3.07 pixels). Despite the very 

high performance  in all  classes,  the best  recognized  class was LVendo  (DSC = 92.63  ± 

6.60%, JAC = 86.76 ± 8.40% and HD = 3.81 ± 1.09 pixels). 

Table  1. Distribution  of DSC,  JAC  and HD  for  all  patients,  classified  according  to  the  dataset 

(training, validation, or testing). The number of patients and images presented in each dataset are 

also reported. 

  Training Dataset  Validation Dataset  Testing Dataset 

Number of patients  270  45  135 

Number of images  1080  180  540 

O
v
er
al
l 

LA 

DSC (%)  95.12 ± 3.91  93.76 ± 7.36  87.57 ± 13.48 

JAC(%)  90.90 ± 5.41  88.86 ± 8.85  79.75 ± 15.76 

HD (pixels)  3.60 ± 0.83  3.68 ± 0.82  4.07 ± 1.08 

LVepi 

DSC (%)  91.79 ± 2.47  89.08 ± 3.29  85.59 ± 7.14 

JAC(%)  84.93 ± 4.12  80.47 ± 5.25  75.38 ± 9.17 

HD (pixels)  4.32 ± 0.73  4.62 ± 0.81  4.96 ± 1.09 

LVendo 

DSC (%)  95.18 ± 2.24  92.76 ± 4.64  92.63 ± 6.60 

JAC(%)  90.89 ± 3.90  86.81 ± 7.24  86.76 ± 8.40 

HD (pixels)  3.41 ± 0.81  3.66 ± 0.87  3.81 ± 1.09 

 

Figure 3. Example of cardiac segmentation  into LA  (white class), LVepi  (light grey) and LVendo 

(dark grey). 

 

Figure 3. Cont.



Diagnostics 2023, 13, 1683 7 of 10

Diagnostics 2023, 13, x FOR PEER REVIEW  7  of  11 
 

 

segmentation into LA, LVepi and LVendo for both ES and ED is reported in Figure 3. Our 

DL-based tool provided very high results for cardiac segmentation of LA (DSC = 87.57%, 

JAC = 79.75% and HD = 4.07 pixels), LVepi (DSC = 85.59%, JAC = 75.38% and HD = 4.96 

pixels) and LVendo (DSC = 92.63%, JAC = 86.76% and HD = 3.07 pixels). Despite the very 

high performance  in all  classes,  the best  recognized  class was LVendo  (DSC = 92.63  ± 

6.60%, JAC = 86.76 ± 8.40% and HD = 3.81 ± 1.09 pixels). 

Table  1. Distribution  of DSC,  JAC  and HD  for  all  patients,  classified  according  to  the  dataset 

(training, validation, or testing). The number of patients and images presented in each dataset are 

also reported. 

  Training Dataset  Validation Dataset  Testing Dataset 

Number of patients  270  45  135 

Number of images  1080  180  540 

O
v
er
al
l 

LA 

DSC (%)  95.12 ± 3.91  93.76 ± 7.36  87.57 ± 13.48 

JAC(%)  90.90 ± 5.41  88.86 ± 8.85  79.75 ± 15.76 

HD (pixels)  3.60 ± 0.83  3.68 ± 0.82  4.07 ± 1.08 

LVepi 

DSC (%)  91.79 ± 2.47  89.08 ± 3.29  85.59 ± 7.14 

JAC(%)  84.93 ± 4.12  80.47 ± 5.25  75.38 ± 9.17 

HD (pixels)  4.32 ± 0.73  4.62 ± 0.81  4.96 ± 1.09 

LVendo 

DSC (%)  95.18 ± 2.24  92.76 ± 4.64  92.63 ± 6.60 

JAC(%)  90.89 ± 3.90  86.81 ± 7.24  86.76 ± 8.40 

HD (pixels)  3.41 ± 0.81  3.66 ± 0.87  3.81 ± 1.09 

 

Figure 3. Example of cardiac segmentation  into LA  (white class), LVepi  (light grey) and LVendo 

(dark grey). 

 

Figure 3. Example of cardiac segmentation into LA (white class), LVepi (light grey) and LVendo
(dark grey).

5. Discussion

It is widely known that the segmentation of anatomical structures in the heart is an
essential task, because the extracted features may be linked to cardiac dysfunctions, and
thus clinically important for the detection of heart failure and infarction and the prediction
of the occurrence of sudden cardiac death. Segmentation of the left ventricular structures is
definitely clinically important. However, left atrium segmentation may further improve
cardiac status evaluations and clinical diagnoses based on echocardiographic screening.
Thus, differently from most of the works in the literature which simply identify the left
ventricle, this study proposes a deep-learning-based tool able to segment the left ventricular
endocardium, left ventricular epicardium and left atrium by combining an object-detection
method, the YOLOv7 algorithm, with another convolutional neural network, U-Net. We
selected the YOLOv7 algorithm because it guarantees high accuracy in combination with a
low computational time. These properties make YOLOv7 a proper method for detecting
anatomical structures from echocardiographic images. Indeed, echocardiographic tests are
usually composed of different frames of a video, and the clinicians usually use this test to
follow the cardiac movement. Thus, a fast detection algorithm may help the clinicians in
real-time detection and evaluation of the anatomical structures of the left heart and, thus,
of the global cardiac status. Moreover, combining detection and segmentation guarantees
good performance even when training the tool using both two-chamber and four-chamber
views at the same time, implying that there is no need to train two separate tools for each
view.

Another advantage of our deep-learning-based tool is its high flexibility. Indeed,
the tool showed reliable performance even though working with images characterized
by different levels of quality (manually classified as bad, medium and high quality by
clinicians), representing different cardiac statuses (ejection fractions of these patients varied
from 6% to 86%). Considering the high complexity of our method, we decided to implement
the deep-learning-based tool using cloud computing. This technology allows the method
to be trained and tested in a machine-independent environment. Additionally, this design
setting guarantees an easy reproducibility and integrability within any support-level of the
pipeline. With this aim, we selected the Pro version of Google Colab, because it allows the
selection of high RAM (34 GB) and GPU (NVIDIA Tesla P100—16 Gb video RAM) hardware
acceleration settings. Despite the significant advantages provided by the Google Colab
environment, our proposed method was not free of implementation challenges. Indeed,
YOLOv7 and U-Net systems have 37,201,950 parameters and 8,544,548 parameters to be
trained, respectively. Thus, the training computational time is around 8 h, when using the
strong GPU of Google Colab. Moreover, our deep-learning-based tool considers a uniform
size of chambers identified by YOLOv7 (Figure 1—Step 2), slightly limiting the information
that U-Net may process. Thus, future studies will exploit novel solutions in order to speed
up the training and may consider images with different sizes than the inputs of our U-Net.



Diagnostics 2023, 13, 1683 8 of 10

In order to compare our deep-learning-based tool with the literature, we considered
all the papers that performed a similar analysis and organized their contents in Table 2.
If the work included more than one dataset, we reported only the results on the CAMUS
dataset. Nevertheless, the comparison can be performed only qualitatively, due to the high
variability of dataset, validation methods, included frames and chamber views, number
and type of considered segmented anatomical structures, and evaluation metrics. In our
study, we relied only upon the static data division of the CAMUS dataset. Other studies
have used datasets (an echo-dynamic dataset [17] or a huge dataset of porcine images [11])
as training dataset and then the CAMUS dataset as testing dataset. This mixture of data
makes the performance interpretation very difficult because training and testing data
are not acquired in the same conditions. Three studies [9,10,14] have applied the cross-
validation technique. Despite cross-validation being considered a robust validation method,
it does not allow for the use of a unique model that can be inserted in the real clinical
scenario. Distinct from all the other methods in the literature, we merged images of different
views (two- and four-chamber views) and different frames (ES and ED). Indeed, when
implementing the YOLOv7 as an object-detection algorithm before the segmentation, our
deep-learning-based tool does not need a priori classification of views and frames, since it
is able to manage all images together without the need of applying the same architecture
to different image configurations and the provision of separate results. Finally, only two
studies in the literature [13,14] focused on the segmentation of three cardiac anatomical
structures. Despite their slightly higher performances, both studies selected the images a
priori according to cardiac chamber views and did not apply an automatic cardiac structure
identification. Thus, even though not providing the highest performance, our proposed
deep-learning-based tool seems to be the best method in terms of generalization.

Table 2. Comparison of our deep-learning-based tool with studies in the literature.

Ref. Dataset
(Patients/Images)

Dataset Split View Classes Method
Performance (on CAMUS Dataset)

LA LVepi LVendo

[13] CAMUS
(406/1624)

10-fold
cross-validation

Two and four
chamber

LVendo
and LVepi U-Net n.a.

ED:
DSC = 95.4 ±2.3
HD = 6.0 ± 3.4

ES:
DSC = 94.5 ±3.9
HD = 6.1 ±4.6

ED:
DSC = 93.9 ± 4.3
HD = 5.3 ± 3.6

ES:
DSC = 91.6 ±6.1
HD = 5.5 ±3.8

[14]

(1) CAMUS
(500/n.a.)
(2) custom

dataset
(137/n.a.)

5-fold
cross-validation

Four
chambers LV MFP-U-Net n.a. DSC = 95.3 ± 1.9

HD = 3.5 ± 0.9

[15]

(1) custom
dataset

(8/1649)
(2) CAMUS
(450/1800)

n.a. Two and four
chambers

LVepi
and LVendo SegAN n.a. DSC = 85.9 ± 6.4

HD = 6.2 ± 1.2
DSC = 91.7 ± 7.1
HD = 5.1 ± 1.7

[16] CAMUS
(450/1800)

Static
data division

Two and four
chambers

LA, LVepi
and LVendo LFB-Net

Four-chamber
view:

DSC = 92.0 ± 4.0
HD = 5.2 ± 3.5
Two-chamber

view:
DSC = 92.0 ± 5.0
HD = 4.8 ± 2.8

Four-chamber
view:

DSC = 86.0 ± 6.0
HD = 6.7 ± 3.0
Two-chamber

view:
DSC = 88.0 ± 4.0
HD = 7.1 ± 3.9

Four-chamber
view:

DSC = 94.0 ± 3.0
HD = 5.0 ± 2.8
Two-chamber

view:
DSC = 94.0 ± 3.0
HD = 5.6 ± 3.2

[12]

(1) EchoNet-
Dynamic

(2500/5000)
(2) CAMUS
(500/2000)

Static
data divison

Two and four
chambers

LVepi
and LVendo PLANet n.a.

ED:
DSC = 96.2 ± 1.2
HD = 4.6 ± 1.5

ES:
DSC = 95.6 ± 1.4
HD = 4.6 ± 1.4

ED:
DSC = 95.1 ± 1.8
HD = 4.2 ± 1.4

ES:
DSC = 93.1 ± 3.2
HD = 4.3 ± 1.5

[17] CAMUS
(450/1800)

5-fold cross-
validation,

Two and four
chambers

LA, LVepi
and LVendo

Cardiac-
SegNet

ED:
DSC = 89.5 ± 8.5
HD = 2.2 ± 4.1

ES:
DSC = 92.2 ± 5.5
HD = 2.7 ± 3.5

ED:
DSC = 96.0 ± 1.6
HD = 2.9 ± 2.1

ES:
DSC = 95.3 ± 2.2
HD = 2.8 ± 2.2

ED:
DSC = 94.8 ± 2.4
HD = 2.3 ± 1.8

ES:
DSC = 92.7 ± 4.3
HD = 2.3 ± 2.3
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Table 2. Cont.

Ref. Dataset
(Patients/Images)

Dataset Split View Classes Method
Performance (on CAMUS Dataset)

LA LVepi LVendo

[18] custom dataset
(380/380)

Static
data division

Four
chambers LV Deep

Res-U-Net n.a.

ES: DSC = 82.1 ±0.8
JAC = 66.9 ± 6.4
HD = 23.8 ± 0.1

ED: DSC = 86.5 ± 1.1
JAC = 63.7 ± 9.6
HD = 19.7 ± 0.2

[19]

(1) EchoNet-
Dynamic

(10,024/20,048)
(2) CAMUS
(400/800)

Static
data division

Four
chambers LV DeepLabV3 n.a. DSC = 93.1 ± 0.04

[20] custom dataset n.a. n.a. LVendo YOLOv3
(Darknet53) n.a. n.a. DSC = 93.6 ± 2.0

HD = 6.7 ± 1.8

This
study

CAMUS
(450/1800)

Static
data division

Two and four
chambers

LA, LVepi
and LVendo

YOLOv7 and
U-Net

DSC = 87.6± 13.5
JAC = 79.8 ± 15.8

HD = 4.1 ± 1.1

DSC = 85.6 ± 7.1
JAC = 75.4 ± 9.2
HD = 5.0 ± 1.1

DSC = 92.6 ± 6.6
JAC = 86.8 ± 8.4
HD = 3.8 ± 1.1

n.a.—not applicable.

Ultimately, it is worthwhile to observe that our proposed method was designed to be
clinically applicable. It considered annotations of three independent cardiologists as the
gold standard, in order to minimize the well-known effects of inter-cardiologist variability
and subjectivity. Indeed, we believe that final diagnostic decision regarding the segmenta-
tion of anatomical structures of the left heart should be taken by clinicians, and ultimately
only supported by an automatic tool as ours. Future studies will definitely confirm the
clinical usability of our deep-learning-based tool by collaborating with clinicians in real
clinical scenarios.

6. Conclusions

Echocardiographic imaging of the left heart is an efficient and flexible tool which can
be applied in clinical practice. Considering its performance here, future studies will focus
on the implementation of a real-time version of the algorithm and on its usefulness for the
estimation of important clinical indices, such as the ejection fraction.
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