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Abstract: To explore the influence of pH values on the properties of a compound system containing
tea polyphenols (TPs) and low acyl gellan gum (LGG), the color, texture characteristics, rheological
properties, water holding capacity (WHC), and microstructure of the compound system were mea-
sured. The results showed that the pH value noticeably affects the color and WHC of compound gels.
Gels from pH 3 to 5 were yellow, gels from pH 6 to 7 were light brown, and gels from pH 8 to 9 were
dark brown. The hardness decreased and the springiness increased with an increase in pH. The
steady shear results showed that the viscosity of the compound gel solutions with different pH
values decreased with increasing shear rates, indicating that all of the compound gel solutions were
pseudoplastic fluids. The dynamic frequency results showed that the G′ and G′′ of the compound
gel solutions gradually decreased with increasing pH and that G′ was higher than G′′. No phase
transition occurred in the gel state under heating or cooling conditions at pH 3, indicating that the
pH 3 compound gel solution was elastic. The WHC of the pH 3 compound gel was only 79.97% but
the WHC of compound gels pH 6 and pH 7 was almost 100%. The network structure of the gels was
dense and stable under acidic conditions. The electrostatic repulsion between the carboxyl groups
was shielded by H+ with increasing acidity. The three-dimensional network structure was easily
formed by an increase in the interactions of the hydrogen bonds.

Keywords: tea polyphenols; low acyl gellan gum; pH

1. Introduction

Tea polyphenols (TPs) are natural antioxidants that are the main active ingredients
in tea. Considering their good antioxidant, antiaging, and anticancer [1–3] functions, TPs
have been widely used as a therapeutic agent or food supplement. However, their poor
absorption, easy decomposition, and low metabolic transformation under physiological
conditions limit their active functions [4]. TPs are sensitive to light, temperature, and pH,
which makes them very unstable and easily oxidized [5–7]. To increase the effective use of
TPs, several drawbacks must be overcome, such as oxidation and instability. Polyphenols
and polysaccharides can form complexes through intermolecular interactions. In addi-
tion, the combination of TPs with hydrophilic polysaccharides can effectively prevent the
oxidation process of TPs and improve their bioavailability [8].

Gellan gum (GG) is an anionic linear exopolysaccharide produced by the fermentation
of Sphingomonas paucimobilis. It is a widely used microbial polysaccharide after xanthan
gum. Its main chain is composed of 2 molecules of D-glucose, 1 molecule of D-glucuronic
acid, and 1 molecule of L-rhamnose [9] in a 2:1:1 ratio linked together to form the linear
primary structure [D-Glc(β1→4)D-GlcA(β1→4)D-Glc(β1→4)L-Rha(α1→3)]n [10]. The
structure of GG is shown in Figure 1.
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Compared with plant gels, such as agar, gelatin, and pectin, and microbial gels, such 
as xanthan gum and pullulan, GG has certain advantages such as easy gel formation, high 
colloidal transparency, and resistance to enzymatic hydrolysis. It is mainly used as a gel-
ling agent, stabilizer, suspending agent, and film-forming agent [11,12]. GG is mainly clas-
sified as a high acyl GG (HGG) or low acyl GG (LGG) and LGG is more widely used in 
the food industry [13,14]. Because the molecular structure of HGG is rich in acyl groups, 
it can form an elastic and tough opaque gel, while LGG can form a harder and more brittle 
transparent gel [15]. However, LGG is more susceptible to pH than HGG [16]. Therefore, 
our experiment selected LGG as our study material. TPs are rich in phenolic hydroxyl 
groups and can form hydrogen bonds with GG molecules to improve the viscosity and 
elasticity of the gel compound. The rich carboxyl and acyl groups in the molecular struc-
ture of GG also have a good compounding effect with TPs, which can delay the oxidation 
process of TPs and play a role in stabilization and slow release [17]. 

pH mainly affects the charge of biomacromolecules in gel molecules and the interac-
tions between polymers. The binding ability of TPs to oat-β-glucan was the strongest at 
pH 6.0 [18]. pH was the most important factor that affected the interaction between cellu-
lose and cyanidin-3-glucoside, and the binding ability of cyanidin-3-glucoside and cellu-
lose varies with pH (3.0–5.0); the binding capacity of the two decreased when the pH in-
creased to 7.0, which may be caused by the chemical structure of anthocyanins changing 
with pH [19]. pH (2.0–4.5) can also significantly affect the interaction between anthocya-
nins and pectics; the binding effect of the two is the strongest at pH 3.6 and the affinity 
between the two is relatively weak at other pH values [20]. Therefore, pH affects the prop-
erties of the compound gel formed by TPs and LGG. 

In order to explore the effect of different pH values on the gel properties of the com-
pound gels formed by TPs and LGG, we tested the color, texture characteristics, rheolog-
ical properties, WHC, and microstructure of the compound gels with TPA, SEM, and FTIR. 
The results will provide a theoretical basis for the application of compound gels produced 
by TPs and LGG in real food systems and effectively improve the nutritional and func-
tional properties of food. 

2. Results and Discussion 
2.1. Surface Color Analysis 

We first examined the influence of pH on the color of compound gels because color 
measurements could enable us to distinguish the effect of pH on the TP-LGG compound 
gels. The color changes of the compound gels under different pH conditions are shown in 
Table 1 and Figure 2. 

  

Figure 1. Structure of gellan gum.

Compared with plant gels, such as agar, gelatin, and pectin, and microbial gels, such
as xanthan gum and pullulan, GG has certain advantages such as easy gel formation, high
colloidal transparency, and resistance to enzymatic hydrolysis. It is mainly used as a gelling
agent, stabilizer, suspending agent, and film-forming agent [11,12]. GG is mainly classified
as a high acyl GG (HGG) or low acyl GG (LGG) and LGG is more widely used in the
food industry [13,14]. Because the molecular structure of HGG is rich in acyl groups, it
can form an elastic and tough opaque gel, while LGG can form a harder and more brittle
transparent gel [15]. However, LGG is more susceptible to pH than HGG [16]. Therefore,
our experiment selected LGG as our study material. TPs are rich in phenolic hydroxyl
groups and can form hydrogen bonds with GG molecules to improve the viscosity and
elasticity of the gel compound. The rich carboxyl and acyl groups in the molecular structure
of GG also have a good compounding effect with TPs, which can delay the oxidation process
of TPs and play a role in stabilization and slow release [17].

pH mainly affects the charge of biomacromolecules in gel molecules and the inter-
actions between polymers. The binding ability of TPs to oat-β-glucan was the strongest
at pH 6.0 [18]. pH was the most important factor that affected the interaction between
cellulose and cyanidin-3-glucoside, and the binding ability of cyanidin-3-glucoside and
cellulose varies with pH (3.0–5.0); the binding capacity of the two decreased when the pH
increased to 7.0, which may be caused by the chemical structure of anthocyanins changing
with pH [19]. pH (2.0–4.5) can also significantly affect the interaction between anthocyanins
and pectics; the binding effect of the two is the strongest at pH 3.6 and the affinity between
the two is relatively weak at other pH values [20]. Therefore, pH affects the properties of
the compound gel formed by TPs and LGG.

In order to explore the effect of different pH values on the gel properties of the com-
pound gels formed by TPs and LGG, we tested the color, texture characteristics, rheological
properties, WHC, and microstructure of the compound gels with TPA, SEM, and FTIR. The
results will provide a theoretical basis for the application of compound gels produced by
TPs and LGG in real food systems and effectively improve the nutritional and functional
properties of food.

2. Results and Discussion
2.1. Surface Color Analysis

We first examined the influence of pH on the color of compound gels because color
measurements could enable us to distinguish the effect of pH on the TP-LGG compound
gels. The color changes of the compound gels under different pH conditions are shown in
Table 1 and Figure 2.

Table 1 shows that the L*, a*, and ∆E values increased, whereas the b* values decreased
with increased pH. The higher the L* value is, the lighter the gel is [21,22]. The indicators L*,
a*, b*, and ∆E were positive values, indicating that the compound gels gradually changed
from yellow to dark brown with increased pH. This was consistent with the observations
in Figure 2. TPs were relatively stable under acidic conditions whereas they were very
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unstable in neutral and alkaline solutions and decomposed in a few minutes [6], which
caused the color of the compound gels to darken.

Table 1. Color change of the TP-LGG compound gels with pH 3–9.

pH L* a* b* ∆E

3 12.28 ± 0.58 b 2.36 ± 0.09 b 10.55 ± 1.73 ab 28.27 ± 0.08 b

4 13.97 ± 0.90 ab 2.35 ± 0.18 b 11.89 ± 1.92 a 28.56 ± 1.40 b

5 13.95 ± 0.48 ab 2.82 ± 0.84 ab 11.32 ± 2.73 ab 28.74 ± 0.26 b

6 14.94 ± 0.58 a 2.41 ± 0.49 b 11.61 ± 1.77 a 28.02 ± 1.41 b

7 14.68 ± 0.94 a 3.48 ± 0.21 a 8.95 ± 0.32 ab 28.59 ± 0.35 b

8 13.20 ± 1.39 ab 2.86 ± 0.29 ab 7.33 ± 0.40 bc 30.74 ± 0.87 a

9 14.88 ± 0.88 a 2.96 ± 0.06 ab 5.33 ± 0.95 c 31.01 ± 0.17 a

The abc labeling method in statistics is a commonly used labeling method used to represent the significance and
difference of statistical results. The difference between groups with the same letter is not significant, while the
difference between groups with different letters is significant.
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nins in the TPs. The natural pH of the TP-LGG gel was 5.2, and the compound gel was 
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the red was deepened and the yellow was weakened so that the color of the compound 
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through oxidation and dimer formation, which deepened the color of the compound gels. 
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pH values).

In the pH range of 3–5, the b* value of the samples changed, and the color of the
compound gels was yellow. However, when the pH was over 6, the b* value decreased with
increased pH. The compound gels became darker, considering that TPs are easily oxidized
under alkaline conditions. At the same time, the difference in ∆E approached 3, indicating
that the change in pH resulted in a visible change in the color of the compound gels.

The LGG gel was colorless and transparent. However, when TPs were added to LGG,
the compound gels became yellow because of the presence of flavonoids and anthocyanins
in the TPs. The natural pH of the TP-LGG gel was 5.2, and the compound gel was pale
yellow. In the pH range of 3–5, the compound gels were still yellow. At pH 6–7, the
compound gels were light brown. At pH 8–9, the compound gels were dark brown. This
color change was expected because with the a* value increased and the b* value decreased,
the red was deepened and the yellow was weakened so that the color of the compound gels
changed as shown in Figure 2. TP solutions are oxidized into quinones mainly through
oxidation and dimer formation, which deepened the color of the compound gels. The
TP solution degraded irreversibly to a yellowish-brown solution due to the deterioration
products, and this result was consistent with previous findings [23].

2.2. TPA Results

According to Figure 3, both the hardness and springiness of the compound gels with
different pH values were significantly affected. The hardness decreased and the springiness
increased as the pH rose from 3 to 9. The hardness of the compound gel (pH 3) reached
a maximum value of 4216.377 g. Then, as the pH increased to 6, the hardness decreased
abruptly. When the pH rose from 6 to 9, the hardness decreased slowly. This was consistent
with previous findings that reported that hydrochloric acid acidifies LGG to make acid-
sensitive colloids and found that the hardness and strength of the gel increased significantly
when the pH decreased from 5 to 3 [24]. As the acidity of the compound gels continued to
decrease, the concentration of H+ in the system continued to increase. This shielded the
negatively charged carboxyl groups in the molecular structure of GG, reduced the mutual
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repulsion between polymers, and facilitated the formation of a three-dimensional network
structure, thus enhancing the hardness of the compounded gel. The springiness of the gel
was stable in the pH range of 6–9. However, the springiness of the compound gel was
greatly weakened, and it became hard and brittle with the decrease in pH from 6 to 3,
and reached a minimum at pH 3. Under weakly acidic conditions, the gel formed a dense
three-dimensional network structure, making the gel more resistant to external impact.
However, when the structure was completely destroyed, the network structure was more
difficult to restore, making the gel less elastic.
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2.3. Rheological Analyses
2.3.1. Steady Shear Analyses

During the stirring shear process, the molecular chains of TPLGG were straightened or
dispersed under external forces, leading to an increase in the fluidity of the systems and a
decrease in viscosity. This phenomenon is shear thinning and is commonly used to indicate
the shear stability of systems during the shear process. The viscosity and shear stress of
the TP-LGG compound systems is shown in Figure 4. As shown in Figure 4, the systems
exhibited high viscosity at low shear rates, followed by a linear decrease in viscosity with
the increasing shear rate, exhibiting a typical shear thinning behavior and indicating that the
TP-LGG compound gel solutions were non-Newtonian fluids. The shear thinning behavior
between TPs and LGG was mainly attributed to the destruction of intramolecular or
intermolecular interactions [25,26] which caused a decrease in intermolecular electrostatic
repulsion and an increase in mutual aggregation. At the same shear rate, the viscosity
decreased as the pH increased from 3 to 9, and the viscosity of the compound gel solution
was the highest at pH 3. H+ could enhance the electrostatic repulsion between the negatively
charged carboxyl groups in the LGG molecule under strongly acidic conditions, which
made it easier to form a three-dimensional network structure in the gel solution. Strong
interaction forces, such as hydrogen bonds between molecules, increased the viscosity of
the compound gel solutions. The result was similar to the result of Picone and Cunha [27]
who found that the viscosity of the gel increased when the pH of the LGG system was
reduced from 5.3 to 3.5.
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2.3.2. Dynamic Frequency Sweep Analyses

As shown in Figure 5, the viscoelastic G′ and G′′ values of the compound gel solutions
increased as the frequency rose from 0.01 to 6.105 Hz. The values of G′ and G′′ decreased
with the increase in pH from 3 to 9. In the range of pH 3–7, G′ was clearly higher than G′′,
especially in the gel solutions of pH 3 and pH 4. The compound gel solutions were obviously
predominantly elastic. The high concentration of H+ in the system was conducive to the
formation of a three-dimensional network structure, thereby enhancing the viscosity of the
compound gel solutions. The G′ and G′′ of the compound gel solutions at pH 8 and pH 9
were raised but the G′′ were higher than G′ with low frequencies, and then G′ were still
higher than G′′ later. Therefore, the compound gel solutions mainly exhibited solid-like
characteristics from pH 3 to 9. Chen et al. [28] also found that LGG exhibited solid properties
under acidic conditions, which was consistent with the results of this experiment.
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2.3.3. Dynamic Temperature Scanning

As shown in Figure 6, whether in the process of heating or cooling, the G′ and G′′ of
all samples generally decreased with the increase in pH value, and the G′ and G′′ of the
pH 3 gel solution were the highest. During the heating process, except for the pH 3 gel
solution, the G′ and G′′ values of the other compound gels decreased and underwent a
solid-to-liquid transition. As shown in Figure 6a, the increase in pH value reduced the
melting temperature of the gels. During the cooling process, the G′ and G′′ values of all
the compound gels increased, and some gels underwent a liquid-to-solid transition. As
shown in Figure 6b, the pH value has an effect on the freezing point of the compound
gel during the cooling process. In comparison with the dynamic temperature scan curves
under the two conditions, the gelling temperature under cooling conditions was lower than
the melting temperature under heating conditions, and an obvious hysteresis phenomenon
occurred. The compound gel solution at pH 3 had no phase transition and occurred in the
gel state under both heating and cooling conditions, indicating that the pH 3 compound
gel solution was elastic. Similar to the findings of Li et al. [11], who used glucono-δ-lactone
to prepare thermally irreversible gels of LGG, decreasing pH is usually more effective in
promoting gellan gelation.
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2.4. WHC

The WHC of the compound gels with different pH values is shown in Figure 7. The
WHC of the compound gels increased from pH values 3 to 6 and reached a maximum at
pH 6. Interestingly, the WHC of the pH 6 compound gel was the same as that of the pH 7
compound gel, which is almost 100%. Then, the WHC of the compound gels began to
decrease as the pH value increased from 7 to 9. The results showed that the WHC of the
compound gels was relatively stable at pH 6–8. When the acidity was reduced to pH 5,
the WHC of the gels started to decrease and was the lowest at pH 3, only 79.97%. The
dissociation degree of the carboxyl group of the hydrophilic group in LGG decreased under
acidic conditions. Consequently, the WHC of the gel decreased. The decrease in the WHC
of the pH 9 compound gel can be attributed to the decreased hydrophilic groups such as
hydroxyl groups caused by the oxidation of TPs, thus reducing the WHC of the compound
gels. Previous studies suggested that the WHC was significantly reduced under the acidic
condition of LGG [28].
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Figure 7. Effect of pH on the WHC of the compound gels.

2.5. Microstructure Analysis

The SEM images revealed that pH affected the morphology of the compound gel
system as seen in Figure 8. The microstructure of the compound gel at pH 3 (Figure 8a) was
heterogeneous and porous, with numerous “water channels” inside the gel structure. H+ re-
duced the degree of dissociation of carboxyl groups and shielded the electrostatic repulsion
between the carboxyl groups to promote the formation of a double helix structure which
was conducive to the formation of a compact three-dimensional network structure [28].
Therefore, the WHC of the pH 3 gel was the weakest. However, the gel microstructure
became more inhomogeneous as the pH increased. When the pH was 7 (Figure 8b), the
internal structure of the compound gel was relatively stable, improving the WHC of the gel.
At pH 9 (Figure 8c), the network structure formed in the internal structure of the compound
gel was relatively disordered. Considering that the electrostatic repulsion between the
carboxyl groups in LGG molecules was strong under alkaline conditions and that the
double helix between polymers was degraded, the formation of a network structure was
not induced. Meanwhile, TPs were oxidized and their interaction with LGG molecules
was affected, resulting in the chaotic internal structure of the compound gels. The network
structure of the LGG was weak under alkaline conditions according to electron micro-
scope scanning [29]. Microscopy images showed that the pH had obvious effects on the
microstructure of the compound gels.
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2.6. FTIR Spectra Analysis

FTIR analysis was performed to confirm the cross-linking interactions between TPs
and LGG. The infrared absorption spectra of the compound gels with different pH values
are shown in Figure 9. The compound gels with different pH values had similar absorption
peak shapes with slightly different intensities and positions. Although the sample was
freeze-dried and still contained bound water, the wide absorption peak in the range of
3500–3100 cm−1 was mainly the superposition of the O–H stretching vibration and water in
the gels. The stretching vibration of O–H near 3314.07 included inter-and intra-molecular
interactions [29]. The hydroxyl groups of samples existed in an associative manner so
the absorption peak was very wide. Under acidic conditions, more hydrogen bonds were
generated between water molecules and between them and other components, resulting
in an increase in the intensity of the O–H absorption peak [30]. A strong absorption near
1602.56 cm−1 could be attributed to the C–O stretching vibrations in the LGG molecule.
A weak absorption near 1411.16 cm−1 could be attributed to the O-H bending vibration.
The absorption peak near 1028.15 cm−1 was associated with the stretching vibration of
C–O–C. The spectra of compound gels showed characteristic peaks near 1602.56 cm−1

(C–O stretching vibrations), 1407.30 cm−1 (O–H bending vibration), and 1021 cm−1 (C–O–C
stretching) [31]. Overall, the intensity of the absorption peak weakened and slightly moved
towards the low-frequency direction as the pH value increased, indicating that with the
increase in H+ concentration, the dissociation degree of the carboxyl group was inhibited,
and the electrostatic interaction between polymers decreased. Therefore, we speculated that
the change in pH could not generate a new chemical bond between TPs and LGG. Based
on the FTIR results, we concluded that TPs were compatible with LGG during the mixing
and gelation stage due to intermolecular synergistic effects and hydrogen bonding [32].
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3. Conclusions

The results of this work showed that pH affected the properties of TP-LGG compound
gels. The compound gels turned from yellow to brown and then to dark brown with increas-
ing pH. In addition, the hardness of the compound gels rose, and the springiness decreased
continuously with increasing pH. The steady shear results showed that the viscosity of the
compound gel solutions with different pH values decreased with increasing shear rates,
indicating that the compound gel solutions were pseudoplastic fluids. The compound gel
solutions mainly exhibited solid-like characteristics in the acidic and neutral ranges and
exhibited liquid-like properties under weakly alkaline conditions. The compound gels also
underwent a solid-to-liquid transition in the process of heating and cooling. The values of
G′ and G′′ decreased with increasing pH. The WHC of the gels was relatively stable and
strong in the neutral and weakly alkaline ranges, but the WHC under acidic conditions
was the weakest. Furthermore, the network structure of the compound gels was relatively
dense and stable under acidic conditions and, finally, there were cross-linking reactions
between TPs and LGG with increasing acidity.

4. Materials and Methods
4.1. Materials

LGG (food grade) was obtained from the Ruifeng (Henan, China). TPs (food grade)
were obtained from the Naman (Nanjing, China). Hydrochloric acid and sodium hydroxide
were obtained from Meifeng (Hefei, China).

4.2. Preparation of TP-LGG Compound Gels

A 1.0% (w/w) LGG solution and 0.15% (w/w) TP solution were prepared by dissolving
them in deionized water and stirring at 90 ◦C to ensure complete powder hydration and
dissolution. The pH of the system was adjusted to 3, 4, 5, 6, 7, 8, and 9 with 1.0 M NaOH
or 1.0 M HCl solution. A pH meter (FE20K, Mettler Toledo, Leicester, UK) was used to
measure the pH of the solution. Then, 0.15 mL of 2 M Ca2+ solution was added to the
compound gel. Finally, the compound gel was placed in a plastic casing while it was still
hot and stored in a refrigerator at 4 ◦C for 24 h after cooling.
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4.3. Color Measurements

The color was measured as previously described [33,34], with some modifications. A
colorimeter (CR-400, Konica Minolta, Tokyo, Japan) was used to observe the color changes
of the gels. The color was denoted by the a, b, and L values, indicating redness/greenness,
yellowness/blueness, and lightness, respectively. The machine was calibrated using a
standard white tile, and the L*, a*, and b* values were obtained. The total color difference
(∆E) was calculated using the following equation:

∆E =

√
(∆L∗) 2 + (∆a∗)2 + (∆b∗)2

4.4. Texture Profile Analysis (TPA) of TP-LGG Compound Gels

The gels were cut into cylinders with a height of 25 mm and radius of 25 mm, and
the TA-XT plus (Stable Micro Systems, Surry, UK) physical property analyzer was used for
measurements. The parameters of the tests were set as follows: measure type, TPA; probe
type, P/50; compression strain, 50%; pretest speed, 5.0 mm/s; test speed, 1.0 mm/s; and
post-test speed, 5.0 mm/s. Based on the characteristics of the samples, data on hardness (g)
and springiness (g) were recorded and used as the analysis index [25].

4.5. Rheological Measurements of TP-LGG Compound Gels
4.5.1. Steady Shear Analyses

The steady rheology was tested as previously described [35,36], with some modifi-
cations. The rheological properties of the compound gel solutions were studied using a
rheometer (HAAKE RS6000) with flat rotor model P35 TiL (diameter, 35 mm; gap, 1 mm).
Samples were tested at 25 ◦C with steady shear rates in the range of 0.1–100 s−1, and the
viscosity of the compound gel solutions was recorded.

4.5.2. Dynamic Frequency Sweep Rheological Measurements

Frequency sweep measurements at a fixed amplitude of shear stress were carried out
in the frequency range of 0.01–10 Hz at 25 ± 0.1 ◦C. The values of the storage modulus (G′)
and loss modulus (G′′) were recorded [36].

4.5.3. Dynamic Temperature Sweep Rheological Measurements

Temperature sweeps were conducted at a heating rate of 5 ◦C/min, reduced from
80 ◦C to 20 ◦C, and finally increased from 20 ◦C to 80 ◦C, with a sweep frequency of 1 rad/s
and shear stress of 5 s−1. The G′ and G′′ values were recorded.

4.6. Water Holding Capacity (WHC)

The WHC was studied as follows: the gel was loaded into a 1.5 mL empty centrifuge
tube and centrifuged at 10,000× g for 30 min with an ultracentrifuge. Then, the water was
removed, and the mass of the remaining gel was recorded [37].

WHC(%) =
m2 −m0

m1 −m0
× 100%

where m0 is the mass/g of the centrifuge tube, m1 is the total mass/g of the gel and
centrifuge tube before centrifugation, and m2 is the total mass/g of the gel and centrifuge
tube after centrifugation.

4.7. Scanning Electron Microscopy (SEM)

The surface morphology of the compound gels was visualized using a cold field
emission SEM (EVOMA15, Carl Zeiss AG Co., Ltd., Oberkochen, Germany) operated at
an accelerating voltage of 1 kV. Prior to detection, the gel samples, which were cut into
thin slices with a diameter of 3 mm after freeze-drying, were fixed on copper stubs and
sputtered with gold, and pictures were taken at 20×magnification.
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4.8. Fourier Transform Infrared Spectroscopy (FTIR)

The chemical interactions between the TP functional groups and LGG were investi-
gated using an FTIR spectrophotometer (Nicolet6700, Thermo Fisher Scientifific, MA, USA)
as previously described [38], with some modifications. The FTIR studies of the gels were
carried out by using the KBr pellet method. After freeze-drying, the gel samples were
pressed with KBr and then scanned using an FTIR spectrometer in the scanning range of
400–4000 cm−1 and a resolution of 4 cm−1.

4.9. Statistical Analysis

All tests were conducted in a completely randomized design in independent triplicates
to confirm the reproducibility of the results. The drawn figures in this article were processed
using Origin Pro 8.0 (OriginLab Inc., Northampton, MA, USA). Duncan’s multiple range
test determined significant differences, at the 95% confidential level (p < 0.05), using
statistical SPSS software.
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