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Abstract: Jaundice is caused by excess circulating bilirubin, known as hyperbilirubinemia. This
symptom is sometimes caused by a critical hepatobiliary disorder, and is generally identified as
yellowish sclera when bilirubin levels increase more than 3 mg/dL. It is difficult to identify jaundice
accurately, especially via telemedicine. This study aimed to identify and quantify jaundice by trans-
conjunctiva optical imaging. Patients with jaundice (total bilirubin ≥3 mg/dL) and normal control
subjects (total bilirubin <3 mg/dL) were prospectively enrolled from June 2021 to July 2022. We took
bilateral conjunctiva imaging with a built-in camera on a smartphone (1st generation iPhone SE)
under normal white light conditions without any restrictions. We processed the images using an
Algorithm Based on Human Brain (ABHB) (Zeta Bridge Corporation, Tokyo, Japan) and converted
them into a hue degree of Hue Saturation Lightness (HSL) color space. A total of 26 patients with
jaundice (9.57 ± 7.11 mg/dL) and 25 control subjects (0.77 ± 0.35 mg/dL) were enrolled in this
study. The causes of jaundice among the 18 male and 8 female subjects (median age 61 yrs.) included
hepatobiliary cancer (n = 10), chronic hepatitis or cirrhosis (n = 6), pancreatic cancer (n = 4), acute liver
failure (n = 2), cholelithiasis or cholangitis (n = 2), acute pancreatitis (n = 1), and Gilbert’s syndrome
(n = 1). The maximum hue degree (MHD) optimal cutoff to identify jaundice was 40.8 (sensitivity
81% and specificity 80%), and the AUROC was 0.842. The MHD was moderately correlated to total
serum bilirubin (TSB) levels (rS = 0.528, p < 0.001). TSB level (≥5 mg/dL) can be estimated by the

formula 21.1603 − 0.7371 ×
√
(56.3 − MHD)2. In conclusion, the ABHB-based MHD of conjunctiva

imaging identified jaundice using an ordinary smartphone without any specific attachments and deep
learning. This novel technology could be a helpful diagnostic tool in telemedicine or self-medication.

Keywords: smartphone; image processing; jaundice; hyperbilirubinemia; conjunctiva; cirrhosis;
biliary obstruction

1. Introduction

The incidence of jaundice is approximately 40,000 per 100,000 intensive care unit
patients [1]. Neonatal jaundice is more common among infants of Southeast and Far East
Asian descent compared to those of Caucasian or African descent [2]. In adults, bile duct
stones, cancers (pancreatic cancer, cholangiocarcinoma, and others), and liver disease
attributed to excess alcohol are reportedly common causes of jaundice [3].

Jaundice can be a life-threatening condition for both neonates and adults. Identi-
fying this condition is difficult even for experienced physicians. Physicians detect the
presence or absence of jaundice with sensitivities and specificities of approximately 70% [4].

Diagnostics 2023, 13, 1767. https://doi.org/10.3390/diagnostics13101767 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13101767
https://doi.org/10.3390/diagnostics13101767
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-0522-1884
https://orcid.org/0000-0003-4000-6899
https://orcid.org/0000-0003-2959-6015
https://doi.org/10.3390/diagnostics13101767
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13101767?type=check_update&version=2


Diagnostics 2023, 13, 1767 2 of 9

Their predictions varied from the measured value on average by 3.4 ± 5.3 mg/dL for
serum bilirubin.

Commercially available transcutaneous bilirubinometers, such as the BiliCare System
(Natus Medical Inc., Middleton, WI, USA) and JM-105 (Konica Minolta Inc., Osaka, Japan),
employ light-based spectroscopy at different wavelengths to assess neonatal jaundice by
measuring relevant substances, thereby determining hyperbilirubinemia. Transcutaneous
bilirubinometers are specialized meters that non-invasively and indirectly measure biliru-
bin levels in neonates with jaundice. It is cost-effective and avoids unnecessary blood
tests, but it tends to overestimate the total serum bilirubin (TSB) level at <12 mg/dL and
underestimates it at a higher TSB level [5,6]. Transcutaneous bilirubinometers are priced
in the range of USD 3000 to 5000. Consequently, the utilization of smartphones presents a
cost-effective alternative for evaluating jaundice.

“BiliCam” is a smartphone application developed to detect the skin color of neonatal
jaundice [7]. Their system needs two images, one with and one without the flash, and
requires calibration to adjust skin colors.

Previous methodologies primarily concentrated on identifying jaundice in the skin
of newborns; however, Leung et al. shifted their attention to the sclera and put forward
the Jaundice Eye Color Index (JECI) as an alternative to assessing neonatal jaundice based
on skin color [8]. In line with this approach, Outlaw et al. introduced a smartphone
application named “neoSCB”, specifically designed for evaluating jaundice in neonates
through eye examinations [9]. This application requires the acquisition of two sets of
images: one with flash and the other without flash, focusing on the sclera. This application
demonstrated a sensitivity of 100% and a specificity of 54% when screening infants with TSB
above 12 mg/dL. Similarly, Mariakakis et al. developed “Biliscreen”, another smartphone
application with the objective of assessing an individual’s bilirubin levels through the
acquisition of eye images [10]. This application demonstrated an excellent sensitivity of
89.7% and a specificity of 96.8% in the detection of TSB ≥ 1.3 mg/dL related to liver and
pancreatic disorders. Nevertheless, the application requires a specialized shading box.

Park et al. recently investigated a deep-learning system for detecting jaundice caused
by hepatobiliary and pancreatic diseases using a smartphone [11]. This report also demon-
strated excellent hyperbilirubinemia (TSB ≥ 1.5 mg/dL) prediction sensitivity (80.0%) and
specificity (92.6%). However, their system also requires a color consistency patch.

Deep learning is commonly employed for image recognition and yields excellent
accuracies [12,13]. However, a significant drawback of the technique is the requirement
for extensive training data. To overcome such limitations, the Zeta Bridge Corporation
(Tokyo, Japan; https://www.zeta-bridge.com/) developed a human brain-like algorithm,
recognizing that these image features can provide critical insights. By leveraging this
approach, the algorithm can detect visual characteristics that traditional deep learning algo-
rithms cannot, hence improving image recognition performance. The algorithm is named
Algorithm Based on Human Brain (ABHB). ABHB was initially designed for deployment in
foreign object detection systems on production lines. The ABHB’s color analysis technology
presents a novel approach to accurately obtain color information from images captured
using ordinary cameras, regardless of the ambient light color conditions. Therefore, ABHB
is independent of any light sources and does not require a color consistency patch. The
present methodology enables an assessment to be conducted at any given time and location,
obviating the necessity for specialized supplementary apparatus.

Here, we aimed to identify and quantify jaundice in the eyes of adult patients by
ABHB using a smartphone camera.

2. Materials and Methods
2.1. Study Design and Protocols

This was a single-center, prospective, cross-sectional study. The inclusion criteria
for this study were adult participants aged between 20 and 79 years, presenting with
jaundice. The disease group comprised adults diagnosed with jaundice (total bilirubin ≥ 3

https://www.zeta-bridge.com/


Diagnostics 2023, 13, 1767 3 of 9

mg/dL according to the classical definition [14], while the control group must have been
free of jaundice (total bilirubin < 3 mg/dL) upon blood testing. Participants exhibiting
ocular conjunctival hyperemia or ophthalmologic conditions were excluded from the
study. Additionally, the investigator reserved the right to exclude any participant deemed
unsuitable for inclusion in the study. Between November 2021 and September 2022, we
enrolled patients with jaundice and normal control subjects in this study. The sample
size was between 24 and 50 according to the recommendation for feasibility and pilot
studies [15,16]. Two patterns (straight and upturned eyes) of facial images were captured
for each patient by a built-in camera equipped on a smartphone (1st generation iPhone
SE, Apple Inc., Cupertino, CA, USA) under normal white light without flash from a 10
to 30 cm distance. The rationale behind selecting a smartphone camera as the imaging
device instead of a specialized camera was rooted in the fact that approximately 5 billion
individuals currently utilize mobile devices [17]. Therefore, this study intended to leverage
the popularity of smartphone cameras and utilize them as medical imaging devices.

Each image was saved in JPEG format. Images were sent to Zeta Bridge Corporation,
affiliated with Sony Corporation, and processed using an ABHB and converted into hue
degree of Hue Saturation Lightness (HSL) color space (Figure 1). The ABHB business was
recently transferred to ForgeVision, Inc. (Tokyo, Japan; https://www.forgevision.com/
accessed on 16 May 2023). Image recognition can be applied to issues that are not suitable
for deep learning because ABHB does not require large-scale imaging data sets.
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Figure 1. The ABHB concept. When humans see a subject under a light source, the brain uncon-
sciously corrects the images. First, ABHB compensates for differences due to the light sources of the
RGB images. Subsequently, the RGB color values are numerically converted to hue, saturation, and
luminance values in the bi-conical 3D color space. ABHB, Algorithm Based on Human Brain; HSL,
Hue Saturation Luminance; and RGB, Red Green Blue.

The main part of the compensation algorithm consists of background masking, noise
reduction, and adjustment luminance, which the human brain naturally uses for recognition
(Figure 2A,B). This algorithm minimizes the influence of circumstances such as the light
source or distances. Finally, the color information is converted to an HSL image (Figure 2C).
Bilateral eyes, including the surrounding small part of the skin, are automatically extracted
from the two image patterns and the measured pixels of each hue degree (Figures 2D and
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3A). The highest maximum hue degree (MHD) was adopted for further analysis (Figures 3B
and 4). We obtained the patient’s data, such as biological gender, age, underlying diseases,
and total serum bilirubin (TSB) levels.
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Figure 2. The ABHB process for capturing eye images. (A) The normal captured eye image. (B) The
compensated image. (C) The HSL image. (D) Eye detection. ABHB, Algorithm Based on Human
Brain; HSL, Hue Saturation Luminance.
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Figure 4. Study scheme. (i) Capturing the two patterns (straight and upturned eyes) of facial
RGB images using an iPhone SE. (ii) Compensating via background masking, noise reduction, and
adjustment luminance. (iii) Conversion to an HSL image. (iv) Detecting the eyes. (v) Measuring
pixels for each hue degree. (vi) Extracting the maximum hue degree. The algorithm processing from
(ii) to (iv) is called ABHB. ABHB, Algorithm Based on Human Brain; HSL, Hue Saturation Luminance;
and RGB, Red Green Blue.

2.2. Statistical Analysis

We applied Welch’s t-test to compare the two groups as defined by the cutoff criteria.
We used the Spearman rank-order correlation coefficient (shown as rS) to evaluate the
correlation between two variables, and Kolmogorov–Smirnov Test to analyze the distri-
bution normality. All statistical tests were performed using StatFlex (Windows ver. 7.0;
Artech, Osaka, Japan). Values are expressed as median (interquartile range) or mean with
a standard deviation (SD). Categorical variables are shown as numbers. The statistical
significance was set at p < 0.05.

3. Results

The baseline patient characteristics are presented in Table 1. A total of 51 patients (39
men and 12 women, median age 66 (51–72) years) were enrolled in this study. The study
sample included 26 patients (18 men and 8 women, median age 61 (50–69) years) with
jaundice and 25 control subjects (21 men and 4 women, median age 69 (51–73) years). The
causes of jaundice included hepatobiliary cancer (n = 10), chronic hepatitis or cirrhosis
(n = 6), pancreatic cancer (n = 4), acute liver failure (n = 2), cholelithiasis or cholangitis
(n = 2), mass-forming pancreatitis (n = 1), and Gilbert’s syndrome (n = 1). The TSB of the
jaundice group and the control subjects was 9.57 ± 7.11 and 0.77 ± 0.35 mg/dL, respectively.

Table 1. Patient characteristics.

Patients Control (n = 25) Jaundice (n = 26)

Sex (Male/Female) 21: 4 18: 8
Median age (years) 69 (51–73) 61 (50–69)
Total bilirubin (mg/dL) 0.77 ± 0.35 9.57 ± 7.11

Underlying diseases

chronic hepatitis or cirrhosis (9)
liver cancer (3)
acute pancreatitis (1)
cholangitis (1)
others * (11)

hepatobiliary cancer (10)
chronic hepatitis or cirrhosis (6)
pancreatic cancer (4)
acute liver failure (2)
cholelithiasis or cholangitis (2)
mass-forming pancreatitis (1)
Gilbert’s syndrome (1)

* Others included patients with colon polyps (4), early gastric cancer (2), ulcerative colitis (1), pyogenic spondylitis
(1), and healthy volunteers (3).
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The maximum hue degree (MHD) was obtained from images of straight eyes in 36
people and upturned eyes in 15 patients. The average MHD was 37.2 ± 6.6 in the normal
group and 54.4 ± 16.1 in the subjects with jaundice. The optimal cutoff of the MHD to
identify jaundice was 40.8 (sensitivity 81% and specificity 80%), and the AUROC was
0.842 (Figure 5A). The MHD was moderately correlated to total bilirubin levels (rS = 0.528,
p < 0.001), and TSB was highest at an MHD of 56.3 (Figure 5B). The TSB level seemed
higher when the MHD was close to around 56.3. The histogram of patients with jaundice
demonstrated a normal distribution, and the median MHD was 54.8 (43.6–64.7) (Figure 5C).
It indicates that the MHD of the highest TSB level is close to the median MHD. The range of
jaundice distributes from an MHD of 40.8 to 100, and around an MHD of 56.3 is considered
“typical” and “severe” jaundice.
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Figure 5. Receiver Operating Characteristic curve of MHD for detecting jaundice and the correlation
of TSB and MHD. (A) The optimal MHD cutoff to identify jaundice was 40.8 (sensitivity 81% and
specificity 80%), and the AUROC was 0.842. (B) MHD was moderately correlated to TSB levels
(rS = 0.510, p < 0.001). TSB was highest at MHD = 56.3. (C) The histogram of jaundice cases had a
normal distribution. The median MHD was 54.8, and the TSB was highest at MHD = 56.3. (D) TSB

level (≥ 5 mg/dL) can be estimated by the formula 21.1603 − 0.7371 ×
√
(56.3 − MHD)2. MHD,

maximum hue degree; TSB, total serum bilirubin.
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It is suggested that the farther away from an MHD of 56.3 (the highest TSB), the lower

the TSB value. Thus, the deviation from 56.3 was calculated by
√
(56.3 − MHD)2. The

TSB level and the deviations were moderately negatively correlated to a TSB > 5 mg/dL
(rS = −0.662, p = 0.003) (Figure 5D). However, this formula is unsuitable for quantifying
TSB 3–5 mg/dL because some cases of lower-range TSB are distributed around the MHD
of 56.3.

4. Discussion

In this pilot study, we demonstrated that ABHB-based conjunctiva optical imaging
could non-invasively identify and partially quantify jaundice. This is the first report on
novel image recognition technology for identifying and quantifying jaundice in adults
using a smartphone without any specific attachments and deep learning.

The study of objective color perception has a long history. In 1931, the Commission
Internationale de l’Éclairage (CIE) proposed a color measurement system, which laid the
foundation for contemporary colorimetry. This system enables the determination of color
matches by employing CIE XYZ tristimulus values for color specification. The XYZ color
space, also known as the CIE 1931 XYZ color space, is a mathematical representation of
colors based on the trichromatic theory of human vision [18]. It exhibits “color differences”.

The “BiliCam” study used the XYZ color space [9]. The authors dedicated their efforts
to implementing ambient subtraction by capturing two images: one with flash and another
without flash. On the other hand, Padidar et al. used HSI color space with machine
learning [19]. They used a color calibration card and 100X microscope on the built-in
camera of the phone. They reported that the estimation of bilirubin levels had a correlation
of 0.479 with the total serum bilirubin values. Our result (0.528) was better than theirs
without any color calibration cards, special microscopes, or datasets for machine learning.

Among color spaces, HSL, HSI, and HSV are perceptually based color models that
simplify the representation of colors by separating hue, saturation, and lightness (or
intensity/value) components. In graphic applications, HSL and HSI are two alternative
color spaces used to represent colors. The conversion between XYZ and HSL/HSI enables
the translation and manipulation of colors between these color spaces, catering to various
color-related applications and requirements. HSL and HSI color spaces are generally
regarded as equivalent. The main difference between HSL and HSI is in the way they
define the brightness or lightness of a color. Notably, the HSL color space primarily
concentrates on the perceptual dimensions of color, with a particular emphasis on the
human perception of hue [20].

Most other studies using smartphones maintained consistent conditions by fixing the
light source and distance or employing a color consistency patch [7–11,19,21–24]. Typically,
cameras modify color information via their built-in auto white balance function to minimize
the effect of ambient light colors, ensuring that captured images appear natural when
viewed by human observers. Due to variations in change logic across camera models and
manufacturers, restoring accurate color information is currently a formidable task. The
measuring instruments of color images generally give different results depending on the
light source conditions. The ABHB system presents an innovative approach that obviates
the requirement for both, enabling any device to perform objective judgments akin to the
cognitive processes of the human brain, regardless of the prevailing light source.

Deep learning exhibits great promise as a technology with substantial potential for
further advancement within the realm of medical applications. Kalbande et al. evaluated
two models, ResNet50 and Detectron-2, for detecting jaundice [13]. They employed a
pre-trained dataset that underwent fine-tuning specifically for jaundice detection, resulting
in an accuracy of approximately 95%. Although their results were commendable, the
manuscript lacks pertinent details concerning the background data, including the levels of
jaundice. Undoubtedly, deep learning will serve as an influential tool for image recogni-
tion. However, ABHB presents an alternative approach that circumvents the necessity for
extensive datasets.
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We have previously reported on predicting risky esophageal varices by only taking an
abdominal picture using a smartphone application [25]. We believe that in the future, the
acquisition of physical parameters from images of patients will become a standard practice
in clinical settings, particularly in telemedicine and self-medication.

Moreover, we envision that the integrated camera of an ABHB-equipped smartphone,
with its potential for evolution, could transform into a visionary recognition system rem-
iniscent of the healthcare-providing prototype robot “Baymax” portrayed in the Disney
animated series.

This study has several limitations. First, the cohort studied represented a small group
of patients with jaundice. Therefore, selection bias was inevitable. However, based on
the promising results of this pilot study, a large-scale cohort study will be conducted for
validation. Second, quantification was not well demonstrated between 3 and 5 mg/dL. It
was because of the case variability in the lower range of TSB; a large-scale cohort study
would also improve the correlation.

5. Conclusions

In conclusion, the implementation of ABHB-based luminance and color adjustments al-
lows for the development of a straightforward color assessment system that is independent
of the light source and distance. Our system does not rely on color consistency patches or
deep learning techniques, yet it demonstrated the capability to detect total serum bilirubin
levels of 3 mg/dL with sensitivities and specificities reaching approximately 80%.
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