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Abstract: Glaucoma is characterized by increased intraocular pressure and damage to the optic nerve,
which may result in irreversible blindness. The drastic effects of this disease can be avoided if it is
detected at an early stage. However, the condition is frequently detected at an advanced stage in
the elderly population. Therefore, early-stage detection may save patients from irreversible vision
loss. The manual assessment of glaucoma by ophthalmologists includes various skill-oriented, costly,
and time-consuming methods. Several techniques are in experimental stages to detect early-stage
glaucoma, but a definite diagnostic technique remains elusive. We present an automatic method
based on deep learning that can detect early-stage glaucoma with very high accuracy. The detection
technique involves the identification of patterns from the retinal images that are often overlooked
by clinicians. The proposed approach uses the gray channels of fundus images and applies the data
augmentation technique to create a large dataset of versatile fundus images to train the convolutional
neural network model. Using the ResNet-50 architecture, the proposed approach achieved excellent
results for detecting glaucoma on the G1020, RIM-ONE, ORIGA, and DRISHTI-GS datasets. We
obtained a detection accuracy of 98.48%, a sensitivity of 99.30%, a specificity of 96.52%, an AUC of 97%,
and an F1-score of 98% by using the proposed model on the G1020 dataset. The proposed model may
help clinicians to diagnose early-stage glaucoma with very high accuracy for timely interventions.

Keywords: glaucoma; fundus images; deep learning; early-stage detection; augmentation

1. Introduction

The major components of the human eye involved in vision are the cornea, pupil,
iris, lens, retina, optic nerve, and tears [1]. The iris is located between the cornea and the
lens and controls the light. The retina receives the light and transfers it to the brain for
recognition by converting it into electrical signals. At the backside of the eye is a nerve
known as the optic nerve, which comprises 1 million nerve fibers of the retinal ganglion
cells [2]. The primary function of this nerve is to transfer visual signals from the retina to
the occipital cortex.

The human eye contains a fluid known as aqueous humor, which is continuously
recycled. An obstruction in the drainage of aqueous humor leads to increased intraocular
pressure (IOP). Consequently, the retina and optic nerve are damaged, which may lead to
vision loss [3]. This is partly due to the degeneration of ganglion cells in the retina [2,4].
The loss of optic nerve fibers changes the shape of the optic disc (OD) towards an increase
in the cup-to-disc ratio (CDR), which is an early sign of glaucoma [5]. The anatomy of the
eye is depicted in Figure 1 [6]. The visual loss in glaucoma is due to damage to the retinal
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ganglionic cells [7,8]. The alterations in the visual field scope are essential for diagnosing
glaucoma [6]. Figure 2 shows the enlarged CDR in an eye with glaucoma [5].
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Glaucoma is the second leading cause of blindness worldwide. About 80 million
people [9] were affected by glaucoma worldwide in 2020, and the number may increase to
111.8 million by 2040 [10] There are several types of glaucoma, but the most common is
open-angle glaucoma, which affects nearly 57.5 million people worldwide [10]. Regular
checkups by ophthalmologists after age 50 can reduce the risk of developing glaucoma.
Figure 3 shows the retinal fundus images of a healthy control and patients with early,
moderate, and advanced-stage glaucoma from the RIM-ONE dataset [11].
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Ophthalmologists use multiple manual methods to diagnose glaucoma, including
gonioscopy, pachymetry, tonometry, and perimetry [12]. In tonometry, the IOP, a major risk
factor for glaucoma, is measured. Gonioscopy measures the angle between the iris and
cornea. Pachymetry measures the corneal thickness. However, these manual assessment
methods for glaucoma detection are very time consuming and subjective. Further, they
largely depend on the availability of ophthalmologists, which can be a limiting factor in
remote areas. Therefore, there is currently a need for the development of automated tools
that can efficiently diagnose glaucoma at an early stage.

Artificial intelligence technologies have grown significantly in recent years. Many
efforts are being undertaken in healthcare to integrate AI technology for practical medical
treatments [13–15]. Computer-aided diagnostic (CAD) tools for automatically detecting
glaucoma are common in clinical practice. The applications of machine learning and, most
recently, deep learning (DL) algorithms [16–19] have increased the diagnostic accuracy of
these automated tools for detecting glaucoma.

Here, an efficient and fully automated system that is based on deep learning architec-
ture and can efficiently diagnose early-stage glaucoma on given datasets is proposed. The
following are the main contributions of this work:

• The most notable recent machine learning and deep learning-based glaucoma detection
research is thoroughly reviewed to define the problem, focusing on various features
that can support an efficient diagnosis.

• For the diagnosis, a model is developed employing advanced deep learning methods
along with transfer learning, and the model is tuned using various techniques to lower
the likelihood of model overfitting.

• Multiple datasets of glaucomatous retinal images are adopted to train and test the
model to achieve higher diagnostic accuracy.

• An end-to-end learning system that overcomes the drawbacks of current glaucoma
screening methods is developed.

The remaining part of the paper is organized into the following themes: The previous
work by other researchers is explained in Section 2. Section 3 explains the proposed method-
ology. Section 4 describes the experimentation and results of the proposed model. Section 5
presents a discussion of the results, and Section 6 presents a conclusion summarizing the
key findings.

2. Literature Review

Researchers have developed several techniques for the detection of glaucoma. Among
these techniques, machine learning-based methods [20] manually extract the features
and perform classification by using different machine learning classifiers. Recently, deep
learning models, such as convolutional neural networks (CNNs), have been widely used
to diagnose diseases automatically without human involvement. Glaucoma detection
through CNNs is performed by various researchers [21–30]. The CNN-based systems
perform effective computation and provide robust results for disease classification. A
CNN consists of different layers, such as convolutional, activation, pooling, and the fully
connected layer (FCL). Each architecture consists of a different combination of these layers.
The diagnosis and detection of other retinal diseases such as papilledema [23,31], diabetic
retinopathy [23], central serous retinopathy (CSR) [32,33], and hypertensive retinopathy [22]
can be performed through deep learning and machine learning methodologies using OCT
and fundus images [5,30]. Diabetes and other eye diseases have been successfully diagnosed
by DL techniques [23].

The application of the CAD system has widened the diagnostic horizon in several other
disease diagnoses, such as CSR [33], lung tumor [34], brain tumor [35], skin tumor [17], and
prostate cancer [18]. The fundus images provide a clear picture of the eye’s internal structure
and are widely used for glaucoma diagnosis. The glaucoma classification using fundus
images through DL models has shown encouraging results [36,37]. The fundus images
clearly depict the optic nerve head and are readily available for training the glaucoma
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detection models [38]. Various models based on pre-trained CNN models [14,39], ensemble
approaches [40–42] and CNN-based architectures are encountered in this article for the
detection of glaucoma.

Serte and Serener developed a glaucoma detection model using an ensemble approach
based on a local dataset of 1542 fundus images [40]. The model cropped the OD by using a
graph saliency region technique. Three CNN architectures, namely ResNet-50, ResNet-152,
and AlexNet, were used as the ensemble classifiers in this model. All three methods,
including without saliency map, with saliency map and single CNN model, and with
saliency map and ensemble approach, were tested, and the best results were obtained
for the ensemble approach with an AUC of 94% and accuracy of 88%. Chaudhary and
Pachori developed a glaucoma detection model based on two methods, using RIM-ONE,
ORIGA, and DRISHTI-GS datasets [41]. The 2D Fourier–Bessel series expansion-based
empirical wavelet transform was used for the segmentation of the boundary. Two methods
were used, one depending on the ML model and the other using the ensemble approach
of the CNN architecture ResNet. The first model at full scale obtained the best results.
The best results with the second method were obtained with the ensemble technique
at a full scale with 91.1% accuracy, 91.1% sensitivity, 94.3% specificity, 83.3% AUC, and
96% ROC. GlaucomaNet [42] was proposed to identify POAG based on dataset images
from different populations and settings. The model comprises two CNNs intended to
mimic the human grading process. To this end, the first CNN learns the discriminative
features, whereas the second fuses the features for grading. This simulation of the human
grading process combined with an ensemble of network architectures greatly enhanced the
diagnostic accuracy.

Thakoor et al. developed a model based on different CNN architectures trained on
OCT images and also used some pre-trained models to detect glaucoma [14]. The pre-
trained ResNet, VGG, and InceptionNet were combined with random forest and compared
with the CNN architectures trained on OCT images. A high accuracy of 96.27% was
achieved with the CNN trained on the OCT images. Hemelings et al. proposed an approach
for glaucoma detection using pre-trained ResNet-128 architecture with 7083 OD center
fundus images [39]. The transfer and active learning approaches were used to enhance
the diagnosis capability of the model. The use of a saliency map highlighted the affected
region to provide evidence of the disease. The model achieved robust results with an AUC
of 99.55%, a specificity of 93%, and a sensitivity of 99.2% for glaucoma detection.

Yu et al. [4] developed a model using a modified version of U-Net architecture in
fundal images for glaucoma diagnosis using multiple datasets. The U-Net used the pre-
trained ResNet-34 as an encoder and the classical U-Net architecture as a decoder. The
model showed good performance as 97.38% of disc dice values and 88.77% of cup dice
values were aligned with the DRISHTI-GS test set. Other authors proposed an approach
named AG-CNN, which detected glaucoma and localization of pathological areas using the
fundus images [6]. The model is based on attention prediction, localization of the affected
area, and glaucoma classification. The deep features predicted glaucoma through the visual
maps of necrotic areas in the LAG and RIM-ONE datasets. The use of attention maps
for localizing the pathological area demonstrated high efficacy. The model prediction for
glaucoma was superior to previous models, with an accuracy of 95.3%.

Phan et al. developed a model based on three CNN architectures, ResNet-152, VGG19,
and DenseNet201, for diagnosing glaucoma on 3312 retinal fundus images [25]. The
proposed model has also been tested on poor-quality images to examine its diagnostic
accuracy in glaucoma. All the architectures achieved an AUC of 90% for detecting glaucoma.
Liao et al. [43] proposed a novel CNN-based scheme that used ResBlock architecture
to diagnose glaucoma using the ORIGA dataset. The model diagnosed glaucoma and
provided a transparent interpretation based on visual evidence by highlighting the affected
area. The model named EAMNet contained three parts: ResNet architecture extracted
the features and aggregation, and the multiple-layer average pooling (M-LAP) linked the
semantic detail and information of the localization, while the evidence activation map
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(EAP) was used for the evidence of the affected area the physician used for the final decision.
The activation map was used to provide the clinical basis for glaucoma. The proposed
scheme efficiently diagnosed glaucoma, with an AUC of 0.88.

Researchers developed the G-Net model based on CNN to detect glaucoma in the
DRISHTI-GS dataset [44]. The model used two neural networks (U-Net) to separate the
disc and cup. The cropped fundus images in the red channel were fed to the model. The
model contained 31 layers of convolutional, max-pooling, up-sampling, and merge layers.
The filters applied were of sizes (3, 3), (1, 1), and (1, 32), and 64 filters were used on different
layers. The model labeled the pixel as black on segmenting the OD in the real image and
white otherwise. The output images were fed to the other model to segment the cup. The
second model was like the first model, with a single difference in the size of the filters (4, 4).
The output of this model was a segmented cup. These two outputs were used to calculate
the CDR for the glaucoma prediction. This algorithm used two neural networks to obtain a
high accuracy of 95.8% for OD and 93.0% for OC segmentation.

Researchers developed a model based on CNN for glaucoma detection using 1110 OCT
images and compared its performance with the ML algorithms [45]. A total of 22 features
were extracted and fed to different machine learning classifiers such as NB, RF, SVM, LR,
Gradient Adaboost, and Extra Trees. The CNN model classified and achieved better results
with an AUC of 0.97 than other machine learning approaches, such as logistic regression,
with an AUC of 0.89.

Thakur et al. proposed a model capable of diagnosing glaucoma before the onset of
the disease [46]. Three deep learning models were trained on 66,721 fundus images that
can detect glaucoma, such as 1 to 3 years ago, 4 to 7 years ago, and before the onset of
glaucoma. All three models achieved AUCs of 0.88, 0.77, and 0.97 in detecting glaucoma.
Lima et al. developed a CNN model for the optic cup segmentation for the detection of
glaucoma [47]. The modified U-Net architecture segmented the optic cup from the green
channel image, and the optic disc mask was given as input. The model achieved a dice
value of 94% on the DRISHTI dataset.

Maheshwari et al. presented a model that converted the images into RGB channels
after dividing the dataset images into training and testing images [15]. The LBP-based
augmentation was applied to obtain the best results. The model achieved 98.90% accuracy,
100% sensitivity, and 97.50% specificity. Lima et al. used a genetic model based on CNN
with 25 layers using the RIM-ONE dataset to diagnose glaucoma [12]. The model achieved
an accuracy of 91% in detecting glaucoma. Saxena et al. developed a six-layer CNN model
for glaucoma detection using the SCES and the ORIGA datasets [13]. The ROI was extracted
using the ARGALI approach, and the data augmentation technique was used to avoid
the overfitting problem. The model achieved excellent results, with an AUC of 0.882 on
SCES and 0.822 on ORIGA datasets. Elangovan and Nath developed a CNN-based model
consisting of 18 layers for glaucoma detection [48]. The model was based on DRISHTI–
GS1, ORIGA, RIM–ONE2 (release 2), ACRIMA, and LAG datasets. The best results were
obtained with the ACRIMA dataset, achieving 96.64% accuracy, 96.07% sensitivity, 97.39%
specificity, and 97.74% precision. Aamir et al. [49] developed a multi-level CNN model
for diagnosing glaucoma. The fundus images were preprocessed to reduce noise with
the adaptive histogram equalizer technique. The model classified the fundus images for
glaucoma detection into advanced, moderate, and early categories. The model achieved a
sensitivity of 97.04%, a specificity of 98.99%, an accuracy of 99.39%, and a PRC of 98.2%
on 1338 fundus images. Raja et al. [50] proposed a technique for diagnosing glaucoma
using a dataset of 196 OCT images. The proposed model used CNN and calculated the
CDR with 94% accuracy, 94.4% sensitivity, and 93.75% specificity in detecting glaucoma.
Carvalho et al. [51] proposed a 3DCNN algorithm for diagnosing glaucoma through the
fundus images of RIM-ONE and DRISHTI-GS datasets. The 2D fundus images were
converted into 3D volumes for each RGB and gray channel. The CNN was trained on all
four channels and showed the best results on a gray channel with 83.23% accuracy, 85.54%
sensitivity, 80.95% specificity, 83.2% AUC, and 66.45 Kappa.
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Gheisari et al. developed a combined model based on a CNN and a recurrent neural
network for diagnosing glaucoma using retinal fundus images [52]. The diagnostic results
were achieved with an F-measure of 96.2% on 295 videos and 1810 fundus images. Veena
et al. developed a CNN model for the detection of glaucoma [53]. The images were
preprocessed to eliminate the noise using the Gaussian filter. The Sobel edge and the
watershed algorithms extracted the features from the fundus images. The model achieved
the OD and OC segmentation accuracies of 0.9845 and 0.9732, respectively, on the DRISHTI
dataset. The achieved results are 98.48% accuracy, 99.3% sensitivity, 96.52% specificity,
97% AUC, and 98% of F1-score on the G1020 dataset.

Recently, Fan et al. [54] assessed the diagnostic precision, generalizability, and ex-
plainability of a Vision Transformer deep learning method in diagnosing the primary
open-angle glaucoma and identifying the salient areas found in the retinal images. A dual
learning-based technique that combines deep learning and machine learning was proposed
by Thanki [55]. For identifying distinctive retinal characteristics, a deep neural network
extracts deep features. Following that, a hybrid classification algorithm is employed to
accurately classify glaucomatous retinal images. The following Table 1 shows the summary
of year-wise published studies for the detection of glaucoma.

Table 1. Summary of Literature Review.

Sr. No. Authors Year Model Datasets Results

1 Yu et al. [4] 2019
Pre-trained

U-Net,
ResNet

RIGA,
DRISHTI-GS,

RIM-ONE

Dice 97.38% (Disc)
Dice 88.77% (Cup)

2 Li et al. [6] 2019 CNN LAG,
RIM-ONE Accuracy 95.3%

3 Phan et al. [25] 2019
ResNet-152,

DenseNet201,
VGG19

Local dataset
of 3777 images AUC 0.9

4 Liao et al. [43] 2019 ResNet ORIGA Accuracy 0.88

5 Serte et al. [40] 2019

ResNet-50,
ResNet-152,

and
GoogleNet
(ensemble
method)

HRF,
DRISHTI-GS1,

RIMONE,
sjchoi86-HRF,

ACRIMA

Accuracy 53%,
AUC 83%,

specificity 100%

6 Juneja et al. [44] 2019 U-Net DRISHTI-GS

Accuracy 95.8%
(OD segmentation),

93.0% (OC
segmentation)

7 Maetschke et al. [45] 2019 CNN Local dataset
of 1110 images AUC 0.94

8 Thakoor et al. [14] 2019 Pre-trained
CNN

Local dataset
of 737 images Accuracy 96.27%

9 Maheshwari et al. [15] 2020 AlexNet RIM-ONE
Accuracy: 98.90%
Sensitivity: 100%

Specificity: 97.50%

10 Lima et al. [12] 2020 CNN RIM-ONE r3 Accuracy 91%

11 Saxena et al. [13] 2020 CNN ORIGA, SCES
AUC 0.822
(ORIGA)

AUC 0.882 (SCES)

12 Thakur et al. [46] 2020 MobileNet
v2

Local datasets
of 45,301,

42,601, and
42,498 images

AUC 0.97

13 Hemelings et al. [39] 2020 Pre-trained
ResNet 128

Local dataset
of 1424 images

AUC 0.995
Sensitivity 99.2%
Specificity 93%
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Table 1. Cont.

Sr. No. Authors Year Model Datasets Results

14 Elangovan and Nath [48] 2020 CNN

RIM-ONE,
DRISHTI–GS1,
ORIGA, LAG,

ACRIMA

Accuracy 96.64%,
sensitivity 96.07%,
specificity 97.39%,
precision 97.74%

15 Aamir et al. [49] 2020 ML-DCNN
Local dataset

of 1338 fundus
images

Sensitivity 97.04%,
specificity 98.99%,
accuracy 99.39%,

PRC 98.2%

16 Raja et al. [50] 2020 CNN
Local dataset
of 196 OCT

images

Accuracy 94%,
sensitivity 94.4%,
specificity 93.75%

17 Gheisari et al. [52] 2021 CNN, RNN

295 videos and
local dataset of

1810 fundus
images

F-measure 96.2%

18 Chaudhary and Pachori [41] 2021
Ensemble

ResNet
Models

RIM-ONE,
ORIGA, and
DRISHTI-GS

Accuracy 91.1%,
sensitivity 91.1%,
specificity 94.3%,

AUC 83.3%,
ROC 96%

19 Carvalho et al. [51] 2021 3DCNN RIM-ONE and
DRISHTI-GS

Accuracy 83.23%,
sensitivity 85.54%,
specificity 80.95%,
AUC 83.2%, and

Kappa 66.45%

20 Lin et al. [42] 2022 CNN OHTS and
LAG

Accuracy 0.930
(OHTS) and 0.969

(LAG)

21 Veena et al. [53] 2022 CNN DRISHTI-GS Accuracy 98%
(OD), 97% (OC)

22 Fan et al. [54] 2023 CNN

Custom
assembled

from 5 public
datasets

AUC 0.91

23 Thanki [55] 2023 Deep NN DRISHTI-GS
and ORIGA Accuracy 100%

3. Proposed Methodology

The innovation in artificial intelligence may help in a fast and accurate diagnosis of
diseases. The proposed model is developed using the ResNet-50 robust image classifica-
tion architecture. The fundus imaging modality is used as it precisely depicts the eye’s
internal structure. The applications of fundus images are numerous for many other disease
diagnoses, such as cataracts, retinopathy of prematurity, DR, and age-related macular
degeneration (AMD) [56]. Figure 4 depicts the flow diagram of the proposed model.

3.1. Dataset

In this research, four publicly available datasets are used for testing and training the
model: (i) G1020 [57], (ii) DRISHTI-GS [58], (iii) RIM-ONE [11], and (iv) ORIGA [59]. The
G1020 dataset comprises 1020 fundus images with high resolution, CDR calculation, OD
and OC segmentation, size of the neuro-retinal rim in inferior, superior, nasal, and temporal
regions, and location of the bounding box for OD for glaucoma detection. The images
in the dataset are only focused on the fundus region by removing the unrelated region.
The size of the images is between 1944 × 2108 and 2426 × 3007 pixels. The dataset is
publicly available.
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The DRISHTI-GS dataset contains OD and OC segmented and ground truth images.
This dataset contains 101 images, of which 31 are healthy and 70 include eyes with glaucoma.
The fundus images in this dataset are focused on the OD with a field of view of 30 degrees,
and the image resolution is 2896 × 1944 pixels in PNG format. Six experts performed the
manual annotation of OD and OC in this dataset. This dataset is publicly available. The
RIM-ONE dataset comprises 169 ONH segmented high-resolution fundus images. The
images are captured with a fundus camera (Nidek AFC-210). There are four categories of
images, including 118 normal, 12 early glaucoma, 14 moderate, 14 deep, and 11 images
for ocular hypertension. These images are also publicly available. The ORIGA dataset
comprises 650 segmented and annotated images. Every image is labeled with grading
information. This dataset can be used for image processing algorithms and the method for
detection of peripapillary atrophy (PPA) detection and the junction of the disc boundary
blood vessels.

3.2. Image Preprocessing

Image preprocessing is performed to expand the image quality for further analysis.
This often helps to produce more robust results from the CNN architecture. The greyscale
images are obtained from all the training images collected from the G1020, DRISHTI-
GS, ORIGA, and RIM-ONE datasets. The grayscale image modality provides a clear and
sharper view of the fundus images, as displayed in Figure 5 [57]. The grayscale morphology
synthesizes all pixels with a homogeneous intensity value. All the training images are
converted into gray channels. The OD-centered images in grayscale are fed to the ResNet-50
model for training.
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3.3. Data Augmentation

The data augmentation technique has been used to increase the number of images
when the available data are inadequate for statistical and biological significance. The
augmentation technique is a better approach to overcome this problem due to the limited
availability of images in the medical field. This technique slightly modifies the existing
data to create more copies of the data. The data augmentation technique can also over-
come the overfitting of the deep learning models by enhancing the model’s performance
and diagnostic capability. Different techniques are applied, such as flipping the images
horizontally and vertically, rotation, cropping, and scaling.

3.4. Transfer Learning

The deep learning model’s training from scratch is tedious work requiring a large image
dataset and efficient hardware. Additionally, it also requires more training time. The transfer
learning approach uses the pre-trained model, which is trained on a large number of images
such as ImageNet [60]. It transfers the knowledge learned from the model to another model
even if the field is different [61]. The pre-trained model is trained according to the new data
by changing some parameters. In this work, the pre-trained CNN architecture ResNet-50 is
retrained on the G1020, ORIGA, RIM-ONE, and DRISHTI-GS datasets.

3.5. Convolutional Neural Network

The CNN is a multilayer DL network that obtains the input as high-dimension data
(images) and progressively extracts high-dimension features from the input images. The
CNN architectures consist of different numbers of layers, which increase as the size of the
input images increases. The network learns more accurately as it goes deeper. However,
the major drawback of the deeper networks is the increase in computation time. CNNs
have shown promising image processing, object detection, image segmentation, image
classification, video processing, and natural language processing features [61]. The appli-
cations of CNN architectures have shown tremendous results for disease diagnosis in the
medical sciences.

3.6. ResNet-50 Architecture

The ResNet is the short form of the residual network, and it solves the vanishing gra-
dient problem by using the skip connection approach. Before ResNet, network degradation
problems occurred due to increased network depth. The result of this degradation was a
higher training error. To overcome this problem, the skip connection technique is applied
in the ResNet architecture. This architecture shows higher detection accuracy, takes less
training time, and is easier to optimize. The ResNet architecture has several applications for
image processing and diagnosis of diseases in the medical field. Additionally, it has shown
excellent results for object detection and face recognition. Figure 6 shows the architecture of
ResNet-50 [62]. The difference in the ResNet-50 from the earlier ResNet-18 and ResNet-34 is
skipping three layers instead of two and using a 1 × 1 convolution layer. There are 50 ayers
in this architecture, and it is capable of classifying data into seven classes. It is widely
applied for image recognition, object localization, and object detection. Consequently, it
has considerably reduced computational costs [63].

The block diagram of the proposed methodology for glaucoma detection is shown in
Figure 4. The proposed methodology consists of the following steps:

• Acquire the fundus images from different publicly available datasets.
• Convert the fundus images into grayscale.
• Apply the data augmentation approach to multiply the number of images by flipping,

rescaling, and rotation after dividing the dataset into training and testing sets. Further,
80% of the images in the dataset are used for training, 10% of images for validation,
and the remaining 10% for testing.

• Pre-trained DL architecture, such as the ResNet-50, is used for classification.
• The model classifies an image as either a healthy or glaucomatous image.
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4. Experiments and Results

The proposed model is evaluated using performance metrics such as accuracy, sen-
sitivity, and specificity. There are four possibilities for the classified images, namely true
positive, true negative, false positive, and false negative. The true positive labels the image
as affected by glaucoma, and it is a correct prediction. The true negative labels the image
as a healthy image, and it is also correctly classified. The false positive erroneously labels
an image as a glaucoma-affected, otherwise healthy image. The false negative incorrectly
labels a glaucoma-affected image as a healthy image.

The accuracy is the measure of the correctly labeled images divided by the total
number of images. It can be calculated as in Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

The sensitivity represents the correctly classified images affected by glaucoma. It is
calculated as in Equation (2):

Senstivity =
TP

TP + FN
(2)

The specificity represents the correctly classified healthy images. It can be calculated
as Equation (3):

Speci f icity =
TN

TN + FP
(3)

The F1-score can be calculated as in Equation (4):

F1 − Score =
2TP

2TP + FP + FN
(4)

The dataset’s fundus images were divided into three subcategories: training, vali-
dation, and testing. We used 80% of the images for the training of the model, 10% for
model validation, and the remaining 10% for testing. All the images were resized to the
same size and centered on the optic disc. Moreover, the model was trained using the
SDG solver with a learning rate of 0.001 on ten epochs in Python with a system configu-
ration of Intel/Xeon/CPU E3-1225, 3.3 GHz, and 16 GB RAM. The computational time
for training of model on these datasets was 30 min. Figure 7 shows the number of images
before and after data augmentation. Four datasets, namely G1020, RIM-ONE, ORIGA,
and DRISHTI-GS, were used. The ResNet-50 architecture achieved robust results with
98.48% accuracy, 96.52% specificity, 99.30% sensitivity, 97% AUC, and an F1-score of 98%
on the G1020 dataset. The comparison of the proposed model with the previous studies
is shown in Table 2. Figures 8–10 show the accuracy and error rate for the training data
using ResNet-50 over G1020, DRISHTI-GS, RIM-ONE, and ORIGA datasets, respectively.
Figure 11 shows the confusion matrix of validation data of all four datasets.
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Table 2. Comparison Table of the Proposed Model with State-of-the-Art Models.

Sr # Authors Dataset AUC Accuracy Sensitivity Specificity F1-Score

1 Lima et al. [12] RIM-ONE r3 91% - - - -

2 Saxena et al. [13] SCES 88.2% - - - -

3 Thakoor et al. [14] Local dataset
of 737 images - 96.27% - - -

Fan et al. [54]

OHTS

-

91%

- - -
DIGS 74%

ACRIMA 74%

LAG 79%

RIM-ONE 90%

ORIGA 55%

Lin et al. [42] OHTS
LAG 90.4% 93% 49%

Thanki [49] ORIGA 69.7% 76.2% 100% 73%

Veena et al. [53] DRISHTI–GS 98% 95.41%

4 Gomez-Valverde et al. [64] Local dataset of
2313 images 94% 87.01% 89.01% 89.01% -

5 Christopher et al. [65] Local dataset of
14,822 images 97% 88% 95% 95% -

6 Thakur et al. [46]

Local datasets of
45,301, 42,601,

and 42,498
images

97% - - - -

Proposed
Method

RIM-ONE 94.2% 96.15% 97.85% 92.38% 97%

ORIGA 93% 92.59% 98.39% 79.26% 95%

G1020 97% 98.48% 99.30% 96.52% 98%

DRISHTI-GS 96% 97.03% 93.75% 98.55% 97%
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5. Discussion

The proposed model uses the deep learning architecture ResNet-50 to diagnose early-
stage glaucoma using fundus images. Four datasets, G1020, DRISHTI-GS, RIM-ONE,
and ORIGA, were used for the proposed model’s training, validation, and testing. The
capability of deep learning models for automatic identification of the pattern from images
has smoothed the data for obtaining robust results for disease detection. The greater
number of layers in the model requires more training time, and sometimes deeper models
take several weeks for training, which is not optimal in clinical settings. The pre-trained
ResNet-50 architecture can best classify the images in reduced computation time. The
training of the model from scratch requires a large amount of data and training time. So,
the transfer learning approach is applied to save computation time and achieve robust
diagnostic results. The use of pre-trained models while training the CNN architectures for
a new task has made it possible to develop a fast and reliable diagnosis system, despite the
limited availability of the required data. The dataset’s limited images cause overfitting of
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the model, but the data augmentation technique overcomes this problem. Many images can
be created from a single image, providing a large dataset for the DL models for training.

The fundus images are a cheap solution for the diagnosis of glaucoma. The fundus
images in the gray channel depict the lesion more precisely and clearly indicate the affected
region. The G1020, RIM-ONE, ORIGA, and DRISHTI-GS datasets, which contain the OD
segmented images, were applied. The proposed model has exhibited glaucoma detection
with 98.48% accuracy, 99.30% sensitivity, 96.52% specificity, an AUC of 97%, and an F1-score
of 98% on the G1020 dataset. The proposed model’s results on the ORIGA dataset include
92.59% accuracy, 98.39% sensitivity, 79.26% specificity, 93% AUC, and 95% F1-score. The
RIM-ONE dataset has shown 96.15% accuracy, 97.85% sensitivity, 92.38% specificity, 94.2%
AUC, and 97% F1-score on the proposed model. The DRISHTI-GS has shown 97.03%
accuracy, 93.75% sensitivity, 98.55% specificity, 96% AUC, and 97% F1-score. The results of
the proposed model on all four datasets are shown in Table 2.

The proposed model has shown more robust results than the existing techniques on
the G1020 dataset. Due to the wide availability of high-resolution images in the G1020
dataset, the best performance of the proposed model is obtained on the G1020 dataset.
The performance of the proposed model is poor on the ORIGA dataset compared to other
datasets in terms of specificity. This is due to poor preprocessing results on the images of
the ORIGA dataset through the proposed technique.

6. Conclusions

Glaucoma can severely damage the eyes and leads to irreversible vision loss if left un-
treated. Several methods are developed for glaucoma diagnosis using various approaches.
The proposed model has used four different datasets and shows high efficacy for diag-
nosing glaucoma at an early stage using the gray channel of fundus images. The model
uses the data augmentation technique to provide a wide variety of fundus images for
the training. The proposed model has shown 98.48% accuracy, 99.30% sensitivity, 96.52%
specificity, AUC of 97%, and an F1-score of 98% on the G1020 dataset with the ResNet-50
architecture. The self-interpretation of CNN architectures to detect the abnormalities for
disease diagnosis may assist clinicians in the timely diagnosis and treatment of glaucoma.
In the future, new models based on both the fundus and the OCT images can be developed
to diagnose early-stage glaucoma using a multimodal imaging approach.
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