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Abstract

Genetic liability to substance use disorders can be parsed into loci that confer general or 

substance-specific addiction risk. We report a multivariate genome-wide association meta-analysis 

that disaggregates general and substance-specific loci for published summary statistics of 

problematic alcohol use, problematic tobacco use, cannabis use disorder, and opioid use disorder 

in a sample of 1,025,550 individuals of European descent and 92,630 individuals of African 

descent. Nineteen independent SNPs were genome-wide significant (P < 5e-8) for the general 

addiction risk factor (addiction-rf), which showed high polygenicity. Across ancestries, PDE4B 
was significant (among other genes), suggesting dopamine regulation as a cross-substance 

vulnerability. An addiction-rf polygenic risk score was associated with substance use disorders, 

psychopathologies, somatic conditions, and environments associated with the onset of addictions. 

Substance-specific loci (9 for alcohol, 32 for tobacco, 5 for cannabis, 1 for opioids) included 

metabolic and receptor genes. These findings provide insight into genetic risk loci for substance 

use disorders that could be leveraged as treatment targets.

The lives lost, impacts on individuals and families, and socioeconomic costs attributable 

to substance use reflect a growing public health crisis1. For example, in the United States, 

13.5% of deaths among young adults2 are attributable to alcohol, smoking is the leading 

risk factor for mortality in males3, and the odds of dying by opioid overdose are greater 

than those of dying in a motor vehicle crash4. Despite the large impact of substance use and 

disorders5, there is limited knowledge of the molecular genetic underpinnings of addiction 

broadly.

Individual SUDs are heritable (h2 ~ 50–60%) and highly polygenic6,7. Recent large-

scale genome-wide association studies (GWASs) have identified loci associated with 

problematic drinking8,9, alcohol use disorder (AUD)10,11, cigarettes smoked per day12, 

nicotine dependence13,14, cannabis use disorder (CUD)15 and opioid use disorder (OUD)16. 

Echoing evidence from twin and family studies17, these GWASs show that the genetic 

architecture of SUDs is characterized by a high degree of commonality18, i.e., a general 

addiction genetic factor likely conveys vulnerability to multiple substance use disorders. 

Even after accounting for genetic correlations with non-problematic substance use and 

with other psychiatrically-relevant traits and disorders, there is considerable variance that is 

unique to this general risk for addiction, indicating that a liability to addiction reflects more 

than just the combined genetic liability to substance use and psychopathology18–21.

We conducted a multivariate GWAS of the largest available discovery GWASs of 

substance use disorders, including problematic alcohol use (PAU: N=435,563; continuous)8, 

problematic tobacco use (PTU: N=270,120; continuous)12,13,18, cannabis use disorder 

(CUD: N=384,032, N cases = 14,080)15 and opioid use disorder (OUD: N=79,729, N 

cases = 10,544 cases)16. First, we partitioned SNP effects into 5 sources of variation: (1) a 

general addiction risk factor (referred to as addiction-rf), and risks specific to (2) alcohol, (3) 
nicotine, (4) cannabis and (5) opioids. Second, we identified biological pathways underlying 
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risk for these 5 SUD phenotypes using gene, eQTL, and pathway enrichment analyses. 

Third, we examined whether currently available medications could potentially be repurposed 

to treat SUDs22. Fourth, we assessed the association of a polygenic risk score (PRS) derived 

from addiction-rf with general and specific SUD phenotypes in an independent case/control 

sample. Fifth, we examined the extent to which genetic liability to addiction-rf is shared 

with other phenotypes (e.g., physical and mental health outcomes). Sixth, we tested whether 

the addiction-rf PRS was associated with: (a) medical diagnoses derived from electronic 

medical records and (b) behavioral phenotypes in largely substance-naïve 9–10-year-old 

children.

Results

European ancestry GWAS: Addiction risk factor.

As in our prior study18, we estimated a single factor model, scaled the variance of addiction-
rf to 1, and allowed loadings to be estimated freely. The single factor model that loaded 

on Opioid Use Disorder (OUD; Neffective = 30,443), Problematic Alcohol Use (PAU; 

Neffective=300,789), Problematic Tobacco Use (PTU; Neffective = 270,120), and Cannabis 

Use Disorder (CUD; Neffective = 46,351) fit the data well (χ2(1) = .017, p = 0.895, CFI 

= 1, SRMR = 0.002). The latent factor loaded significantly on all indicators (standardized 

loadings on OUD = 0.83, PAU= 0.58, PTU = 0.36, CUD = 0.93 see Supplemental Figure 

1 for full model). The addiction-rf was associated with 19 independent (r2< 0.1) genome-

wide significant (GWS) SNPs that mapped to 17 genomic risk loci (Figure 1; Table 1; 

Supplemental Table 1 for lead SNPs and Supplemental Table 2 for genomic risk loci). The 

most significant SNP (rs6589386, p=2.9e-12) was intergenic, but closest to DRD2, which 

was GWS in gene-based analyses (p=7.9e-12; Supplemental Table 3). Further, rs6589386 

was an expression quantitative trait locus (eQTL) for DRD2 in the cerebellum, and Hi-C 

analyses (in FUMA)23 revealed that the variant made chromatin contact with the promoter of 

the gene (Supplemental Figure 2).

Gene-based analyses identified 42 significantly associated genes (Supplemental Table 3); 

the most significant signals were FTO (p=1.86E-13), DRD2 (p=7.9e-12), and PDE4B 
(p=9.63E-11). Fine-mapping identified 123 GWS SNPs (of 660 non-independent GWS 

SNPs) in credible sets as potential causal SNPs based on the posterior probability of 

inclusion (Supplemental Table 4). Mapping the lead independent SNPs in the credible 

sets to their nearest gene based on posterior probability of 1, the following SNPs showed 

the strongest causal potential: rs1937455 (PDE4B), rs3739095 (GTF3C2), rs6718128 

(ZNF512), rs4143308 (RP11–89K21.1), rs4953152 (SIX3), rs41335055 (CTD-2026C7.1), 

rs2678900 (VRK2), rs7620024 (TCTA), rs283412 (ADH1C), rs901406 (BANK1), rs359590 

(RABEPK), rs10083370 (LINC00637), rs1477196 (FTO), rs291699 (CDK5RAP1) 

(Supplemental Table 4 and Figure 1). Pathway analysis of gene-based results revealed 

several significant GO terms including double-stranded DNA binding (pbonferroni=0.005), 

sequence-specific double-stranded DNA binding (pbonferroni=0.01), regulation of nervous 

system development (2 terms: pbonferroni=0.011 – 0.037), and positive regulation of 

transcription by RNA polymerase (pbonferroni=0.038) (Supplemental Table 6).
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European ancestry GWAS: Substance-specific risk.

To identify loci associated with only a single substance (i.e. not pleiotropic), we used 

ASSET24 (1-sided p < 5e-8). SNPs that were associated at GWS with only a single 

individual substance (PAU, PTU, CUD, or OUD) were considered substance-specific (e.g., 

CHRNA5 SNPs were only associated with PTU; Supplemental Figure 3B–E).

Problematic Alcohol Use.—ASSET analyses revealed 9 independent SNPs in 6 loci 

associated specifically with PAU (Supplemental Figure 3B; Supplemental Table 7 and 8). 

As expected8, the top signal was rs1229984 in ADH1B (p-value=4.11E-68). Gene-based 

enrichment analyses also implicated the alcohol dehydrogenase activity zinc dependent 

pathway (pbonferroni=0.035; Supplemental Table 9).

Problematic Tobacco Use.—PTU was specifically associated with 32 independent SNPs 

in 12 loci (Supplemental Figure 3C; Supplemental Table 10 and 11). The top SNP was 

rs10519203 (p=5.12e-267) in HYKK and a robust eQTL for CHRNA5; the signal is likely 

driven by the CHRNA5 missense variant, rs16969968 (p=2.79e-175), which has previously 

been linked to tobacco use (r2= .87)12. Several other SNPs were closest to genes encoding 

nicotinic acetylcholine receptors, including CHRNA4, CHRNB4, CHRNB3, and CHRNB2 
(Supplemental Table 10). Gene-based enrichment implicated multiple pathways and gene 

sets related to nicotinic acetylcholine receptors (Supplemental Table 12). Specific dopamine-

related associations were also noted (e.g., PDE1C: rs215600; p=2.35e-18; DBH: rs1108581; 

p=1.00e-14).

Cannabis Use Disorder.—ASSET identified 5 substance-specific loci for CUD 

(Supplemental Table 13 and 14), with lead signals at rs11913634 (FAM19A5; p=1.20e-15), 

rs8104317 (CACNA1A; p=1.17e-13), rs72818514 (ATP10B; p=1.57e-09), and rs11715758 

(GNAI2/HYAL3; p=4.84e-08; Supplemental Figure 3D) and rs11778040 (p=1.77e-09; 

annotated to the GULOP pseudogene). rs11778040 mapped to the previously discovered 

signal for CUD near CHRNA2 and EPHX215 and is an eQTL for CHRNA2, EPHX2, and 

CCDC25. CUD-specific signals showed no significant gene-based enrichment.

Opioid Use Disorder.—The only significant substance-specific signal for OUD was the 

well-characterized16 mu opioid receptor (OPRM1) SNP, rs1799971 (p=1.63e-08; Figure 

2E). Gene-based analyses produced no significant findings.

African ancestry GWAS: cross-substance risk.

The ASSET-based meta-analysis of GWAS data for AUD (N=82,705)11, tobacco 

dependence (based on the Fagerstrom Test for Nicotine Dependence, N=9,925)13, CUD 

(N=9,745)15, and OUD (N=32,088)16 in individuals of African ancestry yielded only 1 

GWS pleiotropic SNP, rs77193269 (p=4.92e-8); this SNP was GWS for AUD and tobacco 

dependence when considering ASSET loci pleiotropic for 2 substances (Supplemental 

Figure 4B). For substance-specific signals, only one SNP was GWS significant: rs2066702, 

an ADH1B variant that was alcohol-specific (Supplemental Figure 4A).
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Cross-Ancestry GWAS: cross-substance risk.

We found 68 GWS SNPs (Supplemental Figure 5), which are challenging to map to nearby 

regions or candidate genes due to ancestral differences in LD structure. Table 2 lists the SNP 

with the lowest GWAS p-value on each chromosome. The most significant association was 

noted near the FUT2 gene (rs507766, p = 3.47e-19). Many GWS signals were consistent 

with genes found in the European GWAS, including FTO (rs9928094, p = 6.50e-32) and 

PDE4B (rs1937439, p = 8.56e-12). We also identified two SNPs in genes which have 

previously been implicated in SUDs including CADM2 (rs62250713, p=1.00E-18) and 

FOXP2 (rs4727799, p=3.90E-15), both of which were within r2= 0.6 of lead signals from 

the European GWAS.

Polygenic architecture and power.

We used a likelihood estimation-based approach to calculate the probability distribution of 

effect sizes for the addiction-rf and each of the constituent input GWASs (i.e., PAU, PTU, 

CUD, OUD) to examine relative differences in polygenicity (see Methods). The addiction-rf 
showed a narrow distribution of small effect sizes with almost all values falling close to 

0. On the other hand, the original substance specific GWASs were characterized by larger 

average effects (see Supplemental Figure 6 for shape of probability density distribution). 

For example, only 26% of genes associated with Problematic Tobacco Use showed effect 

sizes as close to the mean threshold of the probability distribution as addiction-rf did. These 

findings suggest that the addiction-rf is characterized by greater polygenicity than specific 

substances.

Transcriptome-wide Association and Drug Repurposing.

A transcriptome-wide association analysis25 of the addiction-rf using multiple tissues 

simultaneously from GTEx in MetaXcan (See Methods) identified 35 genes in 13 brain 

regions (Figure 2; Supplemental Table 15). Gene-set analysis using FUMA23 revealed 

that these genes were enriched for gene sets and pathways related to neural cells and 

T-cell processes (Supplemental Figure 7; Supplemental Table 16). Transcriptome-wide 

analyses with PsychEncode data found 29 significantly associated genes and 11 genes 

that overlapped with those identified in the GTEx analysis (AMT, DALRD3, GPX1, 
KLHDC8B, NCKIPSD, NICN1, P4HTM, PPP6C, RHOA, SNX17, WDR6) (Figure 2). 

Linking transcriptome-wide patterns from our GTEx MetaXcan analysis to perturbagens 

that cross the blood-brain barrier from the Library of Integrated Network-Based Cellular 

Signatures (LINCS)26 database, identified 104 medications approved by the U. S. Food and 

Drug Administration that reverse the addiction-rf transcriptional profile (Supplemental Table 

17). Medications currently used to treat SUDs (e.g., varenicline, smoking cessation), other 

psychiatric conditions (e.g., reboxetine, depression) as well as those used for other purposes 

(e.g., mifepristone, pregnancy termination; currently under clinical investigation for treating 

AUD; riluzole, amyotrophic lateral sclerosis) were identified.

LD Score Regression and Genetic Correlations.

After Bonferroni correction (p < .05/1,547 =3.20e-5), the addiction-rf was genetically 

correlated with 251 phenotypes (Figure 3; Supplemental Table 18). Notably, 38 of 
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these (15%) included somatic diseases linked to specific substances (e.g., lung cancer 

with tobacco, and pain-related conditions with opioids). As expected, we found 

significant genetic correlations between the addiction-rf and serious, trans-diagnostic 

psychopathological behaviors, including suicide attempt (rg=0.62, p=2.89e-33) and self-

medication (e.g., using non-prescribed drugs or alcohol for anxiety, rg=0.64, p=3.18e-6). 

The addiction-rf was correlated with, but remained separable based on 95% confidence 

intervals (rg=0.63 ±.037, p=2.33e-231), from an externalizing factor27 that included similar 

indices of problematic substance use and behavioral measures.

Latent Causal Variable Analysis.

We used MASSIVE to conduct Latent Causal Variable (LCV)28 analyses on the same 

251 phenotypes significant in our genetic correlation analyses (Supplemental Table 19). 

Post multiple corrections (p = .05/250 = 1.98e-4), the only significant causal processes 

were medication codes. Specifically, addiction-rf was estimated as a potential risk 

factor for “Medication for cholesterol, blood pressure or diabetes: Cholesterol lowering 

medication” (gcp = −.739(.078), p =4.51e21), “treatment/medication code: atorvastatin” 

(gcp = −.373(.050), p = 7.93e-14) and “Medication for cholesterol, blood pressure, diabetes, 

or take exogenous hormones: Cholesterol lowering medication” (gcp= −.315(.071), p = 

8.3128e-06). The negative gcp estimates suggest a causal role of addiction on physical 

disease (addiction-rf is trait 2 in all instances).

Polygenic risk score (PRS) analyses.

PRS analyses with measures addiction and SUDs.—In the independent Yale-Penn 

3 sample16 (EUR n=1,986), the addiction-rf PRS was significantly associated with a 

phenotypic factor loading on several SUDs (p<.001), polysubstance use disorder (2 or 

more substance use disorders; p<2e-16), and each individual SUD (DSM-IV29: AUD, CUD, 

OUD, tobacco dependence or TD, and cocaine use disorder [CoUD] (all ps < 7.71E-06; 

Figure 4; Supplemental Table 20). Nagelkerke’s R2 values ranged from 2.4% for CUD to 

5.9% for TD, and 6.6% for a phenotype similar to addiction-rf that represents phenotypic 

commonality across AUD, CUD, OUD, TD and CoUD. Odds ratios varied from 1.41 for 

CUD to 1.73 for OUD.

PheWAS in Electronic Health Record data.—In the BioVU sample (EUR 

N=66,914)30, the addiction-rf PRS was associated with SUDs (p=3.31e-29; Supplemental 

Figure 8), various types of substance involvement [e.g., Tobacco Use Disorder p=9.79e-24, 

alcoholism (so named in EHR, we note the term “alcohol use disorder” is more appropriate), 

p=1.12e-21), chronic airway obstruction (p=4.99e-10)], and several psychiatric disorders, 

with the strongest being bipolar disorder (p=2.44e-11). Controlling for any SUD diagnosis 

to account for causal effects found similar associations with alcoholism, mood disorders, 

respiratory disease, and heart disease (Supplemental Figure 9A). Controlling for tobacco 

dependence diagnosis did not significantly modify associations (Supplemental Figure 9B).

Behavioral Phenotypes in Substance-Naïve Children.—Among 4,491 substance-

naïve children aged 9–10 years who completed the baseline session of the ABCD 

Study®31, the addiction-rf PRS was positively correlated (after Bonferroni correction) 
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with BAS fun-seeking (an aspect of externalizing behavior; p=2.09e-05), family history 

of drug addiction (p=7.04e-07), family history of hospitalization due to mental health 

concerns (including suicidal behavior; p=4.64e-06), childhood externalizing behaviors 

(e.g., antisocial; p=1.62e-05), childhood thought problems (p=3.51e-06), sleep duration 

(p=1.52e-07), parental externalizing and substance use behaviors (e.g., prenatal tobacco 

exposure; p=2.87e-11), maternal pregnancy characteristics (e.g., urinary tract infection 

during pregnancy, p=2.70e-7), socio-economic disadvantage (e.g., child’s neighborhood 

deprivation; p= 9.84e-07), and child’s likeliness to play sports (p=2.80e-06) (Supplemental 

Figure 10; Supplemental Table 21 for results from all phenotypes and Supplementary Table 

23 for measure inclusion criteria).

Discussion

We found 17 genomic loci significantly associated with addiction-rf, and 47 substance-

specific loci. Post hoc fine-mapping, annotation, and exploratory drug repurposing analyses 

highlight the potential therapeutic relevance of the discovered loci. The addiction-rf PRS 

was associated with many medical conditions characterized by high morbidity and mortality 

rates, including psychiatric illnesses, self-harming behaviors, and somatic diseases that 

could be consequences of chronic substance use (e.g., chronic airway obstruction) or 

precursors to heavy substance use (e.g., chronic pain). Finally, in a sample of drug-naïve 

children, the addiction-rf PRS was correlated with parental substance use problems and 

externalizing behavior.

Our analyses suggest that the regulation/modulation of dopaminergic genes, rather than 

variation in dopaminergic genes themselves, is central to general addiction liability. 

DRD2 was the top gene signal, which was mapped via chromatin refolding, suggesting 

a regulatory mechanism. The role of striatal dopamine in positive drug reinforcement is well 

established32. DRD2 plays a role in reward sensitivity and may also be central to executive 

functioning33 – the interplay of reward and cognition is likely relevant throughout the course 

of addiction. These complementary observations reinforce the role of dopamine signaling in 

addiction32.

Other regulatory effects on dopaminergic pathways were supported by the signal at PDE4B, 

which has been implicated in prior GWASs of disinhibition traits27. The phosphodiesterase 

(PDE) system has been proposed as a dopaminergic regulation mechanism34. Further, 

animal studies suggest that the PDE system is associated with down-regulation of drug-

seeking behaviors across opioids, alcohol, and psychostimulants35. Notably, The PDE4B 
antagonist, ibudilast, has been shown to reduce heavy drinking among patients with 

AUD36,37 and also shown to reduce inflammation in methamphetamine use disorder38, and 

was significant in our drug repurposing analysis.

The addiction-rf PRS was associated with general and specific SUD liabilities in an 

independent sample. The addiction-rf PRS predicted ~6% of OUD variance, which is nearly 

half the total SNP-heritability of OUD16. The addiction-rf PRS also predicted variance 

in cocaine use disorder (CoUD); as CoUD was not included in the development of the 
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addiction-rf (due to lack of a well-powered CoUD GWAS), these findings highlight the 

generalizability of the addiction-rf beyond alcohol, tobacco, cannabis and opioids.

Substance-specific genetic signals fell primarily into three broad categories: drug-specific 

metabolism (e.g., ADH1B for PAU), drug receptors (e.g., CHRNA5 for PTU, OPRM1 for 

OUD), and general neurotransmitter mechanisms (e.g., CACNA1A for CUD). Surprisingly, 

even after accounting for the addiction-rf, dopaminergic genes (DBH and PDE1C in 

particular) were implicated in substance-specific effects for tobacco (PTU). On the other 

hand, CUD-specific genes did not include well-studied receptor targets (e.g., CNR1) or 

metabolic mechanisms (e.g., Cytochrome P450 genes).

The current addiction-rf is distinct from recent genetic factors21,27,39 that were based upon 

analyses of SUDs with other substance use, psychiatric, and behavioral traits. We focus on 

SUDs rather than measures of substance use or other externalizing traits, which prior data 

indicate have differing etiologies and relationships with psychiatric health9,40,41. Our study 

also parses substance-general (i.e., addiction-rf) and substance-specific loci. This approach 

distinguishes the addiction-rf from other genetic factors that have include substance use 

measures. For example, despite genetic overlap between the addiction-rf and a recent index 

of externalizing behaviors (rG=0.63)27, a significant portion of the variance in addiction-rf 
was distinct.

Our analyses highlight the robust genetic association of addiction-rf with serious mental 

and somatic illness. The addiction-rf PRS was more strongly associated with using drugs 

to cope with internalizing disorder symptoms (anxiety, depression; rg=0.60–0.62) than 

with the individual psychiatric traits and disorders themselves (rg=0.3), suggesting that 

genetic correlations between SUDs and mood disorders may partially be attributable to a 

predisposition to use substances to alleviate negative mood states (“self-medication”)42.

The PheWAS also provided insight into potentially complex mechanisms of genetic liability 

to environmental pathways of risk. In addition to indices of socio-economic status (SES), the 

addiction-rf was correlated with maternal tobacco smoking during pregnancy and ADHD, in 

line with evidence that effects ascribed to the prenatal environment may also be mediated by 

the inheritance of risk loci43,44. The addiction-rf PRS was associated with a family history 

of serious mental illness, which likely represents an amalgam of genetic and environmental 

vulnerability45. Finally, disability and SES were also associated with polygenic risk, further 

supporting the association between environmental risk factors and common genetic effects 

on SUD liability9,41,46

This study has limitations. First, our GWAS in individuals of African-ancestry had few 

discoveries, underscoring the need for systematic data collection on SUDs in globally 

representative populations. Still, we chose to analyze and present these data as their 

exclusion only furthers disparities in genetic discoveries. Second, although we discovered 

many loci, they accounted for only a small proportion of the total variance. More samples, 

particularly those in diverse populations, and the integration of rarer variants are needed to 

discover the biological pathways that fall below genome-wide significance or are missed in 
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GWAS. Finally, despite interesting associations between our PRS and SUDs, our findings do 

not apply to prognostication of future disease risk.

Conclusion

A common and highly polygenic genetic architecture underlies multiple SUDs, a finding 

that merits integration into medical knowledge on addictions.

METHODS

Summary statistics from each SUD-related GWAS

Summary statistics from the largest available discovery GWAS were used to represent 

genetic risk for each construct. These include four measures of problematic substance use 
or substance use disorder (SUD): 1) Problematic Alcohol Use8, 2) Problematic Tobacco 

Use12,13,18, 3) Cannabis Use Disorder15, 4) Opioid Use Disorder16 (described below). All 

GWAS summary statistics were filtered to retain variants with minor allele frequencies > 

0.01 and INFO score > 0.90 for GSCAN12 and PGC15 and INFO score > 0.70 for the 

MVP8,16.

For the current cross-trait GWAS, we maintained the same QC metrics and only analyzed 

SNPs that were present in all four input GWAS, i.e., variants that passed QC thresholds at 

all levels, resulting in 3,513,381 SNPs in samples of European ancestry and 5,303,643 SNPs 

in samples of African American ancestry. The LD scores used for the genomic structural 

equation modeling (GenomicSEM)47 were estimated in the European ancestry samples only 

using the 1000 Genomes European data48. We restricted analyses to HapMap3 SNPs49 as 

these tend to be well imputed and produce accurate estimates of heritability. We used the 

effective N, which was estimated for each GWAS50. For traits with a binary distribution, 

the effective sample size for an equivalently powered case-control study under a 50–50 case 

control balance was estimated using the equation: Neffective = 4/((1/Ncase) + (1/Ncontrol))51. 

Continuous and quasi-continuous traits used the given N or if from MTAG, the equation 

Neffective = ((Z/β)2)/(2*MAF*(1-MAF))8 to approximate an equivalently powered GWAS of 

a single trait. Effective Ns ranged from 46,351 (CUD) to 300,789 (PAU) and are described 

for each substance-specific GWAS in the Results below. Individual GWAS details can be 

found in the Online Methods.

Genome-wide Analyses in European Ancestry

We conducted a GWAS of a unidimensional addiction risk factor (addiction-rf) underlying 

the genetic covariance among PAU, PTU, CUD and OUD by applying GenomicSEM47 

to these European ancestry summary statistics. GenomicSEM conducts genome-wide 

association analyses in two stages. First, a multivariate version of LD score regression 

is used to estimate the genetic covariance matrix among all GWAS phenotypes, which 

is then combined with each individual SNP to calculate SNP-specific genetic covariance 

matrices. Second, these matrices are then used to estimate the SEM using the lavaan package 

in R52. Variable and unknown extents of sample overlap across contributing GWASs are 

automatically accounted for in the estimation procedure. The unifactor model fit the data 
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well53 [X2(1) = .017, p = 0.895, CFI = 1, SRMR = 0.002; residual r = 0.51, p = 0.016; 

Supplemental Figure 1; see also our prior work18 and Online Methods).

As the sample size of summary data derived from African Americans (n range = 9,835–

56,648) was not sufficient for LD Score54 analyses, we used ASSET24 to conduct the 

addiction-rf GWAS, as opposed to GenomicSEM, as described in the subsequent ASSET 
section below.

ASSET: Trans-ancestry Analyses

Association analysis based on Subsets (ASSET)24 was used to identify pleiotropic (i.e., 

SNPs that show associations with more than one SUD) and substance-specific (i.e., SNPs 

only associated with a single SUD) SNPs within the European and African American 

ancestry samples in addition to GenomicSEM in Europeans). ASSET was used in our 

African American ancestry addiction-rf GWAS as the sample size was not sufficient for the 

Genomic SEM approach used in the European addiction-rf GWAS. As a result, there are 

important differences in the primary addiction-rf GWAS and GWAS run in ASSET. First, the 

ASSET-based addiction-rf GWAS contain SNPs that may influence 2, 3, or all 4 individual 

SUDs, while the GenomicSEM-based addiction-rf GWAS in European ancestry includes 

SNPs associated with a common factor across included SUDs. ASSET identified pleiotropic 

SNPs in the European ancestry sample to facilitate method-consistent cross-ancestry meta-

analysis GWAS (see subsequent Cross-Ancestry Meta-analysis section below) and cross 

validate primary GenomicSEM results.

ASSET does not leverage the genetic correlation to identify variants of interest (as 

GenomicSEM does); instead, subset searches scaffold effects into pleiotropic and non-

pleiotropic variants based on effect size and standard error derivations that estimate the 

degree to which the SNP-trait association is due to pooled effects across the phenotypes, vs. 

a single phenotype driving variant association. Loci were designated as substance-specific 

when they were only significantly associated with only 1 SUD. As ASSET does not 

automatically account for sample overlap; we used LDSC-estimated genetic correlations 

to adjust for overlap within the European ancestry ASSET covariance term.

Cross-Ancestry Meta-analysis

We conducted a cross-ancestry meta-analysis of ASSET-derived (to maintain analytic 

consistency) European and African ancestry addiction-rf summary statistics. First, SNPs 

with evidence of SUD pleiotropy (i.e., effects on 2 SUDs, 3 SUDs, or all 4 SUDs, including 

different sets of SUDs in each ancestry) in both ancestral groups were extracted. SNPs 

with evidence of cross-ancestral heterogeneity (i.e., Cochran’s Q statistic <5e-8) were 

removed, leaving 317,447 SNPs. A meta-analysis in METASOFT55 using a random-effects 

meta-analysis with ancestry group as a random effect was used to identify cross-ancestral 

effects. We report the random effects BETA and p-value as cross-ancestry effects.

Specific Genetics in European Ancestry Individuals

To validate substance-specific SNPs, we used ASSET for discovery of these variants and, 

in the European ancestry GWAS, also examined Q-SNP results derived from GenomicSEM. 

Hatoum et al. Page 17

Nat Ment Health. Author manuscript; available in PMC 2023 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Q-SNP14 indexes violation of the null hypothesis that a SNP acts on a trait entirely through a 

common factor (e.g., addiction-rf). For example, if a SNP has a particular effect on one SUD 

trait (such as SNPs in CHRNA5 influencing PTU), then it should have significant Q-SNP 

statistics because it violates the assumption that its effect on PTU is via the addiction-rf. 
We identified Q-SNPs by estimating the association between each SNP and the addiction-rf. 
Then, we fit a model where the SNP predicted the indicators underlying the addiction-rf, 
i.e., PAU, PTU, CUD, OUD. We compared the Chi-square difference statistic between the 

two models; those with significant decrement of fit (X2 for Δdf = 4) in the model where the 

SNP predicted the addiction-rf alone relative to the SNP predicting the indicators themselves 

was considered a significant Q-SNP above genome-wide significance (i.e. Q p < 5e-8). SNPs 

with significant Q-SNP statistics were removed from the addiction-rf summary statistics 

for all post-hoc analyses, including fine-mapping, gene-based tests, transcriptome-wide 

association analyses, LD score genetic correlations and polygenic risk score analyses.

Q-SNP analysis also identified several SNPs that appeared to be specific to a single 

substance. However, as Q-SNP cannot be used for precise identification of substance-

specific (trait-specific) SNPs, we relied on ASSET analyses (with a 1-sided p-value), to 

identify the subset of SNPs with effects (at genome-wide significance, p<5e-8) limited to 

only 1 SUD-related trait (e.g., PAU-specific). It is worth noting that the ASSET analysis 

used to determine specific SNPSs is the same analysis that went in the cross-ancestry results, 

except pleotropic loci were retained for the cross-ancestry analysis and specific SNPs for the 

analysis described here.

Post-hoc analyses of European ancestry GWAS results

Estimation of expected SNP effect sizes—We estimated the distribution of genetic 

effect-sizes of addiction-rf (Genomic SEM) and the 4 input GWAS (PAU, PTU, CUD, 

OUD) using Genetic effect-size distribution inference from summary-level data (GENESIS). 

GENESIS is a likelihood-based approach56. In this approach, GWAS summary statistics 

and an external panel of linkage disequilibrium (in our case, the 1000 Genomes Phase 3 

reference panel) are used to estimate a projected distribution of SNP effect sizes. A flexible 

normal mixture model based on the number of tagged SNPs and LD scores is estimated. 

A 3-component model is fit, where SNP effect sizes are estimated to belong to one of 

three components based on bins of effect sizes (large, medium, small). If the distribution of 

SNPs is multivariate normal, the estimation of the SNPs with large and medium effect sizes 

can be done via their independent effect sizes. The third component represents SNPs with 

null and small effect sizes, and these should follow a similar distribution. Therefore, this 

model reweights SNPs and generates a projected distribution of effect sizes, and from this 

projection, we can draw conclusions about the distribution of effect sizes54.

Biological Characterization—FUMA23 was used for post-hoc bioinformatic analyses of 

our five GWAS (i.e., the addiction-rf (from Genomic SEM), PAU-specific, PTU-specific, 

CUD-specific, OUD-specific (from ASSET) loci) in European ancestry samples and 

to determine lead and independent variants. Within FUMA, gene-based tests and gene-

set enrichment were conducted via MAGMA57; gene annotation, and identification of 

SNP-to-gene associations via expression quantitative trait loci (eQTLs) and/or chromatin 
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interactions (via Hi-C data) in PsychEncode58 and Roadmap Epigenomics tissues for 

Prefrontal cortex, hippocampus, ventricles, and neural progenitor cells59,60. For each 

specific SUD GWAS run using ASSET, the distribution of p-values included all non-

pleiotropic SNPs (i.e., SNPs only associated with a single SUD, n SNP CUD-Specific = 

312,661, n SNP PTU-Specific = 560,983, n SNP PAU-Specific = 193,647, n SNP OUD-

Specific = 425,665). Additional details on the FUMA analyses are available in Online 

Methods.

Fine-mapping with SusieR.: We fine-mapped the association statistics of the four 

phenotypes (addiction-rf, PAU-specific, PTU-specific, CUD-specific; OUD-specific only 

had one significant loci, and that loci has known mechanism of effect) that had more than 1 

genome-wide significant SNP in a 1 MB region around the lead SNP to determine the 95% 

credible set using susieR61 with at most 10 causal variants (this analysis reduces the total 

number of SNPs at a lead genome-wide signal to those that can credibly be considered as 

causal SNPs). The credible set reports include the likelihood of being a causal variant; the 

marginal posterior inclusion probability (PIP) ranges from 0 to 1, with values closer to 1 

being most likely causal.

Transcriptome-Wide Association Analysis.: We conducted two transcriptome-wide 

analyses. First, we used MetaXcan/S-MultiXcan38 to conduct a cross-tissue analysis of all 

brain tissues in the GTEx v8 data37. S-MultiXcan returns a broad Z-score across all tissues 

in the model, along with the top and lowest scores at each tissue. S-MultiXcan combines 

information across individual tissues, which improves the power for discovery by reducing 

the multiple correction burden. It also produces z-score and p-values for top-associated 

tissues. Second, we also used S-Predixcan62 to predict transcription using the weights 

trained from on psychiatric cases vs controls transcriptional differences from the frontal 

and temporal cortex using the PsychEncode63 dataset. As these data were very densely 

sampled for psychiatrically relevant traits, it serves to complement the relatively healthy 

GTEx sample.

Drug Repurposing—Our signature matching technique used data from the Library 

of Integrated Network-based Cellular Signatures (LINCs) L1000 database64. The LINCs 

L1000 database catalogues in vitro gene expression profiles (signatures) from thousands of 

compounds in over 80 human cell lines (level 5 data from phase I: GSE92742 and phase II: 

GSE70138)26. We selected compounds that were currently FDA approved or in clinical trials 

(via https://clue.io/repurposing#download-data; updated 3/24/20). Our analyses included 

signatures of 829 chemical compounds (590 FDA approved, 239 in clinical trials) in five 

neuronal cell-lines (NEU, NPC, MNEU.E, NPC.CAS9 and NPC.TAK), a total of 3,897 

signatures were present as not all compounds were tested in all cell lines in the LINCs 

dataset.

In vitro medication signatures were matched with addiction-rf signatures from the 

transcriptome-wide association analyses (conducted using S-MultiXcan)25,62 via multi-

level meta-regression. We computed weighted (by its proportion of heritability explained 

(h2
MULTI-XCAN)) Pearson correlations between transcriptome-wide brain associations and 

in vitro L1000 compound signatures using the metafor package in R65. We treated 
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each L1000 compound as a fixed effect incorporating the effect size (rweighted) and 

sampling variability (se2
r_weighted) from all signatures of a compound (e.g., across all 

time points, cell lines, doses). Analyses included brain region as a random effect to 

estimate tissue specific heterogeneity. Only genes that were Bonferroni significant in the 

S-PrediXcan(transcriptome-wide correction = .05/14,389 = 3.48e-06) were entered into the 

model. We only report those perturbagens that were associated after Bonferroni correction 

(perturbagen correction = .05/3,897 = 1.28e-05).

Polygenic Risk Score Analyses in Yale-Penn

Yale-Penn.: The Yale-Penn16,66 sample includes 11,332 genotyped and phenotyped 

individuals recruited across three phases (i.e., Yale-Penn 1, Yale-Penn 2, and Yale-Penn 

3) based on the time of recruitment and genotyping array used. All cohorts were ascertained 

via recruitment at substance use treatment centers or targeted advertisements for genetic 

studies of cocaine, opioid, and alcohol dependence, resulting in a sample highly enriched 

for problematic substance use, as well as control subjects and relatives. All participants 

were assessed using the Semi-Structured Assessment for Drug Dependence and Alcoholism 

(SSADDA)67. Analyses based on Yale-Penn 1 and 2 have been published previously66, and 

were used in the discovery sample of the present study. Here, we used data from Yale-Penn 

316 for replication analyses and as a target sample for polygenic risk score analyses; the 

Yale-Penn 3 sample is independent from our discovery GWASs. Yale-Penn 3 comprises 

3,026 genotyped and phenotyped Americans of European (EUR; N=1,986) and African 

(AFR; N=1,040) ancestry passing standard quality control. Genotyping was performed at 

the Gelernter lab at Yale University using the Illumina Multi-ethnic Global Array containing 

1,779,819 markers, followed by genotype imputation using Minimac368 and the Haplotype 

Reference Consortium reference panel69 as implemented on the Michigan imputation server 

(https://imputationserver.sph.umich.edu).

For the present analysis, only Yale-Penn 3 EUR subjects (N=1,986) were included. DSM-

IV29 substance abuse and dependence diagnoses (combined as abuse or dependence to 

represent use disorder) based on SSADDA assessments were used to determine case and 

control status for alcohol use disorder (AUD), cannabis use disorder (CUD), cocaine use 

disorder (CoUD), tobacco dependence (TD), and opioid use disorder (OUD). Of the 1,986 

EUR subjects, 42.4% met criteria for AUD (N=843), 25.9% met criteria for CUD (N=515), 

25.3% met criteria for CoUD (N=503), 31% met criteria for TD (N=615), and 22.6% met 

criteria for OUD (N=448). The mean age of Yale-Penn 3 EUR subjects is 41.5 (SE=15.1) 

and 51.5% are female (N=1,023).

We calculated the addiction-rf PRS using the PRS-cs auto approach70. This method assumes 

a general distribution of effect sizes across the genome, and then reweights SNPs based on 

this assumption, their effect size in the original GWAS, and their linkage disequilibrium 

(LD); weights for every SNP were then summed to create a final score. PRS were associated 

with phenotypes (OUD, TD, CUD, AUD, CoUD) in Yale-Penn 3 via a logistic regression 

controlling for first 10 PCs, age, sex and age by sex. PRS were scaled to unit variance. These 

logistic regression analyses were also examined for the following contrasts: 1) Those with 

any SUD (n=985) vs those with no SUD (n=1,001), to represent Any SUD; 2) Those with ≥2 
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SUDs (n=729) vs those with <2 (including 0) SUDs (n=1,257) to represent Polysubstance 
Use Disorder (PSUD); and 3) Those with ≥2 SUDs (n=729) vs those with 1 SUD (n=256) to 

represent PSUD within those with SUD. The association between the addiction-rf PRS and 

the SUD Common Factor was estimated with lavaan52 where a common factor loaded on the 

5 disorders.

Genetic Correlations and Latent Causal Variable modeling

To examine phenotypes that were genetically correlated with the addiction-rf, we calculated 

genetic correlations using LD score regression54,71 through the MASSIVE pipeline72, which 

conducts LD score regression13,46 and Latent Causal Variable Analysis28 on 1,547 summary 

statistics for various phenotypic traits, including a mixture of ICD codes and self-reported 

traits from the UK Biobank and publicly available meta-analyses from GWAS consortiums.

Phenome-wide Association Studies (PheWAS)

PheWAS in adult samples.—As MASSIVE includes a fairly sparse set of diagnoses 

(not all ICD codes are available) for genetic correlation analyses, we conducted additional 

and theoretically relevant PheWASs using the addiction-rf PRS. We used electronic health 

records (EHR) data for 66,914 genotyped individuals of European-ancestry from the 

Vanderbilt University Medical Center biobank (BioVU)30. BioVU is a repository of leftover 

blood samples (~240,000 samples) from clinical testing, that are sequenced, de-identified, 

and linked to clinical and demographic data. Genotyping and quality control of this sample 

have been described elsewhere30. The addiction-rf PRS was used to predict 1,335 diseases 

in a logistic regression model, controlling for median age on record, reported gender, and 

first 10 genetic ancestry PCs. For an individual to be considered a case, they were required 

to have two separate ICD codes for the index phenotype, and each phenotype needed at least 

100 cases to be included in the analysis. A Bonferroni-corrected phenome-wide significance 

threshold of 0.05/1335=3.7E-05 was used73.

ABCD PheWAS of phenotypes collected in childhood.—To identify phenotypes 

that were associated with the addiction-rf before the onset of regular substance use, we used 

data from the Adolescent Brain and Cognitive Development (ABCD®) Study release 2.0 

for genome data and 3.0 for phenotypes to conduct a phenome-wide association analysis 

of behavioral, social, and environmental phenotypes in adolescence. The ABCD Study 

is an ongoing multi-site longitudinal study of child health and development (see Online 

Methods for details)31,74. Children (N=11,875; including twins and siblings) ages 8.9–11 

were recruited from 22 sites across the United States to complete the ABCD Study baseline 

assessment. We restricted our sample to participants of genomically-confirmed European 

ancestry (based on principal components) who were not missing any covariate measures 

(N=4,490).

PRS were generated using the PRS-cs software package70 consistent with our other (i.e., 

Yale-Penn 4, BioVU) PRS analyses described above. Associations between addiction-rf PRS 

and phenotypes were estimated using mixed-effects models in the lme475 package in R. 

PRS were scaled to unit variance. Family ID and site were included as random effects to 

account for non-independence of measurement associated with relatedness and scanner/site. 
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We controlled for the first 10 ancestry principal components, age, sex, age by sex. We used 

a Bonferroni-corrected phenome-wide significance threshold of 0.05/1480= 3.38e-05; all 

results are presented in the Supplemental Table 21.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan Plot of Addiction-rf Genome-Wide Significant Results.
The dotted line represents genome-wide significance at 5e-8. Each SNP peak is annotated 

with the closest mapped gene from FUMA (Table 1). We have not included all SNPs in the 

credible set in Table 1, but they are shown in Supplementary Table 4. Significance is set at 

genome-wide significance Bonferroni correction in a two-sided test (P < 5e-8).
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Figure 2. Manhattan Plot of TWAS Results for Addiction-rf.
A Transcriptome-Wide Association Study (TWAS) of the addiction-rf, plotted as a 

Manhattan plot. In Panel A, Analyses were conducted in S-MultiXcan with GTeX v8 data. 

In Panel B, the analysis was run using S-PredixCan with weights trained from PsychEncode. 

The y-axis is presented as −log10(p), the color of the data point represents the tissue 

in which correlation between gene expression and outcome was the highest. The dotted 

black line represents Bonferroni corrected TWAS significance of a two-sided test (Plot A 

has 9,944 genes, Bonferroni = 5×10^-6 and the line is at 5.3, Plot B has 13,850 genes, 

Bonferroni = 3.6×10^-6, line is at 5.4)
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Figure 3. PheWAS of Genetic Correlations using MASSIVE.
Genetic correlations between 1,547 traits and the addiction-rf, calculated in MASSIVE, 

mapped by their statistical significance (-log10(p) on the y-axis), and broad category. 

The top 20 correlations are annotated. The black dashed line represents Bonferroni 

significance for association of a two-sided test (pbon= .05/1,574 = 3.232e-05).
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Figure 4. Polygenic Risk Score Prediction in Yale-Penn.
(A) Polygenic risk score (PRS) of the addiction-rf predicts lifetime alcohol (AUD), cannabis 

(CUD), opioid (OUD), tobacco (TD), and cocaine (CoUD) use disorders, and variables 

representing more than one lifetime substance use disorder diagnosis vs no SUDs diagnosis 

(Polysubstance Use Disorder, 2 level), more than one lifetime diagnosis vs. one lifetime 

diagnosis (polysubstance vs. unitary), as well as any substance use disorder diagnosis (Any 

Addiction) in an independent sample (Yale Penn 3; N=1,986 individuals of European genetic 

ancestry). (B) The addiction-rf PRS was associated with a comparable phenotypic substance 

use disorders (SUD) common factor in the Yale-Penn sample. Controlling for age, sex 

and 10 genetic principal components of ancestry, all path estimates are fully standardized. 

Estimates were significant at p < .001 of a two-sided test (LAVAAN does not report P-values 

lower than .001).
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