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The SphK1/S1P Axis Regulates Synaptic Vesicle Endocytosis
via TRPC5 Channels
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Sphingosine-1-phosphate (S1P), a bioactive sphingolipid concentrated in the brain, is essential for normal brain functions,
such as learning and memory and feeding behaviors. Sphingosine kinase 1 (SphK1), the primary kinase responsible for S1P
production in the brain, is abundant within presynaptic terminals, indicating a potential role of the SphK1/S1P axis in pre-
synaptic physiology. Altered S1P levels have been highlighted in many neurologic diseases with endocytic malfunctions.
However, it remains unknown whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis in neurons. The present
study evaluates potential functions of the SphK1/S1P axis in synaptic vesicle endocytosis by determining effects of a dominant
negative catalytically inactive SphK1. Our data for the first time identify a critical role of the SphK1/S1P axis in endocytosis
in both neuroendocrine chromaffin cells and neurons from mice of both sexes. Furthermore, our Ca21 imaging data indicate
that the SphK1/S1P axis may be important for presynaptic Ca21 increases during prolonged stimulations by regulating the
Ca21 permeable TRPC5 channels, which per se regulate synaptic vesicle endocytosis. Collectively, our data point out a critical
role of the regulation of TRPC5 by the SphK1/S1P axis in synaptic vesicle endocytosis.
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Significance Statement

Sphingosine kinase 1 (SphK1), the primary kinase responsible for brain sphingosine-1-phosphate (S1P) production, is abun-
dant within presynaptic terminals. Altered SphK1/S1P metabolisms has been highlighted in many neurologic disorders with
defective synaptic vesicle endocytosis. However, whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis is
unknown. Here, we identify that the SphK1/S1P axis regulates the kinetics of synaptic vesicle endocytosis in neurons, in addi-
tion to controlling fission-pore duration during single vesicle endocytosis in neuroendocrine chromaffin cells. The regulation
of the SphK1/S1P axis in synaptic vesicle endocytosis is specific since it has a distinguished signaling pathway, which involves
regulation of Ca21 influx via TRPC5 channels. This discovery may provide novel mechanistic implications for the SphK1/S1P
axis in brain functions under physiological and pathologic conditions.

Introduction
Synaptic transmission, mediated by exocytosis of synaptic vesicles,
is sustained by subsequent endocytosis, an essential process to
recapture and reuse membranes that have fused with the plasma
membrane from exocytosis (Saheki and De Camilli, 2012; Rizzoli,
2014; Soykan et al., 2016). Synaptic vesicle endocytosis is thus in-
dispensable for normal brain functions (Saheki and De Camilli,
2012; Rizzoli, 2014; Soykan et al., 2016), and deficiency in endocytic

machinery has been highlighted in many neurologic disorders
including multiple sclerosis, Huntington’s disease, Parkinson’s dis-
ease, and Alzheimer’s disease (Cataldo et al., 2000; Schreij et al.,
2016; Alsaqati et al., 2018; Kyung et al., 2018; Helbig et al., 2019;
McAdam et al., 2020; Pensalfini et al., 2020; Barron et al., 2021;
Kesharwani et al., 2021). Nevertheless, the precise molecular mecha-
nisms for synaptic vesicle endocytosis are still far from being fully
understood (Chanaday et al., 2019; Rennick et al., 2021).

Sphingosine-1-phosphate (S1P), a bioactive sphingolipid con-
centrated in the brain (Edsall and Spiegel, 1999; Karunakaran
and van Echten-Deckert, 2017), is essential for normal brain
functions. For example, S1P in hippocampus is critical for spatial
learning as assessed by water maze test (Kanno et al., 2010) or T-
maze test (Weth-Malsch et al., 2016), while S1P in hypothalamus
regulates energy homeostasis by controlling feeding behaviors
(Silva et al., 2014). On the other hand, altered S1P metabolism
has been linked to many neurologic diseases (Ghasemi et al.,
2016; Karunakaran and van Echten-Deckert, 2017; Di Pardo and
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Maglione, 2018). In addition, fingolimod (FTY720), a S1P analog
approved by Food and Drug Administration to treat multiple
sclerosis (Chiba and Adachi, 2012; Ali et al., 2013), may slow
down pathologic changes in the brain tissue from animal models
for Alzheimer’s disease (Karunakaran and van Echten-Deckert,
2017; Yin et al., 2021). These important functions of S1P within
the brain under physiological and pathologic conditions reflect a
role of S1P in synaptic transmission. Indeed, it has been reported
that S1P modulates synaptic strength and plasticity (Kanno et al.,
2010; Kempf et al., 2014; Weth-Malsch et al., 2016).

Sphingosine kinase 1 (SphK1) is the primary kinase responsi-
ble for S1P production in the brain (Fukuda et al., 2003; Bryan et
al., 2008). The presynaptic SphK1 abundance (Kajimoto et al.,
2007; Chan et al., 2012) indicates an involvement of the SphK1/
S1P axis in synaptic transmission via presynaptic mechanisms.
In line with this idea, the SphK1/S1P axis has been reported to be
critical for synaptic vesicle exocytosis in neurons from both
Caenorhabditis elegans and mice (Kajimoto et al., 2007; Chan et
al., 2012). In non-neuronal cells, SphK1 has been found to be
enriched on physiologically occurring early endocytic intermedi-
ates and a disruption of the SphK1/S1P axis induces significant
endocytic defects (Shen et al., 2014; Young et al., 2016; Lima et
al., 2017). In mouse and human brains, defects of synaptic vesicle
endocytosis and altered S1P levels have been concurrently identi-
fied as pathologic features for neurodegenerative diseases includ-
ing Alzheimer’s disease and Huntington disease (Couttas et al.,
2014; Pirhaji et al., 2016; Schreij et al., 2016; Lee et al., 2018; Di
Pardo et al., 2019; McAdam et al., 2020; Pensalfini et al., 2020).
However, it remains unknown whether the SphK1/S1P axis may
regulate synaptic vesicle endocytosis in neurons.

In the present study, we evaluate potential functions of
the SphK1/S1P axis in synaptic vesicle endocytosis by deter-
mining effects of a dominant negative catalytically inactive
SphK1 (SphK1DN) in neurons and chromaffin cells (Pitson et
al., 2000; Bonhoure et al., 2006; Gomez-Brouchet et al., 2007;
Z.J. Jiang et al., 2019b). Based on data from synaptophysin-
pHluorin (sypHy) based live-cell imaging in neurons and
cell-attached capacitance recordings in chromaffin cells, we
for the first time identify a critical role of the SphK1/S1P axis in
neuronal endocytosis. Furthermore, our Ca21 imaging indi-
cates that the SphK1/S1P axis may be important for presynaptic
Ca21 increases during prolonged stimulations via Ca21 perme-
able TRPC5 channels, which per se regulate synaptic vesicle
endocytosis. Altogether, our data point out an importance of
the SphK1/S1P axis in synaptic vesicle endocytosis via TRPC5
channels in neurons.

Materials and Methods
Cultures of neurons, chromaffin cells, and HEK 293 cells
In this study, newborn pups of either sexes (postnatal day 0) from
C577BL/6J (RRID: IMSR JAX:000664) mouse mating cages were used
and cared in accordance with the guidelines of the National Institutes of
Health, as approved by the Animal Care and Use Committee of the
University of Illinois at Chicago (approval number of 19-189). Neuronal
culture from cortex was prepared as describe previously (Vevea and
Chapman, 2020; Z.J. Jiang et al., 2021). Briefly, cortical neurons were iso-
lated and gently dissociated with papain (Worthington; LS003127) and me-
chanical disruption before plated on glass coverslips (Assistant; 41001118)
coated with poly-D-lysine (Sigma; P0899). Neurons were maintained
in Neurobasal-A (Thermo Fisher Scientific; 10888-022) medium supple-
mented with B-27 (2%, Thermo Fisher Scientific; 17504001), Glutamax
(2 mM, Invitrogen; 35050061), and penicillin/streptomycin at 37°C in 5%
CO2 humidified incubator. To minimize potential consequences from
previously reported roles of the SphK1/S1P axis or TRPC5 in neuronal

development (Greka et al., 2003; Mizugishi et al., 2005; Davare et al.,
2009; Puram et al., 2011), lentiviral transduction in the present study
were exclusively performed in neurons at days in vitro (DIV)11–DIV12
when the initial wave of synaptogenesis is complete (Bassani et al., 2012;
Wang et al., 2017; Ribeiro et al., 2019; Griggs et al., 2021; Nawalpuri et
al., 2021); accordingly, live-cell imaging experiments were conducted on
neurons at DIV16–DIV20.

Chromaffin cells in culture, prepared from adrenal glands of new-
born pups with either sex as previously described (Gong et al., 2005; L.
H. Yao et al., 2012, 2013), were maintained at 37°C in 5% CO2 humidi-
fied incubator and used within 4 d for electrophysiology. Lentiviral
transduction was conducted at DIV0, and cell-attached capacitance
recordings was performed 72–96 h after infection.

HEK 293 cells were cultured and maintained in DMEM supple-
mented with 10% fetal bovine serum (FBS), 0.1 mM MEM nonessential
amino acids, 6 mM L-glutamine, 1 mM MEM sodium pyruvate, 1% Pen-
Strep, and 500mg/ml Geneticin antibiotic. Cells, which typically reached
80% confluence every 3 d, were treated with trypsin-EDTA and passaged
with a 1:10 ratio for the general maintenance. Cells dissociated were
seeded onto 24-well culture plates and transfected with Lipofectamine
LTX Reagent (Thermo Fisher Scientific; catalog #15338100), at 40–50%
confluency. Transfected cells were maintained at 37°C in a 5% CO2

humidified incubator for 48–72 h before being trypsinized and seeded to
PDL-coated coverslips for whole-cell patch clamping recordings.

Cloning of DNA constructs
Plasmids containing sypHy and SynGCAMP6f were kind gifts from Dr.
L. Lagnado lab (Granseth et al., 2006) and Dr. T. A. Ryan lab (de Juan-
Sanz et al., 2017), respectively. The lentiviral vector pCDH-EF1-MCS-
T2A-GFP was from System Biosciences. pCDH-EF1-SphK1DN-T2A-GFP,
pCDH-EF1-SphK1WT (N-terminal FLAG tag), pCDH-EF1-SphK1DN (N-
terminal FLAG tag), pCDH-SYN1-sypHy and pCDH-SYN1-SynGCAMP6f
were previously generated in our lab (Z.J. Jiang et al., 2019b, 2021). The pro-
tein-coding cDNA clone of mouse TRPC5, clone ID 22067 (BC112972),
was purchased from transOMIC technologies. To obtain pCDH-
SYN1-SphK1DN-T2A-sypHy or pCDH-SYN1-SphK1DN-T2A-synGCaMP6f,
SphK1DN was amplified by PCR, together with sypHy or synGCaMP6f, and
then enzyme-digested and ligated into multiple cloning sites before and after
T2A in pCDH-SYN1-MCS-T2A-MCS (a tool vector we have created in lab).
Thereafter, pCDH-SYN1-SphK1DN-T2A-synaptophysin-mCherry was cre-
ated by replacing pHluorin in pCDH-SYN1-SphK1DN-T2A-sypHy with
mCherry via restriction digest and ligation. To obtain pCDH-SYN1-sypHy-
T2A-TRPC5DN, TRPC5WT was first amplified by PCR and then enzyme-
digested and ligated between the BspEI and PmeI sites after T2A in
pCDH-SYN1-sypHy-T2A-MCS, which was created previously in the lab
from pCDH-SYN1-sypHy by deleting the stop codon in sypHy. TRPC5DN

mutation (LFW-AAA; Strübing et al., 2003) was then made by QuikChange
PCR (Stratagene), with pCDH-SYN1-sypHy-T2A- TRPC5WT as the tem-
plate, thus creating pCDH-SYN1-sypHy-T2A-TRPC5DN. Full length SphK1,
TRPC5 and their mutants, together with sypHy and synGCaMP6f, ampli-
fied by PCR were verified by Sanger sequencing.

Lentiviral productions
Low-passage HEK 293 cells were co-transfected with 10mg pCDH lenti-
viral vectors containing genes of interests, along with 7-mg packaging
vector psPAX2 and 3mg envelope vector pMD2.VSVG, using the polye-
thylenimine-mediated transfection method. The supernatant containing
lentiviral particles was collected and filtered through 0.45mm filter to
remove cell debris at 48 and 72 h. Lentiviral particles, concentrated by
PEG-it precipitation kits from System Bioscience, were re-suspended in
cold PBS and stored at –80°C.

Drugs and reagents
Stock solutions were prepared by dissolving the following molecules: S1P
(Sigma-Aldrich, catalog #S9666) at 1 mM in methanol; FTY720 (Sigma-
Aldrich, catalog #SML0700) at 100 mM in ddH2O, CAY10444 (Cayman
Chemicals, catalog #10005033) at 1 mM in dimethyl formamide, and W146
(Cayman Chemicals, catalog #10009109) at 0.2 mM in methanol. Stock solu-
tions were then diluted to final concentrations into culture medium for
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neurons, or bath solution for HEK293 cells. Neurons in culture were co-pre-
incubated with CAY10444 (10 mM), a selective S1P3 antagonist, and W146
(4 mM), a selective S1P1 antagonist, for 1 h before overnight 1 nM FTY720
incubation. During electrophysiological recordings of whole-cell TRPC5
currents, 5mM S1P is directly applied extracellularly with a pressurized local
perfusion system (VC3, ALA scientific instruments) placed ;40mm away
from the patched cell.

Immunocytochemistry
Neurons in culture were fixed with 4% paraformaldehyde for 10min at
37°C. Fixed neurons were washed twice with PBS and then permeabil-
ized and quenched for 15min in PBS with 0.2% saponin and 50 mM am-
monium chloride at room temperature. Samples were next incubated for
1 h in blocking buffer (PBS with 5% normal donkey serum, 4% bovine
serum albumin (BSA), 0.02% sodium azide (NaN3), and 0.04% saponin)

at room temperature. Primary antibodies were either diluted 1:500
(mouse anti-FLAG, clone M2, Sigma-Aldrich F1804, RRID:AB_262044)
or 1:1000 (rabbit anti- synaptophysin, Synaptic Systems catalog #101002,
RRID: AB_887905) in blocking buffer and incubated with neurons over-
night at 4°C. Fluorescent dye-conjugated secondary antibodies (donkey
anti-mouse IgG secondary antibody, Alexa Fluor 555: A-31570, RRID:
AB_2536180; donkey anti-rabbit IgG secondary antibody, Alexa Fluor
488: A-21206, RRID:AB_2535792; Thermo Fisher Scientific) were
diluted at 1:1000 in the blocking buffer, and incubated with cells for
1 h at room temperature. Images were collected on an Olympus IX51
microscope with a 60� oil immersion objective and captured by a
Prime BSI Scientific CMOS (sCMOS) camera (Teledyne Photometrics)
controlled by mManager software (https://micro-manager.org/). A Semrock
TRITC-B filter cube (543/22-nm excitation, 593/40-nm emission, 562-nm
dichroic mirror) was used for Alexa Fluor 555 signals, with a Semrock

Figure 1. SphK1DN inhibits RRP during exocytosis. A, Representative micrographs of immunofluorescence of synaptophysin and exogenously expressed SphK1WT or SphK1DN show similar
presynaptic localizations of these two SphK1 versions. Scale bar: 5mm. B, No significant differences in the Pearson’s correlation coefficient of SphK1WT or SphK1DN to synaptophysin (SphK1WT:
n = 10 fields of view from 4 coverslips; SphK1DN: n = 10 fields of view from 4 coverslips, p= 0.6367). C, Normalized changes of sypHy fluorescence in response to a 100 APs at 20-Hz stimula-
tion in control or SphK1DN-expressing neurons. D, Bar graph comparing the peak of normalized fluorescence increases in control or SphK1DN-expressing neurons (control: n= 167 boutons;
SphK1DN: n= 166 boutons). E, F, In the presence of bafilomycin A1, time course (E) and bar graph (F) of increases in the sypHy signals induced by a 100 APs at 20-Hz stimulation in control or
SphK1DN-expressing neurons. Fluorescence increases induced by electrical stimulations are normalized to that by NH4Cl application (control: n= 128 boutons; SphK1DN: n= 131 boutons). G, In
the presence of bafilomycin A1, time course of normalized sypHy fluorescence increases induced by a 600 APs at 10-Hz stimulation in control and SphK1DN-expressing neurons. H, Bar graph
showing no effects of SphK1DN on the time constant of TRP depletion kinetics, which is measured by exponentially fitting sypHy increases during stimulations (p= 0.6656). I, Bar graph showing
SphK1DN has no influences on TRP size (p= 0.9057; control: n= 145 boutons; SphK1DN: n= 147 boutons). J, In the presence of bafilomycin A1, time course of normalized sypHy fluorescence
increases induced by a 40 APs at 20-Hz stimulation in control and SphK1DN-expressing neurons. K, Bar graph showing a reduction in the RRP size by SphK1DN (control: n= 89 boutons;
SphK1DN: n= 89 boutons). L, In the presence of bafilomycin A1, time course of fluorescence increases of sypHy induced by two successive 40 APs at 20-Hz stimulations with a time interval of
5 s in control and SphK1DN-expressing neurons. Fluorescence changes are normalized to those induced by the first stimulation. M, Bar graph showing a smaller recovery of RRP in neurons
expressing SphK1DN (control: n= 129 boutons; SphK1DN: n= 121 boutons). **p, 0.01 and ***p, 0.001, unpaired two-tailed Student’s t test.
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GFP-3053B filter cube (473/31-nm excitation,
520/35-nm emission, 495-nm dichroic mirror)
for Alexa Fluor 488 signals.

Pearson’s correlation coefficient (PCC) of
FLAG to synaptophysin was measured using
Just Another Colocalization Plugin (JACoP)
plugin in Fiji (Bolte and Cordelières, 2006).
Two to three fields of view with an absence
of cell bodies were randomly selected from
each coverslip, and PCCs were analyzed
using Costes’ automatic threshold in JACoP.
Data are pooled from coverslips of two inde-
pendent cultures.

Live-cell imaging in neurons
Experiments were performed on an Olympus
IX51 microscope with a 60� oil immersion
objective at room temperature except 35–37°C
in Figure 2E,F, with a GFP-3035B filter cube
(472/30-nm excitation, 520/35-nm emission,
495-nm dichroic mirror; Semrock) as the fil-
ter set. Neurons on coverslips were continu-
ously perfused at a flow rate of ;1 ml/min
with bath solution (130 mM NaCl, 2.8 mM

KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM glu-
cose, 10 mM HEPES; pH 7.4 and ;310
mOsm). To stimulate neurons, we used
Chamlide magnetic perfusion chamber
(Live Cell instrument) equipped with two
parallel platinum electrodes (embedded
within the perfusion chamber with 7-mm
spacing), which serve as field electrodes to
deliver electric field stimulation at 10 V/cm
with 1-ms duration to induce action potentials
(APs) firing in neurons; 20 mM CNQX
(Tocris Bioscience) and 50 mM D-AP5
(Tocris Bioscience) were included in the bath
solution to prevent recurrent activities.

To achieve high quantum efficiency,
we used the Prime BSI Scientific CMOS
(sCMOS) camera (Teledyne Photometrics)
controlled by mManager software (micro-
manager.org) for capturing images. To
achieve a sampling rate of 100 Hz for
experiments of single AP stimulations and
minimize photobleaching for experiments of
train stimulations, the electrical stimulation
via a programmable isolated high-powered
stimulator (AM Systems, Model 4100), illumi-
nation via l 421 Optical Beam Combining
System (Sutter Instruments) and data acquisi-
tion via camera were simultaneously controlled by TTL output signals via
Igor software (RRID: SCR_000325, WaveMetrics). For Ca21 imaging
experiments using SynGCaMP6f, the light intensity of illumination was set
at 40% in combination with a 10-ms exposure time for single AP experi-
ments stimulation or 20% in combination with a 100-ms exposure time for
train stimulations. Images were captured at a 1- or 2-s interval with 100-ms
exposure time at 20% illumination during sypHy experiments.

Tomeasure reacidification rate of newly formed endocytic vesicles using
sypHy as described previously (Z.J. Jiang et al., 2021), neurons on coverslip
were rapidly superfused with a valve controlled pressurized perfusion sys-
tem (ALA Scientific). The perfusing buffer was switched between the stand-
ard pH 7.3 bath solution described above and pH 5.5 buffer with the
HEPES substituted with equimolar MES, with electrical stimulation time-
locked to frame acquisition and buffer changes. Specifically, surface fluores-
cence of pHluorin is quenched by the first application of acidic buffer (pH
5.5) for 6s to establish the baseline, and the quenched fluorescence is recov-
ered by washing off the acidic solution. To isolate pHluorin signal from
newly endocytosed SVs, acidic buffer (pH 5.5) is applied for a 30-s duration

2 s right after the cessation of stimulation train. Newly endocytosed
alkaline pool of pHluorin is detached from the plasma membrane and
thus resistant to quenching by the applied acidic buffer, and the decay
of this portion of fluorescence to the baseline represents acidification
of newly endocytosed vesicles. Therefore, reacidification rate of newly
endocytosed vesicles is estimated by an exponential fit of the fluores-
cent signal decay from the first to the last point during the 30-s dura-
tion of acidic buffer application.

To measure vesicles exocytosis as previously described (Balaji and
Ryan, 2007; Baumgart et al., 2015), boutons were stimulated in the pres-
ence or absence of 1 mM bafilomycin A1 (Cayman, catalog #11038),
which eliminated interference of endocytosis by blocking reacidification
of endocytosed vesicles. Tyrode’s solution containing 50 mM NH4Cl
were perfused at the end of each test to collapse the pH gradient across
vesicle membrane thus revealing the total pool.

Image analysis
Images from sypHy experiments were analyzed in ImageJ (RRID: SCR_
000415; http://rsb.info.nih.gov/ij) using custom-written plugins (http://

Figure 2. Synaptic vesicle endocytosis is impaired in SphK1DN-expressing neurons. A, Normalized fluorescence changes of
sypHy signals in control and SphK1DN-expressing neurons. B, Bar graph showing an increase in the endocytic time constant by
SphK1DN (control: n= 121 boutons; SphK1DN: n= 117 boutons). C, Normalized sypHy signals with two perfusion periods with pH
5.5 MES buffer as indicated in the trace (gray bars). Newly endocytosed vesicles “trapped” during acidic buffer perfusion starting
2 s after 100 APs at 20 Hz. D, Bar graph comparing the reacidification rate of endocytic vesicles, which was obtained by exponen-
tial fittings of fluorescence decay, indicates no change in this parameter by SphK1DN (control: n= 117 boutons; SphK1DN: n= 115
boutons, p= 0.4198). E, Normalized changes of sypHy signals in control and SphK1DN-expressing neurons at 35–37°C. F, Bar
graph comparing the endocytic time constant shows an increase in the endocytic time constant induced by SphK1DN at physiolog-
ical temperature (control: n= 101 boutons; SphK1DN: n= 100 boutons). ***p, 0.001, unpaired two-tailed Student’s t test.
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rsb.info.nih.gov/ij/plugins/time-series.html) and Igor software using cus-
tom-written procedures. Photobleaching was ,2% for all images
included in our analysis and thus was not corrected. To analyze images
from sypHy experiments, regions of interest (ROIs) of identical size
(4� 4 pixels) were placed in the center of individual synaptic boutons
reacting to stimuli, and fluorescence changes were tracked throughout
the image stack. In general, 10–25 ROIs were analyzed from each cover-
slip for sypHy experiments. With Igor, fluorescent intensities of individ-
ual ROIs before stimuli were averaged as baseline (F0), the fluorescent
changes (DF) were normalized to the baseline (F0) as DF/F0 or the fluo-
rescence changes induced by NH4Cl (DFNH4Cl) as DF/DFNH4Cl for exo-
cytosis, or to the peak of fluorescent increase (DFmax) as DF/DFmax for
endocytosis. Normalized DF of individual ROIs were taken as independ-
ent replicates (n) for each sypHy experiment, acquired from 7–12 cover-
slips of two to four cultures.

To analyze data for SynGCaMP6f experiments, ROIs were created as
previously reported in Fiji (https://fiji.sc/; Vevea and Chapman, 2020; Z.
J. Jiang et al., 2021). Briefly, ROIs (.10 pixels), defined by a series of
image subtractions and thresholding, were used to measure fluorescence
changes of image stacks. Next, fluorescent intensities of individual ROIs
before stimuli were averaged as baseline (F0), and the fluorescent
changes (DF) were normalized to the baseline (F0) as DF/F0 in Igor. The
independent replicates (n) for each SynGCaMP6f study, pooled from
two to four cultures, was measured as the average of normalized DF of
all ROIs from each coverslip.

Cell-attached capacitance recordings and analyses of endocytic fission-
pore
Cell-attached capacitance recordings of membrane capacitance and con-
ductance were performed as described previously (L.H. Yao et al., 2012,
2013). Fire polished pipettes had a typical resistance of;2 megaohms in
the bath solution. The bath solution contained 130 mM NaCl, 5 mM KCl,
2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES-NaOH, and 10 mM HEPES-

NaOH; the pH was adjusted to 7.3 with NaOH.
As mentioned previously (L.H. Yao et al., 2012,
2013), capacitance steps and fission-pore dura-
tions were considered as reliably detected for
step sizes.0.2 fF, and smaller capacitance steps
are not included in the analysis. Endocytic
events were recorded right after gigaseal forma-
tion, since we often detected action currents in
the membrane current trace as shown previ-
ously (Dernick et al., 2005), which indicates
firing of action potentials likely induced by
mechanic stimulus of patching in chromaffin
cells. The number of endocytic events per patch
detected in the cell-attached recordings is
counted as the total number of downward
capacitance steps within the first 5 min of
recordings (L.H. Yao et al., 2012, 2013). The fis-
sion-pore Gp for endocytic events was calculated
as Gp(Im) = v �Cvffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v �Cv
Imð Þ�1

p (Gong et al., 2005; L.H.

Yao et al., 2012, 2013). The fission-pore duration
was defined as the time interval from the first
point where Gp decreased below 2 nS and the
final drop in Gp to zero. This final drop reflects
the step response of the low pass filter setting of
the lock-in amplifier (1ms, 24 dB). At this set-
ting, 90% of the final value is reached within
;7ms, so the last point of the fission-pore was
taken as the time at 7–10ms before the final
drop to zero in the Gp trace. The fission-pore
conductance Gp was taken as the average Gp
value during the fission-pore duration time
interval. Analysis of fission-pore kinetics were re-
stricted to fission-pores with durations .15ms,
since shorter events were distorted by the lock-in
amplifier low-pass filter (set to 1ms, 24dB; L.H.
Yao et al., 2012, 2013). Data are pooled from cov-

erslips of four independent cultures.

Whole-cell recordings of TRPC5 currents in HEK 293 cells
TRPC5 currents were monitored in HEK 293 cells using the whole-cell
configuration as previously reported (Xu et al., 2006; Gomis et al., 2008;
Blair et al., 2009). The bath solution contained 130 mM NaCl, 5 mM KCl,
2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES-NaOH, and 10 mM glucose;
the pH was adjusted to 7.3 with NaOH, and the osmolarity was
;310mmol/kg. The solution in the whole-cell pipette contained 130 mM

Cs-MeSO3, 5 mM Na2ATP, 0.1 mM Na3GTP, 2 mM MgCl2, 1.3 mM

CaCl2, 2 mM EGTA-CsOH, and 10 mM HEPES; the pH was adjusted to
7.3 with CsOH, and the osmolarity was adjusted to 290mmol/kg.
The voltage ramp protocol holds cells at �60mV, steps to –100mV
for 40ms, and then ramps to 1100mV over 500ms, holding at
1100mV for 40ms before stepping back to �60mV, and this proto-
col is repeated every 5 s during recordings. Series resistance was
monitored by applying a voltage step of 10mV. Current signals were
filtered at 3 kHz and digitized at 20 kHz. Only recordings with an
initial pipette-membrane seal resistance .2 GV were included. Current
traces and time courses were analyzed with customized macro for Igor
software.

Statistical analysis
Data were tested for normal distribution and, if necessary, log-trans-
formed for the fission-pore duration in Figures 3E to fulfill the criteria of
normal distributions for Student’s t tests. All statistical analyses were
performed with Prism (RRID: SCR_002798, GraphPad).

No statistical method was used to predetermine sample size, but our
samples sizes are comparable to those reported in previous studies
(Fernández-Alfonso and Ryan, 2004; Granseth et al., 2006; L.H. Yao et
al., 2012, 2013; Soykan et al., 2017; Z.J. Jiang et al., 2021). Cells were ran-
domly assigned into control or experimental groups, and data were

Figure 3. SphK1DN slows down vesicle fission during endocytosis in neuroendocrine chromaffin cells. A, Representative
endocytic events, as membrane conductance (Re), membrane capacitance (Im) and the fission-pore conductance (Gp), in con-
trol and SphK1DN-expressing cells. B–E, The number of endocytic events (control: n= 83 cells; SphK1DN: n= 69 cells,
p= 0.2501; B), the capacitance Cv of endocytic vesicles (p= 0.8041; C), and the fission-pore Gp (p= 0.7110; D) were statisti-
cally comparable between control and SphK1DN-expressing cells; the log transformed fission-pore duration (E) was significantly
increased in SphK1DN-expressing cells (control: n= 36 events; SphK1DN: n= 48 events). ***p, 0.001, unpaired two-tailed
Student’s t test.
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expressed as mean6 SEM, with all values from quantification plotted as
gray dots in the bar graph. Statistical analysis was performed with
unpaired two-tailed Student’s t test, except paired two-tailed Student’s t
test in Figure 8H and Newman of one-way ANOVA in Figures 4B,D, 7B,
and 8B. All analyses were performed by an investigator blinded to the
experimental condition. N numbers, full statistics, and p values were
reported and listed in the related figure legends and Extended Data
Table 1-1.

Results
SphK1DN inhibits the readily release Pool (RRP) during
exocytosis in neurons
SphK1, a kinase essential for S1P production in central nervous
system, is concentrated within presynaptic terminals in neurons
(Fukuda et al., 2003; Kajimoto et al., 2007; Bryan et al., 2008;
Chan et al., 2012). A dominant-negative mutant, SphK1DN

(G82D) is reported to significantly inhibit S1P production (Lan
et al., 2011; Pitson et al., 2002; Qi et al., 2015). In neuroendocrine
chromaffin cells, we have previously demonstrated that down-
regulation of S1P production by SphK1DN induces significant
defects in vesicle exocytosis (Z.J. Jiang et al., 2019b). In neurons,
SphK1DN expressed by lentivirus displays a similar presynaptic
localization as wild-type (WT) SphK1 (SphK1WT; Fig. 1A,B),
which is not surprising as this SphK1DN mutant only harbors a
single amino acid substitution in its kinase catalytic domain
(Pitson et al., 2000; Alemany et al., 2007). We next analyzed
effects of SphK1DN on synaptic vesicle recycling in cortical neu-
ron cultures using sypHy (Granseth and Lagnado, 2008; Royle et

al., 2008). SphK1DN significantly reduced the fluorescence
increase of sypHy signals induced by 100 APs at 20-Hz stimula-
tions (p, 0.001; Fig. 1C,D), indicating a role of SphK1 in syn-
aptic vesicle exocytosis. It is aware that such an increase in
sypHy fluorescence likely represents a net outcome of synaptic
vesicle exocytosis and endocytosis (Fernández-Alfonso and
Ryan, 2004; Voglmaier et al., 2006). To eliminate any interfer-
ence of endocytic signals, the increase in sypHy signals during
stimulations were measured in the presence of the H1 ATPase
inhibitor bafilomycin A1 (Granseth et al., 2006; Z.J. Jiang et al.,
2021). To our expectation, the increase of sypHy signals was
also inhibited by SphK1DN under this condition, thus confirm-
ing a role of SphK1 kinase activity in synaptic vesicle exocytosis
(p, 0.001; Fig. 1E,F).

We next determined effects of SphK1DN on the total recycling
pool (TRP) and readily releasable pool (RRP), two pools that are
essential in determining the amount of synaptic vesicle exocyto-
sis (S.H. Kim and Ryan, 2010; Alabi and Tsien, 2012; Baumgart
et al., 2015). As reported previously, TRP was evaluated as fluo-
rescence increases of sypHy in response to stimulations of 600
APs at 10Hz (Fig. 1G; Ryan and Smith, 1995; Z. Hua et al.,
2011). Our results showed that SphK1DN did not alter either the
size or the depletion kinetics of TRP (p. 0.05; Fig. 1H,I). On the
other hand, RRP was evaluated as sypHy increases in response to
40 APs at 20-Hz stimulation (Fig. 1J; Murthy and Stevens, 1999;
Schikorski and Stevens, 2001; Li et al., 2005; Granseth et al.,
2006; Granseth and Lagnado, 2008). Additionally, the replenish-
ment of RRP was estimated as fluorescent increase induced by

Figure 4. S1P1/S1P3 receptors are critical for the FTY720-mediated rescue on synaptic vesicle exocytosis but not endocytosis in SphK1DN-expressing neurons. A, In the presence of bafilo-
mycin A1, synaptic vesicle exocytosis induced by electrical stimulations was measured by normalizing the fluorescence increase induced by electrical stimulation to that by NH4Cl perfusion
in SphK1DN-expressing neurons under variable conditions (control, FTY720, or FTY720/W146/CAY10444). FTY720 is a clinical S1P analog; W146 and CAY10444 are specific antagonists for
S1P1 and S1P3 receptors, respectively. B, Bar graph comparing synaptic vesicle exocytosis in SphK1DN-expressing neurons between these three groups as shown in A (control: n= 95 bou-
tons; FTY720: n= 85 boutons; FTY720 and S1PR antagonists: n= 106 boutons). One-way ANOVA followed by Tukey’s post hoc test: FTY720 versus control (*p, 0.05); FTY720 and S1PR
antagonists versus FTY720 (***p, 0.001). C, Normalized changes of sypHy signals in SphK1DN-expressing neurons under different conditions (control, FTY720, or FTY720 and S1P1/S1P3
inhibitors). D, Bar graph comparing the endocytic time constant in SphK1DN-expressing neurons shows that FTY720 treatment accelerates synaptic vesicle endocytosis independent of S1PR
inhibitors (control: n= 162 boutons; FTY720: n= 159 boutons; FTY720 and S1PR inhibitors: n= 178 boutons). One-way ANOVA followed by Tukey’s post hoc test: FTY720 versus control
(**p, 0.01); FTY720 and S1PR inhibitors versus FTY720 (p= 0.2759; ns: not statistically significant).
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the second 40 APs at 20-Hz stimulation 5 s after RRP depletion
by the first 40 APs at 20-Hz stimulation, as described previously
(Granseth and Lagnado, 2008). SphK1DN significantly reduced
RRP size (p, 0.001; Fig. 1J,K) and slowed down RRP replenish-
ment (p, 0.01; Fig. 1L,M). Collectively, this set of experiments
indicate that SphK1 kinase activity may be critical for synaptic
vesicle exocytosis by regulating RRP rather than TRP within pre-
synaptic terminals.

SphK1DN slows down synaptic vesicle endocytosis in neurons
To determine any potential roles of the SphK1/S1P axis in synap-
tic vesicle endocytosis, we examined effects of SphK1DN on the
decay kinetics of sypHy signals on the cessation of stimulations
(Fig. 2A). SphK1DN substantially increased the time constant of
sypHy fluorescence decay (p, 0.001; Fig. 2B), with no alterna-
tion in the reacidification kinetics of newly formed endocytic
vesicles (p. 0.05; Fig. 2C,D), indicating an importance of
SphK1 kinase activity in synaptic vesicle endocytosis. In
addition, we observed an increase in the endocytic time con-
stant induced by SphK1DN at the physiological temperature
of 35–37°C (p, 0.001; Fig. 2E,F), thus reiterating an impor-
tance of SphK1 kinase activity in synaptic vesicle endocytosis
in neurons.

SphK1DN prolongs fission-pore duration during endocytosis
in chromaffin cells
To understand whether the SphK1/S1P axis is involved in the
modulation of vesicle fission, a critical and arguably rate limiting
step during endocytosis (Haucke et al., 2011; Saheki and De

Camilli, 2012; Kononenko and Haucke, 2015; Kaksonen and
Roux, 2018), we analyzed effects of SphK1DN on the fission-pore
kinetics in neuroendocrine chromaffin cells by monitoring single
vesicle endocytosis with cell-attached capacitance recordings as
described previously (Fig. 3A; L.H. Yao et al., 2012; Varga et al.,
2020; Z.J. Jiang et al., 2021). SphK1DN induced a 17.8% reduction
in the number of endocytic events, although this reduction was
not significant (Fig. 3B). Meanwhile, the capacitance size of
endocytic vesicles was comparable between these two groups
(Fig. 3C), indicating that SphK1 may not be critical in controlling
the size of endocytic vesicles. Additionally, SphK1DN had no
obvious effect on the fission-pore conductance (Gp; Fig. 3D),
implying that SphK1 may not be essential in determining the ge-
ometry of the tubular membrane neck during endocytosis.
However, SphK1DN significantly increased the fission-pore dura-
tion (p, 0.001; Fig. 3E), indicating an essential role of SphK1 ki-
nase activity in vesicle fission during endocytosis.

S1P receptors are crucial for the SphK1/S1P axis-mediated
actions in synaptic vesicle exocytosis but not endocytosis
FTY720, a clinical oral treatment of relapsing remittent multiple
sclerosis (Chiba and Adachi, 2012; Ali et al., 2013), is a synthetic
S1P analog (Nofer et al., 2007). We thus examined whether
FTY720 could rescue exocytic and endocytic defects of synaptic
vesicles induced by SphK1DN. Neurons in culture expressing
SphK1DN were incubated with FTY720 at a low concentration of
1 nM overnight to mimic in vivo applications in animals (Stessin
et al., 2012; Di Menna et al., 2013; Zhang et al., 2017). FTY720
treatments significantly enhanced the fluorescence increase of

Figure 5. SphK1DN impairs presynaptic Ca21 increase in response to prolonged stimulations rather than single AP stimulation. A, Normalized synGCaMP6f increases induced by single AP in
control or SphK1DN-expressing neurons. Gray lines are mean fluorescence changes of individual ROIs from each coverslip, with black and red line as the averaged response of individual cover-
slips in control and SphK1DN group, respectively. Raw data for Ca21 increases induced by single AP are presented in Figure 6. B, Bar graph comparing peak synGCaMP6f values as shown in A
reveals no change in Ca21 signals by SphK1DN (control: n= 21 coverslips; SphK1DN: n= 20 coverslips, p= 0.4865). C, Normalized synGCaMP6f increases induced by 100 APs at 20-Hz stimula-
tions in control or SphK1DN-expressing neurons. Gray lines are mean fluorescence changes of individual ROIs from each coverslip, with black and red line as the averaged response of individual
coverslips in control and SphK1DN group, respectively. D, Bar graph comparing peak synGCaMP6f values as shown in C demonstrates a defective Ca21 signals by SphK1DN (control: n= 27 cover-
slips; SphK1DN: n= 27 coverslips). In addition, this SphK1DN-induced presynaptic Ca21 reductions can be rescued by FTY720 application, independent of S1P1/S1P3 receptors (Fig. 7).
*p, 0.05, unpaired two-tailed Student’s t test.
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sypHy in response to 100 APs at 20-Hz stimulations (Fig. 4A,B)
and reduced the endocytic time constant of sypHy signal decay
after the cessation of stimulations (Fig. 4C,D), suggesting that
FTY720 may be capable of rescuing SphK1DN induced exocytic

and endocytic defects in neurons. These data emphasize an im-
portance of S1P in SphK1DN-mediated actions in synaptic vesicle
exocytosis and endocytosis, thus emphasizing critical roles of the
SphK1/S1P axis in synaptic vesicle recycling within presynaptic

Figure 6. Raw data for Ca21 increases induced by single AP in control and SphK1DN-expressing neurons. A, Time courses of normalized synGCaMP6f increases induced by single AP in control
neurons. Gray lines are mean fluorescence changes of individual ROIs from each coverslip, with the black line as the averaged response of individual coverslips. As shown on top of the traces,
peak Ca21 signal induced by 1 AP from individual ROIs occurred within 110 ms, ranging from the first to 11th frame after stimulus as shown with color coded diagram (upper right). B, Color
coded pie charts showing frame location distributions of Ca21 peaks for all ROIs in coverslips “a” (left) and “b” (right). Along with each pie chart, two color coded traces from each coverslip
showed representative ROIs with Ca21 peaked at the fourth and sixth frame. C, Time courses of normalized synGCaMP6f increases induced by single AP in SphK1DN-expressing neurons. Gray
lines are mean fluorescence changes of individual ROIs from each coverslip, with the red line as the averaged response of individual coverslips. As shown on top of the traces, peak Ca21 signal
induced by 1 AP from individual ROIs occurred within 110 ms, ranging from the first to 11th frame after stimulus as shown with color coded diagram (upper right). D, Color coded pie charts
showing frame location distributions of Ca21 peaks from all ROIs in coverslips “a*” (left) and “b*” (right) from SphK1DN group. Along with each pie chart, two color coded traces from each cov-
erslip showed representative ROIs with Ca21 peaked at the second and seventh frame. E, Truncated (above) and full (below) time courses of mean synGCaMP6f signals induced by single AP of
coverslip “a” or “b” from control group, with decay phases fitted by single exponential functions (dotted gray lines). F, Truncated (above) and full (below) time courses of mean synGCaMP6f
signals induced by single AP of coverslip “a*” or “b*” from SphK1DN group, with decay phases of each mean Ca21 signal fitted by single exponential functions (dotted gray lines).
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terminals. Notably, it has been reported that the S1P-induced
effect on synaptic transmission at presynaptic terminals is mostly
mediated through activation of S1P3 and/or S1P1 receptors
(Kajimoto et al., 2007; Sim-Selley et al., 2009; Kanno and
Nishizaki, 2011; Riganti et al., 2016; Willems et al., 2016). Hence,
we next examined whether co-preincubations of W146, a specific
S1P1 receptor inhibitor (Sanna et al., 2006; Ammar et al., 2013;
Riganti et al., 2016), and CAY10444, a specific S1P3 receptor in-
hibitor (Koide et al., 2002; Pyne and Pyne, 2011; Riganti et al.,
2016), would be able to block FTY720-mediated rescues we have
observed. W146 and CAY10444 treatments indeed abolished
FTY720-mediated rescue on the increase of sypHy fluorescence
induced by stimulations (Fig. 4A,B), suggesting that S1P1/S1P3
receptors may mediate the role of the SphK1/S1P axis in synaptic
vesicle exocytosis. On the other hand, treatments with W146 and
CAY10444 had no detectable effects on the FTY720-mediated
rescue on the endocytic time constant on the cessation of stimu-
lations (Fig. 4C,D), indicating that S1P1/S1P3 receptors may be
dispensable for the regulation of the SphK1/S1P axis in synaptic
vesicle endocytosis.

The SphK1/S1P axis is important for presynaptic Ca21 levels
during prolonged stimulations
Previous studies in non-neuronal cells have implied important
roles of S1P in modulating intracellular Ca21 signaling (Ghosh
et al., 1990; Itagaki and Hauser, 2003; Spiegel and Milstien, 2003;
Xu et al., 2006). Since Ca21 is a key regulating factor for synaptic
vesicle endocytosis (Cousin, 2000; Wu et al., 2009; Wu and Wu,
2014; Chanaday et al., 2019; Z.J. Jiang et al., 2021), it is possible
that a regulation of presynaptic Ca21 signaling may account for
the action of the SphK1/S1P axis in synaptic vesicle endocytosis
we have observed. To test this possibility, we examined effects of
SphK1DN on presynaptic Ca21 signaling using synGCaMP6f
(GCaMP6f fused with synaptophysin), a presynaptic Ca21 re-
porter with fast speed and high sensitivity (Chen et al., 2013;
Kyung et al., 2017; Brockhaus et al., 2019; Z.J. Jiang et al., 2021).
SphK1DN did not alter the increase of synGCaMP6f signals
induced by single AP stimulation (Fig. 5A,B; p. 0.05), indicative
of no change in Ca21 influx via VGCCs (S.H. Kim and Ryan,
2013; Brockhaus et al., 2019; Z.J. Jiang et al., 2021). It should be
noted that a deflection of the SynGCaMP6f fluorescence signal
was observed in the decay phase at around 110ms following sin-
gle AP stimulation (Fig. 5A). We suggest that this deflection may

be because of, but not limited to, that single AP fluorescence
responses of individual ROIs peak within the 110-ms period after
stimulus, with variability in the time of the signal to peak (Fig.
6A–D), and its presence has no impact on the exponential decay
of the averaged fluorescent signal (Fig. 6E,F). On the other hand,
the increase in synGCaMP6f signals induced by 100 APs at 20-
Hz stimulations was significantly reduced by SphK1DN (p, 0.05;
Fig. 5C,D), suggesting an importance of the SphK1/S1P axis in
regulating presynaptic Ca21 influx during prolonged stimula-
tions. This conclusion is further supported by our observation
that FTY720 enhanced the increase in synGCaMP6f signals
induced by 100 APs at 20-Hz stimulations in SphK1DN-express-
ing neurons (p, 0.001), which is independent of S1P1/S1P3
receptors (Fig. 7). Presynaptic Ca21 influx on prolonged stimula-
tions has been well documented to be essential for synaptic vesi-
cle endocytosis (C.K. Yao et al., 2009, 2017; Wu and Wu, 2014;
Z.J. Jiang et al., 2021), our data thus indicate that the SphK1/S1P
axis may regulate synaptic vesicle endocytosis by modulating
presynaptic Ca21 levels during prolonged stimulations.

S1P modulates presynaptic Ca21 levels via TRPC5 channels
It is reported that the TRPC5 channel, a Ca21 permeable
member of canonical transient receptor potential channel
(TRPC) superfamily (Clapham, 2003; Venkatachalam and
Montell, 2007), is located to presynaptic terminals (Greka
et al., 2003; Nichols et al., 2007; Schwarz et al., 2019).
Additionally, TRPC5 channels may be involved in main-
taining presynaptic Ca21 levels during stimulation trains
(Schwarz et al., 2019). Notably, S1P is a physiological ago-
nist for Ca21 influx via TRPC5 channels (Xu et al., 2006;
Venkatachalam and Montell, 2007; Naylor et al., 2016). It is
therefore possible that the regulation of TRPC5 by the
SphK1/S1P axis may account for the SphK1DN induced pre-
synaptic Ca21 defect during prolonged stimulations we
have observed (Fig. 5C,D). We next explored this possibility
by examining effects of SphK1DN on presynaptic Ca21 levels
in neurons expressing a dominant negative nonconducting
TRPC5 (TRPC5DN), which was created by site-specific muta-
genesis of WT TRPC5 (TRPC5WT; LFW-AAA) as reported
(Greka et al., 2003). The nonconducting and dominant nega-
tive properties of this TRPC5DN channel was confirmed by
whole-cell patch recordings in HEK 293 cells (Fig. 8A,B).
Furthermore, ionic currents of TRPCWT channels were significantly

Figure 7. FTY720 rescues presynaptic Ca21 increase in response to prolonged stimulations in SphK1DN-expressing neurons, independent of S1P1/S1P3 receptors. A, Normalized synGCaMP6f
increases induced by 100 APs at 20-Hz stimulations in SphK1DN-expressing neurons under variable conditions (control, FTY720, or FTY720/W146/CAY10444). Gray lines are mean fluorescence
changes of individual ROIs from each coverslip, with red, blue, and yellow line as the averaged response of individual coverslips from control, FTY720, and FTY720/W146/CAY10444 group,
respectively. B, Bar graph comparing peak synGCaMP6f values as shown in A demonstrates that FTY720 treatment increases Ca21 influx in SphK1DN-expressing neurons, which is not affected
by the pretreatment of S1PR inhibitors (control: n= 22 coverslips; FTY720: n= 20 coverslips; FTY720/W146/CAY10444: n= 20 coverslips). All experiments are performed in synapses expressing
the SphK1DN mutant, one-way ANOVA followed by Tukey’s post hoc test: FTY720 versus control (***p, 0.001); FTY720 and S1PR inhibitors versus FTY720 (p= 0.4651; ns: not statistically
significant).
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enhanced by exogenously applied S1P (p, 0.001; Fig. 8G,
H), confirming the S1P-mediated regulation of TRPC5 as
reported by previous Ca21 imaging studies (Xu et al., 2006;
Naylor et al., 2016). Consistent with a previous study on
hippocampal neurons using transgenic knock-out (KO) and

knock-in mice (Schwarz et al., 2019), TRPC5DN induced a
significant decrease in presynaptic Ca21 levels in response
to 100 APs at 20-Hz stimulations (p, 0.05; Fig. 8E,F) rather
than single AP stimulation (p. 0.05; Figs. 8C,D, 9), imply-
ing an importance of TRPC5 in maintaining presynaptic

Figure 8. Ca21 influx via TRPC5 is necessary for the action of the SphK1/S1P axis on presynaptic Ca21 levels in responses to prolonged stimulations. A, Representative whole-cell currents
recorded in HEK293 cells expressing TRPC5WT (black), TRPC5DN (green), or TRPC5DN and TRPC5WT (red), in response to a voltage ramp from�100 to1100 mV. B, Quantifications showing sub-
stantial reductions of whole-cell currents in cells expressing TRPC5DN or TRPC5DN/TRPC5WT, as compared with TRPC5WT, at both –100 and 1100 mV (TRPC5WT: n= 16 cells; TRPC5DN: n= 18
cells; co-transfection: n= 15 cells; one-way ANOVA followed by Tukey’s post hoc test, TRPC5DN or TRPC5DN/TRPC5WT vs TRPC5WT: ***p, 0.001). C, Normalized increases of synGCaMP6f fluores-
cence induced by single AP in control or TRPC5DN-expressing neurons. Gray lines are mean fluorescence changes of individual ROIs from each coverslip, with black and red line as the averaged
response of individual coverslips from control and TRPC5DN groups, respectively. Raw data for Ca21 increases induced by single AP are presented in Figure 9. D, Bar graph comparing peak
synGCaMP6f values as shown in C reveals no change in Ca21 signals in TRPC5DN-expressing neurons (control: n= 20 coverslips; TRPC5DN: n= 19 coverslips, p= 0.4639). E, Normalized
SynGCaMP6f increases induced by 100 APs at 20 Hz in control or TRPC5DN-expressing neurons. Gray lines are mean fluorescence changes of individual ROIs from each coverslip, with black or
red line as the averaged response of individual coverslips from control or TRPC5DN group. F, Bar graph comparing peak Ca21 values as shown in E demonstrates a significant decrease of Ca21

signals in TRPC5DN-expressing neurons (control: n= 22 coverslips; SphK1DN: n= 22 coverslips). G, Representative whole-cell TRPC5 currents before (black) and after (red) 5 mM S1P application,
recorded from a TRPC5WT-expressing HEK293 cell, in response to a voltage ramp from�100 to1100 mV. H, Quantifications showing significant increases of whole-cell TRPC5 currents by S1P
application (red vs black) at both 1100 mV (top) and �100 mV (bottom; n= 16 cells; paired t test, ***p, 0.001). I, Normalized fluorescence increases of SynGCaMP6f signals induced by
100 APs at 20 Hz from TRPC5DN or SphK1DN/TRPC5DN-expressing neurons. Gray lines are mean fluorescence changes of individual ROIs from each coverslip, with black or red line as the averaged
response of individual coverslips from TRPC5DN or SphK1DN/TRPC5DN-expressing neurons. J, Bar graph comparing peak Ca21values as shown in I demonstrates that SphK1DN had no significant
effects on Ca21 signals in TRPC5DN-expressing neurons (TRPC5DN: n= 24 coverslips; SphK1DN/TRPC5DN: n= 24 coverslips, p= 0.4856). *p, 0.05, unpaired two-tailed Student’s t test in D, F,
and J.
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Figure 9. Raw data for Ca21 increases induced by single AP in control and TRPC5DN-expressing neurons. A, Time courses of normalized synGCaMP6f increases induced by single AP in control
neurons. Gray lines are mean fluorescence changes of individual ROIs from each coverslip, with the black line as the averaged response of individual coverslips. As shown on top of the traces,
peak Ca21 signal induced by 1 AP from individual ROIs occurred within 110 ms, ranging from the first to 11th frame after stimulus as shown with color coded diagram (upper right). B, Color
coded pie charts showing frame location distributions of Ca21 peaks for all ROIs in coverslips “c” (left) and “d” (right). Along with each pie chart, two color coded traces from each coverslip
showed representative ROIs with Ca21 peaked at the fourth and sixth frame. C, Time courses of normalized synGCaMP6f increases induced by single AP in TRPC5DN-expressing neurons. Gray
lines are mean fluorescence changes of individual ROIs from each coverslip, with the red line as the averaged response of individual coverslips. As shown on top of the traces, peak Ca21 signal
induced by 1 AP from individual ROIs occurred within 110 ms, ranging from the first to 11th frame after stimulus as shown with color coded diagram (upper right). D, Color coded pie charts
showing frame location distributions of Ca21 peaks from all ROIs in coverslips “c*” (left) and “d*” (right) from TRPC5DN group. Along with each pie chart, two color coded traces from each cov-
erslip showed representative ROIs with Ca21 peaked at the second and seventh frame. E, Truncated (above) and full (below) time courses of mean synGCaMP6f signals induced by single AP of
coverslip “c” or “d” from control group, with decay phases of Ca21 signals fitted by single exponential functions (dotted gray lines). F, Truncated (above) and full (below) time courses of mean
synGCaMP6f signals induced by single AP of coverslip “c*” or “d*” from TRPC5DN group with decay phases of mean Ca21 signals fitted by single exponential functions (dotted gray lines).
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Ca21 levels during prolonged stimula-
tions. Moreover, in contrast to an inhi-
bition of presynaptic Ca21 influx in
control neurons (Fig. 5C,D), SphK1DN

had no obvious effects on presynaptic
Ca21 levels in response to 100 APs at 20-
Hz stimulations in TRPC5DN-expressing
neurons (p. 0.05; Fig. 8I,J), pointing out
that Ca21 influx via TRPC5 channels
may be critical for the role of the SphK1/
S1P axis in presynaptic Ca21 signaling
during prolonged stimulations.

TRPC5 is critical for the role of the
SphK1/S1P axis in synaptic vesicle
endocytosis
Consistent with critical roles of TRPC5
channels in mediating Ca21 influx on
train stimulations (Fig. 8E,F), TRPC5DN

induced a significant increase in the time
constant of sypHy signal decay (p, 0.05; Fig. 11A,B), implying
an importance of Ca21 influx via TRPC5 in synaptic vesicle
endocytosis. On the other hand, there was no change in
sypHy fluorescence increase induced by electric stimula-
tions in TRPC5DN-expressing neurons as compared with
control neurons (p. 0.05; Fig. 11C,D). We reasoned that
any potential reductions in sypHy increase induced by
TRPC5DN could be masked by a comparable reduction in
endocytosis during stimulation, since a significant defect in
synaptic vesicle endocytosis induced by TRPC5DN has been
observed as shown in Figure 11A,B. Indeed, in the presence
of bafilomycin to block vesicle reacidification because of
endocytosis, TRPC5DN induced a small, although nonsignificant,
reduction in the increase of pHluorin signals induced by 100
APs at 20-Hz stimulations (p. 0.05; Fig. 10). Collectively, our
data indicate that Ca21 influx via TRPC5 may be specifically
required for synaptic vesicle endocytosis. Given the dependence
on Ca21 influx via TRPC5 for the role of the SphK1/S1P axis in
presynaptic Ca21 levels (Fig. 8I,J), we then analyzed effects of
SphK1DN on synaptic vesicle endocytosis in TRPC5DN-express-
ing neurons. In contrast to an increase in the time constant of
sypHy signal decay after the cessation of stimulations induced by
SphK1DN expression in control neurons (Fig. 2A,B), SphK1DN

induced no detectable changes in this parameter in TRPC5DN-
expressing neurons (Fig. 11E,F), indicating that Ca21 via TRPC5
channels may be necessary for the SphK1/S1P axis-mediated
action in synaptic vesicle endocytosis. However, similar as
SphK1DN expression in control neurons (Fig. 1C,D), SphK1DN

reduced the increase in pHluorin signals induced by 100 APs at
20Hz in TRPC5DN-expressing neurons (p, 0.001; Fig. 11G,H),
indicating that the role of the SphK1/S1P axis in exocytosis may
be independent of TRPC5. Taken together, our data point out
that the regulation of TRPC5 channels by the SphK1/S1P axis
may be especially crucial for synaptic vesicle endocytosis in
neurons.

Discussion
By showing an endocytic defect induced by SphK1DN (Fig. 2), we
demonstrate an essential role of the SphK1/S1P axis in synaptic
vesicle endocytosis in neurons. This conclusion is reiterated by
the evidence that the SphK1DN induced endocytic defect can be
rescued by a clinical S1P analog FTY720 (Fig. 4C,D). Meanwhile,

Ca21 imaging shows that SphK1DN induces a decreased Ca21

level during prolonged stimulations in control neurons (Fig.
5), indicating an importance of the SphK1/S1P axis in synaptic
vesicle endocytosis by regulating presynaptic Ca21 signaling.
Furthermore, SphK1DN induced no detectable effects on either
presynaptic Ca21 influx or synaptic vesicle endocytosis in
TRPC5DN-expressing neurons, implying that Ca21 influx via
TRPC5 may be necessary for the SphK1/S1P axis-mediated
action. Collectively, our data point out that regulations of
Ca21 influx via TRPC5 channels by the SphK1/S1P axis may
be important for synaptic vesicle endocytosis in neurons. On
the other hand, SphK1DN induces a defect in synaptic vesicle
exocytosis (Fig. 1), which can also be rescued by exogenous
FTY720 application (Fig. 4A,B), confirming critical roles of
the SphK1/S1P axis in synaptic vesicle exocytosis as reported
(Kajimoto et al., 2007; Chan et al., 2012; Riganti et al., 2016; Z.
J. Jiang et al., 2019b). Moreover, this FTY720-mediated rescue
is abolished by S1P receptor inhibitors (Fig. 4A,B), suggesting
that S1P receptors may be responsible for the action of the
SphK1/S1P axis in synaptic vesicle exocytosis in neurons. In
view of different downstream molecular pathways identi-
fied in our study, the SphK1/S1P axis is inferred to regulate
synaptic vesicle exocytosis and endocytosis through distinct
mechanisms.

The SphK1/S1P axis regulates RRP during exocytosis
Our data showed that synaptic vesicle exocytosis induced by 100
APs at 20-Hz stimulations is reduced by SphK1DN (Fig. 1C–F),
indicating a role of the SphK1/S1P axis in synaptic vesicle exocy-
tosis. This conclusion agrees with previous studies in neurons
from C. elegans (Chan et al., 2012), mouse neuroendocrine cells
(Pan et al., 2006; Z.C. Jiang et al., 2019a) and hippocampal neu-
rons (Kajimoto et al., 2007; Kanno et al., 2010; Riganti et al.,
2016), frog neuromuscular junctions (Brailoiu et al., 2002), and
zona glomerulosa cells (Brizuela et al., 2007). It is acknowledged
that two vesicle pools, TRP and RRP, are essential in determining
the amount of exocytosis on stimulations (S.H. Kim and Ryan,
2010; Alabi and Tsien, 2012; Baumgart et al., 2015). Our imaging
data reveal that SphK1DN reduces RRP size and slows down RRP
replenishment (Fig. 1J–M) with no obvious effects on TRP size
or its depletion kinetics (Fig. 1G–I), indicating a physiological
role of the SphK1/S1P axis in regulating the size and replenish-
ment of RRP during exocytosis. Consistently, a previous study
implies that exogenous S1P addition may increase the size of

Figure 10. TRPC5DN has no significant effect on synaptic vesicle exocytosis in neurons. A, In the presence of bafilomycin
A1, time courses of averaged increases in the sypHy signals induced by 100 APs at 20-Hz stimulations in control or TRPC5DN-
expressing neurons. Fluorescence increases induced by electrical stimulations are normalized to that by NH4Cl to minimize
potential impacts from sypHy expression variations. B, Bar graph showing comparable peak values of normalized fluorescence
increases in control or TRPC5DN-expressing neurons (control: n= 143 boutons; TRPC5DN: n= 139 boutons; p= 0.1096).
Unpaired two-tailed Student’s t test. ns: not statistically significant.
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Figure 11. TRPC5 is required for the role of the SphK1/S1P axis in synaptic vesicle endocytosis in neurons. A, Normalized changes of sypHy signals in response to 100 APs at 20-Hz stimulations in control
and TRPC5DN-expressing neurons. B, Bar graph showing an increase in the endocytic time constant in TRPC5DN-expressing neurons (control: n=163 boutons; TPRC5DN: n=154 boutons). C, Time courses of
averaged increases in the sypHy signals induced by 100 APs at 20-Hz stimulations in control or TRPC5DN-expressing neurons. Fluorescence increases induced by electrical stimulations are normalized to that by
NH4Cl perfusion at the end of each trial to minimize potential impacts of sypHy expression variations. The time constant (t ) of pHluorin signal decay for the averaged response of control or TRPC5

DN group
was obtained by fitting the fluorescence decay with a single exponential function (gray lines). D, Bar graph showing comparable peak values of normalized fluorescence increases in control or TRPC5DN-express-
ing neurons (control: n=142 boutons; TRPC5DN: n=118 boutons; p = 0.1002). In the presence of bafilomycin, TRRPC5DN induces a small, but nonsignificant, reduction in exocytosis (Fig. 10). E, Normalized
changes of sypHy fluorescence in TRPC5DN or SphK1DN/TRPC5DN-expressing neurons. F, Bar graph showing that SphK1DN had no detectable effects on the endocytic time constant in TRPC5DN-expressing neurons
(TPRC5DN: n= 150 boutons; SphK1DN/TRPC5DN: n= 150 boutons, p=0.6463). G, Time courses of averaged increases in the sypHy signals induced by a 100 APs at 20-Hz stimulation in TRPC5DN or SphK1DN/
TRPC5DN-expressing neurons. Fluorescence increases induced by electrical stimulations are normalized to that by NH4Cl perfusion at the end of each trial. The time constant (t ) of pHluorin signal decay for the
averaged response of TRPC5DN or SphK1DN/TRPC5DN group was obtained by fitting the fluorescence decay with a single exponential function (gray lines). H, Bar graph showing that SphK1DN causes a significant
reduction of exocytosis in TRPC5DN-expressing neurons (TRPC5DN: n=115 boutons; SphK1DN/TRPC5DN: n=113 boutons). *p, 0.05, ***p, 0.001, unpaired two-tailed Student’s t test.
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RRP, measured as sucrose evoked EPSCs (Riganti et al., 2016).
The RRP regulation by the SphK1/S1P axis may reflect its func-
tion in vesicle docking and priming, since FTY720 has been
implied to affect docking/priming process in primary rat cul-
tured astrocytes, a non-neuronal cell (Trkov et al., 2012).
Alternatively, the SphK1/S1P may control RRP by modulating
localization of synapsin I (Riganti et al., 2016), a major synaptic
vesicle associated phosphoprotein regulating RRP size (Baldelli
et al., 2007).

The SphK1/S1P axis promotes vesicle endocytosis in
neuronal cells
By showing that SphK1DN slowed down sypHy fluorescence
decay after the cessation of stimulations at both room and physi-
ological temperatures (Fig. 2), our data provide the first evidence
for critical roles of the SphK1/S1P axis in synaptic vesicle endo-
cytosis in neurons. Additionally, single vesicle endocytosis moni-
tored using cell-attached capacitance recordings in chromaffin
cells reveals an importance of the SphK1/S1P axis in vesicle fis-
sion during endocytosis (Fig. 3). Our findings thus expand the
reported roles of the SphK1/S1P axis in endocytic trafficking in
non-neuronal cells (Yonamine et al., 2011; Shen et al., 2014;
Young et al., 2016; Lima et al., 2017) to neuronal endocytosis.
Based on the documented importance of endocytosis for the syn-
aptic vesicle reavailability in RRP (Pyle et al., 2000; Granseth and
Lagnado, 2008; Cheung et al., 2010; Rizzoli, 2014; Kyung et al.,
2018; Y. Kim et al., 2020), the role of the SphK1/S1P axis in syn-
aptic vesicle endocytosis may account for the SphK1DN-induced
disruption in RRP replenishment we have observed (Fig. 1L,M).

The regulation of TRPC5 by the SphK1/S1P axis is critical
for synaptic vesicle endocytosis
TRPC5DN reduced Ca21 increase induced by 100 APs at 20Hz
(Fig. 8E,F) rather than single AP (Fig. 8C,D), suggesting critical
roles of TRPC5 in presynaptic Ca21 signaling during prolonged
stimulations. Our results are in line with a previous study using
transgenic KO and knock-in mice, demonstrating an importance
of TRPC5 channels, independent of VGCCs, in presynaptic
Ca21 influx during stimulation trains (Schwarz et al., 2019).
Furthermore, TRPC5DN slowed down sypHy signal decay after
stimulations (Fig. 11A,B), indicating that Ca21 influx via TRPC5
channels may be critical for synaptic vesicle endocytosis in neu-
rons. It is of note that previous studies have identified that Ca21

influx via TRPM7 (Z.J. Jiang et al., 2021), another TRP super-
family member (Clapham, 2003), and Flower (C.K. Yao et al.,
2017), a Ca21 permeable protein with Ca21 selectivity filter
similar as TRPV5 and TRPV6 (C.K. Yao et al., 2009), may be
crucial for synaptic vesicle endocytosis in mammalian neu-
rons. Along this line, it would be interesting to find out the
importance of other members of TRP superfamily, which are
Ca21 permeable and widely expressed in the brain (Ramsey et
al., 2006; Venkatachalam and Montell, 2007; Sawamura et al.,
2017; Koivisto et al., 2022), in synaptic vesicle endocytosis in
the mammalian brain. On the other hand, Ca21 influx via
TRPC5 has been previously shown to be important for short-
term plasticity of fast glutamatergic synapses (Schwarz et al.,
2019). Given the well-established significance of synaptic vesi-
cle endocytosis in short-term synaptic plasticity (Zucker and
Regehr, 2002; Granseth and Lagnado, 2008; Hosoi et al., 2009;
Regehr, 2012; Y. Hua et al., 2013; Z.J. Jiang et al., 2021), our
discovery suggests that the previously reported functions of
TRPC5 in short-term plasticity may reflect its role in synaptic
vesicle endocytosis in neurons.

The present study using electrophysiological recordings and
previous Ca21 imaging assays in HEK293 cells have testified the
role of S1P as a physiological activator for TRPC5 channels (Xu
et al., 2006; Naylor et al., 2016). Our Ca21 imaging studies in
neurons shows that SphK1DN induces a reduction in presynaptic
synGCaMP6f signal increase in response to 100 APs at 20-Hz
stimulations in control (Fig. 5C,D) but not TRPC5DN-expressing
neurons (Fig. 8I,J), indicating that the SphK1/S1P axis may be
crucial for presynaptic Ca21 signaling via regulating TRPC5
channels during prolonged stimulations. This finding is likely to
provide novel mechanistic insights into the role of S1P, an enig-
matic signaling molecule, in Ca21 homeostasis in the mamma-
lian brain (Spiegel and Milstien, 2003; Karunakaran and van
Echten-Deckert, 2017). In parallel, SphK1DN slows down sypHy
fluorescence decay after the cessation of stimulations in control
(Fig. 2A,B) but not TRPC5DN-expressing neurons (Fig. 11E,F),
indicating an importance of TRPC5 in the SphK1/S1P axis-medi-
ated regulation of synaptic vesicle endocytosis. Collectively, our
data point out regulations of Ca21 influx via TRPC5 by the
SphK1/S1P axis may be critical for synaptic vesicle endocytosis.
This discovery may thus provide novel mechanistic implications
for parallel involvements of TRPC5 and S1P in brain functions
under physiological and pathologic conditions and pain-related
behaviors in mice and human (Camprubí-Robles et al., 2013;
Hong et al., 2015, 2020; Weth-Malsch et al., 2016; Bröker-Lai et
al., 2017; Di Pardo et al., 2017; Karunakaran and van Echten-
Deckert, 2017; Hill et al., 2018; Sadler et al., 2021).

Implications to neurologic disorders
The SphK1/S1P axis and synaptic vesicle endocytosis have been
linked to the same group of neurologic disorders, including
Parkinson’s disease (Pyszko and Strosznajder, 2014), Huntington’s
disease (Di Pardo et al., 2019), Alzheimer’s disease (Ceccom et al.,
2014; Couttas et al., 2014), and multiple sclerosis (Subei and
Cohen, 2015; Mao-Draayer et al., 2017). By identifying for the first
time a role of the SphK1/S1P axis in synaptic vesicle endocytosis,
our study indicates that impaired regulations of the SphK1/S1P
axis in synaptic vesicle endocytosis may contribute to pathophys-
iological mechanisms of these neurologic disorders (Couttas et al.,
2014; Pirhaji et al., 2016; Schreij et al., 2016; Lee et al., 2018;
Di Pardo et al., 2019; McAdam et al., 2020; Pensalfini et al.,
2020). Meanwhile, it is worth mentioning that the SphK1/S1P
axis has recently been identified as a key regulator for autoph-
agy in neurons (Moruno Manchon et al., 2015, 2016), and
dysfunction of autophagy is identified in many neurologic
diseases (Menzies et al., 2017; Malik et al., 2019; Klionsky et al.,
2021). Indeed, there is an interdependency of autophagy and
synaptic vesicle endocytosis within presynaptic terminals (Limanaqi
et al., 2018; Overhoff et al., 2021; Yang et al., 2022). As the SphK1/
S1P axis may modulate the coordination between autophagy and
endocytic membrane trafficking in mouse embryonic fibroblasts
(Young et al., 2016), it would be interesting to understand
whether the SphK1/S1P axis may regulate the interplay between
autophagy and synaptic vesicle endocytosis within presynaptic ter-
minals in the future.
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