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Abstract: Calcium is a highly positively charged ionic species. It regulates all cell types’ functions
and is an important second messenger that controls and triggers several mechanisms, including
membrane stabilization, permeability, contraction, secretion, mitosis, intercellular communications,
and in the activation of kinases and gene expression. Therefore, controlling calcium transport and
its intracellular homeostasis in physiology leads to the healthy functioning of the biological system.
However, abnormal extracellular and intracellular calcium homeostasis leads to cardiovascular,
skeletal, immune, secretory diseases, and cancer. Therefore, the pharmacological control of calcium
influx directly via calcium channels and exchangers and its outflow via calcium pumps and uptake
by the ER/SR are crucial in treating calcium transport remodeling in pathology. Here, we mainly
focused on selective calcium transporters and blockers in the cardiovascular system.

Keywords: calcium; calcium homeostasis; calcium overload; hypercalcemia; Cav1; Cav2; Cav3;
L-type calcium channel; P/Q-type calcium channel; N-type calcium channel; R-type calcium channel;
T-type calcium channel; calcium channel blockers; G protein; GPCR; calcium pumps; sodium/calcium
exchanger; endoplasmic reticulum; nucleus; mitochondria

1. Introduction

Calcium (Ca2+) plays a vital role in development, aging, and death. This ion regulates
most cellular functions via its broad role as a second messenger at the cytosolic and nuclear
levels [1–4]. It is directly and indirectly implicated in life and death signals [5], sperm and
ovulation maturation [6], fecundation [6], differentiation [5], contraction [7–10], secretion
(endocytosis/exocytosis) [11], proliferation [12–14], and memory [15]. Its high extracellular
concentration (near 2 mM compared to its intracellular concentration, near 50 nM) and
its positive charges contribute to plasma membrane surface charges which affect plasma
membrane fluidity. Its intracellular Ca2+ homeostasis is regulated by ionic transporters
such as calcium channels, exchangers, and electrogenic pumps [16,17] (for summary, see
Table 1 and Figure 1). These ionic transporters are also present on the membranes of
intracellular organelles, such as the endoplasmic/sarcoplasmic reticulum, the mitochondria,
and the nucleus [16,17]. In addition, calcium micro- and nanodomains are formed at the
inner side of the mouth of a transporter that contributes to intracellular calcium release,
uptake, and signaling [18–22]. These micro/nanodomains enable the cell to use calcium
in a specific part of the cell [18]. These micro/nanodomains were given names (sparklet,
spark, blink, syntilla, and puff) depending on the type of transporter that created such
domains [18] (Figure 1). For example, sparklet originates from the calcium voltage-operated
calcium channel (VOCC) opening, which creates a calcium microdomain by activating
calcium-induced calcium release from the endoplasmic/sarcoplasmic reticulum (ER/SR)
ryanodine type 2 receptor (RyR2). This latter type of microdomain calcium release is called
spark (Figure 1). The different calcium micro/nanodomains contribute to several cell
functions, such as excitation–contraction (EC) coupling, excitation–secretion (ES) coupling,
and excitation–gene expression (EG) coupling.
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Table 1. Types and subtypes of calcium transporters and their conductance, localization, function,
and organic and inorganic blockers.

Type Subtype Conductance
(pS) Localization Function Inorganic

Antagonist
Antagonist

Organic

VOCC-L Cav1.1 25 SKELETAL
MUSCLE CONTRACTION Ba2+, Mn2+,

Ca2+, Mg2+
DHP, VERAPAMIL,

DILTIAZEM

VOCC-L Cav1.2 25 CARDIAC,
VSM, NEURON

CONTRACTION,
SECRETION,
TRANSCRIP-

TION

Ba2+, Mn2+,
Ca2+, Mg2+

VERAPAMIL HEART,
DHPVSM

VOCC-L Cav1.3 25

ENDOCRINE,
NEURONAL,

ATRIA,
PACEMAKER

SECRETION,
CONDUC-

TION

Ba2+, Mn2+,
Ca2+, Mg2+

DHP, VERAPAMIL,
DILTIAZEM

VOCC-L Cav1.4 25 RETINAL VISION, PHO-
TORECEPTOR

Ba2+, Mn2+,
Ca2+, Mg2+ DHP

VOCC-P/Q Cav2.1 10–20 NEURONAL SECRETION W-AGATOXIN

VOCC-N Cav2.2 10–20 NEURONAL SECRETION W-CONOTOXIN

VOCC-R Cav2.3 24 ALL CELL
TYPES

RESTING
[Ca2+]i

- LOW CONCENTRATION
OF ISRADIPINE

VOCC-T Cav3.1 8–12 CARDIAC,
NEURONAL PACEMAKER Ni2+, Ca2+ MIBEFRADIL

VOCC-T Cav3.2 8–9 CARDIAC,
NEURONAL PACEMAKER Ni2+, Ca2+ MIBEFRADIL

VOCC-T Cav3.3 8–9 NEURONAL PACEMAKER Ni2+, Ca2+ MIBEFRADIL

AMPAR - 8.2–37

ALZHEIMER,
PARKINSON.
DEPRESSION,

EPILEPSY,
CARDIAC,
SKELETAL

MEMORY -
PERAMPANEL
TALAMPANEL

JSTX-3 and DNQX

TRPC 1 25–138 RENAL, REFILLING OF
ER/SR STORE La3+,Cd3+ SAR7334, SKF96365, MPEP

TRPP 2 80–160
1.2–4.5

RENAL,
T-

LYMPHOCYTE.
VSM, VEC,

ER/SR,
CARDIAC

ENDOCRINE,
PROLIFERA-

TION,
REFILLING ER,

APOPTOSIS,
SPERM FERTIL-

ISATION

La3+, Gd3+ AMILORIDE
LOE-908

NMDAR - 23–89
NEURONAL,

CARDIAC,
VEC

LEARNING,
MEMORY,

NEURONAL
MIGRATION

Zn2+, Mg2+,
and Pb2+

APS
MK-801

IFENPRODIL
MEMANTINE

Ca2+-PUMP
PMCA,
SERCA - ALL CELLS

MAINTAIN
Ca2+,

HEMOSTASIS
INTRACELLU-

LAR

- OUABAIN,
THAPSIGARGIN
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Table 1. Cont.

Type Subtype Conductance
(pS) Localization Function Inorganic

Antagonist
Antagonist

Organic

Na+-Ca2+

EXCHANGER
1 - ALL CELLS

REGULATE
INTRACELLU-
LAR Ca2+ AND

Na+ HOME-
OSTASIS

ER/SR Calcium

Li+ SN-6

RyR 1–3 - ALL CELLS RELEASE
CHANNEL - DANTROLENE

IP3R 1–3 - ALL CELLS RELEASE
CHANNEL - 2-APB

VSM: Vascular smooth muscle, [Ca2+]i: intracellular calcium concentration; VEC: vascular endothelial cells.
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nucleoplasmic reticulum; RyR, ryanodine receptor; IP3R, inositol 3 phosphate receptor; NPC, 
nuclear pore channel; GPCR, G-protein coupled receptor; TKR, tyrosine kinase receptor. Ca2+ in red 
represents the increase in calcium. The question mark (?) indicates that the nature of the single-
channel conductance and the calcium selectivity of these ionic channels are unclear. 

The regulation of normal intracellular calcium homeostasis in all cell types, 
particularly highly differentiated cells such as those of the cardiovascular system, is 
crucial to proper cell function. The dysregulation of Ca2+ transport through the plasma 
and intracellular organelles, such as the ER/SR, the mitochondria, and the nucleus shown 
in Figure 1, contributes to calcium overload in the cytosol, the mitochondria, and the 

Figure 1. Schematic representation of various calcium transporters. VOCCs, voltage-operated
calcium channel; ROCC, receptor-operated calcium channel; TRPP-2, transient receptor potential
polycystic 2; PLC, phospholipase C; DAG, diacylglycerol; ER, endoplasmic reticulum; NR, nucleo-
plasmic reticulum; RyR, ryanodine receptor; IP3R, inositol 3 phosphate receptor; NPC, nuclear pore
channel; GPCR, G-protein coupled receptor; TKR, tyrosine kinase receptor. Ca2+ in red represents the
increase in calcium. The question mark (?) indicates that the nature of the single-channel conductance
and the calcium selectivity of these ionic channels are unclear.

The regulation of normal intracellular calcium homeostasis in all cell types, partic-
ularly highly differentiated cells such as those of the cardiovascular system, is crucial to
proper cell function. The dysregulation of Ca2+ transport through the plasma and intracel-
lular organelles, such as the ER/SR, the mitochondria, and the nucleus shown in Figure 1,
contributes to calcium overload in the cytosol, the mitochondria, and the nucleus. This
calcium overload contributes to morphological (by promoting cell hypertrophy) and func-
tional remodeling (by dysregulating EC and EG couplings as well as cell survival) [5]. Thus,
knowing the calcium transporters that regulate normal intracellular calcium homeostasis is
vital in order to shed more light on the importance of calcium in health and disease.
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This review is mainly focused on selective calcium transporters and blockers in the
cardiovascular system. In addition, we will also briefly describe other types of non-selective
calcium transporters (ROCCs) of different cell types, such as neurons.

2. Calcium Ionic Transporters

The name for calcium comes from the Latin name for lime, calx, as lime was first iso-
lated from it as calcium oxide (CaO). This ion species has a high affinity for water. Thus, its
hydration/dehydration in the outer and inner sides of the membrane plays an essential role
in its mobility through the pores of different calcium channels, exchangers, and pumps [23].
As proteins, membrane phospholipids have a high-affinity binding site to calcium [23].
Thus, binding the double-positively charged calcium to extracellular sites of the membrane
phospholipids highly contributes to the density of positive charges on the extracellular side
of the plasma membrane [24]. This high density of positive extracellular charges on the
plasma membrane contributes to determining the membrane potential, stability, fluidity,
and functioning of voltage-operated ionic transporters, including VOCCs [25] (please see
Table 1 and Figure 1). In addition, calcium influx through specific plasma membrane
ionic transporters increases intracellular membrane surface charges and depolarizes the
membrane potential [26]. The contributions of calcium to intracellular and extracellular
membrane surface charges maintain resting intracellular calcium homeostasis. Changes in
the normal cell resting membrane potential level, particularly in highly differentiated ones,
such as cardiac, skeletal, and nerve cells, will affect normal EC, ES, and EG couplings.

2.1. Calcium Channels

In general, VOCCs are formed from a ring of four subunits. VOCCs are found in
the membrane of excitable cells (for a review of the structure of VOCCs, please refer
to [27]). Calcium-permeable channels are grouped into two major types: VOCCs, in the
presence of extracellular calcium, are only selective for calcium, and receptor-operated
calcium channels (ROCCs), also called ligand-gated channels, are not calcium selective in
the presence of normal ionic milieu. VOCCs are sensitive to changes in membrane potential
caused by electrical stimuli, whereas ROCCs are activated following the binding of their
respective ligands [28–39].

There are different types of calcium-selective VOCCs (Figure 1). These differ in their
threshold activation (Figures 2A and 3A), voltage sensitivity (Figure 2A) to their open-
ing probability (Figure 3B), conductance (Table 1), kinetics of activation and inactivation
(Figure 2D), and their response to organic calcium channel blockers and activators [28–39]
(please see Table 1). In addition, ROCCs are more challenging to define due to the dif-
ficulty of measuring their voltage sensitivity versus their ligand dependencies [36] and
determining their single-channel levels of conductance due to the limitation of the method
of recording used [40–43].

2.2. Classification, Function, and Pharmacology of VOCCs

As proposed in the literature [39,44–47], VOCCs are only selective for calcium in the
presence of normal physiological conditions. They are classified into five major types:
L- (high threshold or long-lasting) (Figure 2A,C), T- (low threshold or fast transient)
(Figure 2A,B), N- (neither or neuronal), P/Q- (Purkinje neurons), and R-type (steady-state
resting) (Figure 3) channels (see Table 1).

Ten isoforms of calcium-selective VOCCs exist. Among these are four subtypes of
L-type channels (Cav 1.1, 1.2, 1.3, and 1.4) (Table 1 and Figure 1). These subtypes of
channels (Cav 1.1 to 1.4) are the most studied and are the target of clinically used calcium
antagonists [48]. Thus, our review will focus on this family of VOCCs. Different genes
encode these four subtypes of L-type channels and are tissue-dependent (different subtypes
present in various types of tissues) [27]. Similarly to other VOCCs, L-type calcium channels,
once activated by voltage depolarization, undergo three states: resting, open, and closed.
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However, they have differences at the pharmacological and biophysical levels compared to
other VOCCs (please see Table 1).

Figure 2. The whole-cell patch clamp technique shows examples of two types of Ca2+ currents
in a human ventricular single cell. (A) Voltage-dependence of the low threshold of ICa (open cir-
cles) and separation of the high-threshold ICa (open triangles). (B) Peak current trace of the low-
threshold ICa recorded from a holding potential (HP) of −80 mV with a voltage step (VS) to −10 mV.
(C) Current trace of the high-threshold ICa was recorded from an HP of −50 mV with a VS to +20 mV.
(D) Steady-state inactivation relationship of the low- (open circles) and high-threshold (open triangles)
ICa. (E) Low-threshold current recorded from HP of −65 mV with a VS to −20 mV. (F) High-threshold
current trace recorded from HP of −17 mV with a VS to +20 mV. Currents were measured at the peak
(modified from [44]).

The L-type channel family (Cav 1.1 to 1.4) are all sensitive to three types of calcium
antagonists: dihydropyridines (DHPs) (nifedipine, isradipine, nitrendipine, felodipine),
phenylalanines (verapamil, D-600, D-888), and benzodiazepines (diltiazem) (for review,
please refer to reference [48] and Table 1). All three types of blockers act on a specific
channel state: either open (verapamil and diltiazem) [49] or closed (DHPs) [50]. In other
words, their effects depend on the plasma membrane resting potential of the cell: −85 mV
for cardiomyocytes (verapamil and diltiazem) and −65 to −55 mV for vascular smooth
muscle (VSM) (DHPs) [50]. For this reason, DHPs act mainly at the level of VSM (the
resting potential is more depolarized than that of cardiac muscle) and are primarily used
as antihypertensive drugs [51]. Furthermore, blocking Ca2+ entry into the cell prevents
activation of Ca2+ release from the ER/SR RyR [52]. The Cav 1.1 subtype is mainly present
in skeletal and, to a lesser extent, in cardiac muscles (please see Table 1). In contrast, the Cav
1.2 subtype is primarily present at the VSM level and relatively less in cardiac and neuronal
cells. On the other hand, Cav1.3 are present in the endocrine, cardiac, and neuronal cells,
whereas Cav1.4 are primarily located in the retina (Table 1 summarizes this information).
For this reason, a difference exists between regulating the vascular Cav1.2 calcium channel
by cAMP (channel blocking) and that of the cardiac and neuronal Cav1.3 (channel stim-
ulation). Although the L-type calcium channel is highly selective to calcium, it is only
in the absence of extracellular calcium that the channel is more permeable to Ba2+ [53]
and to several inorganic cations, such as strontium (Sr2+) and sodium (Na+) [27,28,54–56].
As shown in Figure 2 and Table 1, the L-type channel has a high activation threshold
(−10 mV in 2 mM Ca2+) and conducts a slow current with a large unit conductance
(25 pS in the presence of 110 Ba2+); the single channel conductance is considered to be
the fingerprint of an ion channel [47] (Table 1). This type of channel is highly sensitive to
DHPs. Therefore, it is called a DHP-sensitive calcium channel [48] compared to other types
of VOCCs. It is also inhibited by other organic L-type calcium channel blockers such as
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verapamil and diltiazem [5,57–59] (please see Table 1). However, several divalent ions such
as nickel (Ni2+), cadmium (Cd2+), cobalt (Co2+), and manganese (Mn2+) block the L-type
calcium channels in the concentration range from 0.5 to 20 nM. Lanthanum (La3+) [60,61]
(Table 1) can also be indirectly modulated by neurotransmitters, enzymes, and drugs such as
angiotensin II, endothelin-1, neuropeptide Y, and beta-agonists [39,57–59,62,63]. It is mod-
ulated by second messengers such as cyclic AMP-dependent protein kinase (PKA [64,65]),
cyclic GMP-dependent protein kinase (PKG) [66,67], protein kinase C (PKC), and calmod-
ulin (CaM) [68]. An increase in intracellular calcium activates the two latter kinases. The
blocking sequence of inorganic L-type calcium channel inhibitors in decreasing potency is
La3+ > Co2+ > Mn2+ > Ni2+ > Mg2+ [60,61]. DHP-sensitive L-type channels are found in all
excitable cells, such as neurons and muscle cells. Their voltage- and time-dependent kinet-
ics facilitate the conversion of membrane depolarization into an intracellular calcium signal
that drives a cellular response. Some examples of these phenomena include EC coupling in
cardiac and smooth muscle cells, the activation of glycolytic metabolism in skeletal muscle,
the ES coupling of endocrine and exocrine gland cells, and neurotransmitter release from
peripheral neurons [63,69,70].

The T-type or fast transient Ca2+ channel (compared with the L channel) can be
activated by small depolarizations (−70 mV, in 10 mM Ca2+) and has a relatively fast
voltage-dependent inactivation; Figure 2 shows a typical example [53]. For the structural
aspect of the channel, please refer to reference [27]. Three subtypes of T-type VOCCs were
reported: Cav3.1 (present in neurons and heart cells), Cav3.2 (present in the heart and
neuronal cells), and Cav3.3 (present in neurons); Table 1 summarizes this information [53].
Compared to L-type channels, the T-type channels are equally permeable to Ba2+ and
Ca2+ [53]. Contrary to L-type channels, an increase in intracellular calcium does not regulate
their inactivation gate [71–74]. This channel type is insensitive to DHPs, other organic
calcium agonists, and antagonists [71–74]. It has a small unit conductance (8 pS in 110 mM
Ba2+) (see Table 1) [46,75–77]. T-type calcium channels resemble the L-type calcium channel
in that both are permeable to Na+ in the absence of divalent cations [75–79]. However,
unlike the L-type Ca2+ channel, the T-type channel possesses the same unit conductance
in the presence of Ca2+ and Ba2+ [46]. They are more resistant to blockade by Cd2+ ions
than the L-type channel. Its blockage by omega-CgTX VIA is weak and reversible [80].
These channels are insensitive to the application of β-adrenergic receptor agonists but
are highly sensitive to blockade by Ni2+ ions and amiloride (see Table 1) [81]. Similarly
to L-type channels, T-type channels are found in neuronal, endocrine, exocrine, cardiac,
smooth muscle, and skeletal cells (Table 1 summarizes this information) [77,82]. In addition,
the cellular distribution and properties (activation at −70 mV) of T-type channels suggest
that they may play a role in pacemaker current and rhythmic activity (see Table 1) [83].
T-type channels are inhibited by compounds, such as pimozide and penfluridol, from the
diphenylbutylpiperidine family [5,70]. The diphenyldiperazine flunarizine can also block
T-type channels, preferentially for Cav3.1 and Cav3.3 [53]. However, none of these blockers
succeeded in being used in the clinic as an antagonist of T-type VOCCs.

The N-type calcium channel has an intermediate activation threshold between the T-
and L-type channels (−30 mV in 10 mM Ca2+), a reasonably rapid inactivation, and an
inactivation constant with an intermediate value compared with that measured for the
T- and L-type channels [34–37]. The N-type calcium channel has a unit conductance of
13 pS in 110 mM Ba2+ [37]. It is sensitive to omega-conotoxin VIA (w-CgTX VIA) and to
Cd2+ and is resistant to Ni2+ and DHPs [37] (Table 1). Flow measurements accompanied
by electrical recordings from brain synaptosomes, sympathetic ganglions, and dorsal root
neurons suggest that N-type channels have similar ion permeability to the L-type Ca2+

channel [36,37,70]. Therefore, their expression may be restricted to neuronal membranes.
The pharmacological properties of N-type VOCCs are characteristic of a calcium entry
pathway leading to neurotransmitter release in sympathetic neurons, nerve (motor) endings,
and synaptosomes [84–86]. Two other VOCCs were reported in neurons, P- (Purkinje) and
Q-types [84,87]. The single channel conductance of both types of channels is 10–20 pS
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(Table 1) (for review, please see ref. [88]). These types of calcium-selective VOCCs are
mainly found in synaptic terminals, are high-voltage dependent, and are implicated in
vesicle release and neurological diseases such as ataxia, migraine, and Alzheimer’s [84].

The steady-state voltage-dependent and G-protein coupled resting calcium channel (R-
type) was reported to be present in many cell types, including those of the cardiovascular
system [2,8,17,89–92]. This channel is only permeable to calcium and is insensitive to
organic and inorganic L-type calcium channel blockers, except for isradipine (PN 200-110,
Table 1) [92]. For more information, please see references [11,89,92]. This channel has a
single-channel conductance of 24 pS (in the presence of a patch pipette containing 110 mM
Ca2+ and 10−5 M nifedipine) [89], and Figure 3 shows an example. The R-type calcium
channels play an important role in regulating resting calcium homeostasis. It is the only
type of calcium channel present at the nuclear membrane and in both excitable and non-
excitable cell types. It also plays an important role in cellular cardiovascular diseases
since its frequency of opening as well as the time of opening increase by cardiovascular
active factors such as insulin, ET-1, Ang II, NPY, TNF-α (tumor necrosis factor), and PAF
(platelet-activating factor) [2,8,17,89–92].

Figure 3. Current to voltage (I/V) relationship curve (A) and open probability/voltage relationship
(B) of the voltage-dependent steady-state R-type Ca2+ channel in human aortic VSMCs recorded
using the patch clamp technique. Modified from [11,92].

2.3. The Receptor-Operated Calcium Channels (ROCCs)

Receptor-operated channels (ROCs), also called transmitter-gated ion and ligand-gated
channels, open directly in response to their respective ligands [93]. These are structurally
formed by a ring of five subunits (or domains) [94], giving this type of channel a larger
pore when compared to the VOCCs. In general, ROCs are not selective for a single type of
ion [94]. An example of this type of channel is the nonspecific ion channel associated with
the nicotinic acetylcholine receptor [95,96] and the Cl− channels associated with GABA
and glycine receptors [97].

Not all ROCs are permeable to Ca2+. In normal physiological ionic solution, those
permeable to calcium and other ionic species are called receptor-operated Ca2+ channels
(ROCCs). Several studies suggest that, similarly to VOCCs, there are different types of
ROCCs [39], such as vasopressin-activated Ca2+ channels in smooth muscle cells and
parathyroid hormone-activated Ca2+ channels in osteosarcoma cells [98,99], as well as tran-
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sient receptor potential (TRP) mainly in the kidney [100], N-methyl-D-Aspartate receptors
(NMDARs) [101,102], and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid recep-
tors (AMPARs) in the central nervous system [101] (Table 1). In this review, we focused
on TRP1 and TRP2 because they were also reported to be present in the cardiovascular
system [103], and their single-channel levels of conductance were reported [104–108]. We
also briefly reviewed, for the same reasons mentioned previously, two other ROCCs, the
NMDAR, and the AMPAR, because of the recent interest in them at the cardiovascular
system level [102,109]. Contrary to VOCCs, the ROCCs, in addition to Ca2+, carry K+, Na+,
Ca2+, Ba2+, and Mg2+ ions. Although some reports indicate that they are voltage-dependent,
this aspect is still controversial [103–108,110–120]. Thus, they cannot be classified in the
calcium-selective VOC category.

2.4. ROCCs: TRPC1, TRPP2, NMDARs, and AMPARs

The TRP channel superfamily includes 28 related non-selective anion channels that
display different permeability degrees to calcium classified into six subfamilies: canonical
(TRPC), vanilloid TRP (TRPV), melastatin TRP (TRPM), ankyrin TRP, mucolipin TRP, and
polycystin TRP [121–123]. TRPC channels were the first to be cloned and are intensively
studied to this day. Their single-channel levels of conductance, particularly TRPC1 and
TRPPC2, were determined at the biophysical levels, which is not the case for most TRP
subfamily channels [122]. These subfamilies are among the most abundant ion channels in
the cardiovascular and nervous systems. TRPC1 and 2 (TRPP or PC2) channels have been
well-studied in the last decade and have allowed us to describe some of their properties
(Table 1) [103–108,110–120]. Single-channel recordings of native and expressed TRPC1 and
TRPP2 in kidney insect SF9 and kidney HSG (or HEK-293) cell lines are very noisy and show
an overlapping subconductance [107,113] which is difficult to differentiate between the
different types and subtypes of TRP channels. For example, the single-channel conductance
of expressed TRPC1 in kidney insect cell lines using whole-cell attach configurations of
the patch clamp technique in the presence of 105 mM Ba2+ in the pipette solution was
between 25 and 138 pS [104,105,107] (please see Table 1). However, the recording of
expressed (in HSG cell lines) TRPP2 single channel showed a single-channel conductance
in 2 mM Ba2+ between 1.2 and 4.5 pS [104,105,110,113] (Table 1). These differences in single-
channel conductance levels make it challenging to identify the channel type. In addition,
TRPC1 and TRPP2 channels were reported to be mainly present at the ER membrane
and to act as calcium-released channels [110], causing their biophysical studies to be
more challenging [108]. Furthermore, both types of TRPP channels had no naturally
occurring activator or opener, making it difficult to study their presence, pharmacology,
and contribution to intracellular homeostasis in physiology and diseases. In addition,
the three reported blockers of these channels, amiloride, La3+, and Gd3+ [113] (please
see Table 1) are not specific and block other types of Ca2+ channels, making it again
difficult to study these types of channels. Furthermore, electrophysiological studies in HEK-
transfected fetal human kidney cell line (HEK-293) showed that at −40 mV (according to
the activation and inactivation curves), the activities of the naturally occurring TRPP2 take
place at a membrane potential near 0 mV [117]. However, the resting membrane potential
of these kidney cells is near –30 to −35 mV. Thus, since the channel’s activity is seen only
at a membrane potential near 0 mV, this suggests that the TRPP2 channel is not active at
resting membrane potential. Finally, according to single-channel studies, the activation of
the TRPPC2 channel takes place during prolonged voltage depolarization [104,105,107],
which suggests that TRP channels or, at least, TRPC1 and TRPP2 channels may have no
inactivation gate, which is a characteristic of ROCs.

NMDAR and AMPAR channels are two subtype members of the ionotropic gluta-
mate receptors (iGluRs) [102,109,124,125]. The NMDAR channel transports sodium and
calcium inside the cells and potassium outside the cells [102]. Their exact single-channel
conductance levels are unclear (please see Table 1). This problem could be due to using
several ion species in the extracellular solution (Na+, K+, Ca2+, and Cl−) and the presence
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of Mg2+ in the pipette solution of the excised outside-out patch clamp configuration in
HEK cells [125]. The recorded single-NMDAR-channel conductance levels were several: 23,
42, 61, and 89 pS (please see Table 1). These different conductance levels can be due to the
solution used, which contained several types of ion species that NMDR channels can carry,
such as Na+, K+, Ca2+, and Cl− [126]. In addition, since Mg2+ blocks NMDAR channels, it
is not recommended to use this ion in single-channel recording [124]. It is reported that
this channel type seems to be mainly located in the central nervous system [127]. Their
activation by their ligand glutamate contributes to learning and memory and neuronal
migration [102]. Recently, this type of channel was reported to also be present in the cardio-
vascular system [102,109]. However, since the claimed effect on heart function is based on
in vivo studies [109], it is possible that the cardiac effect could be secondary to the impact
of NMDAR on the central nervous system (CNS), which should be verified in the future.

At the neuronal postsynaptic level, the AMPAR channel closely relates to the NMDAR
channel [128,129]. Following glutamate binding to its receptor channel, an influx of Na+

depolarizes the membrane and removes Mg2+ from the NMDAR channel, which becomes
permeable to Ca2+ and Na+ [128,129]. The influx of Ca2+ and Na+ through this channel
further depolarizes the cell membrane (for review, see [102]). Compared to NMDAR chan-
nels, AMPAR channels are well characterized at the biophysical level [130,131]. AMPAR
channels are the fastest iGluRs, and up to four subconductance levels (8.2, 18.8, 27, and
37 pS) have been reported [131] (Table 1). Recombinant AMPARs showed a single channel
conductance of 7–8 pS [130]. The AMPAR conductance changes with unstable synaptic
states [40] based on either an unlimited growth of synaptic strengths or a silencing of
neuronal activity without additional homeostatic mechanisms [132]. As VOCCs, AMPAR
channels induce calcium microdomains, resembling sparklets in neurons [18]. As men-
tioned earlier, it is challenging to study AMPARs in neurons since they work closely with
NMDARs [129]. In addition, the regulation of the AMPAR channel conductance is very
complex and is influenced by RNA editing and phosphorylation [40]. The postsynaptic
localization of AMPAR provides these channels high importance in regulating synaptic
transmission and cognitive function [133]. Whether all these characteristics of the AMPAR
of the nervous system are shared by other cell types, such as those of the cardiovascular
system, should be confirmed.

2.5. Sodium–Calcium Exchangers, Ca2+ Pumps and Ca2+ Release Channels
2.5.1. Sodium–Calcium Exchangers

The sodium-calcium exchanger (NCX) uses the sodium gradient to drive calcium ex-
trusion [134,135] (for more information, please see [136–138]). This exchanger is present in
all membranes except for that of the ER/SR. The plasma membrane NCX has three isoforms,
NCX1, NCX2, and NCX3, each localized differently throughout the body [139]. NCX1
undergoes alternative splicing, resulting in NCX1 with either exon A or B [136,140–142].
NCX1 with exon A is generally expressed in excitable tissues such as cardiomyocytes and
neurons, whereas NCX1 with exon B is usually expressed in non-excitable tissues such as
the pancreas and kidney [136,140–142].

NCX2 is usually expressed in the brain and spinal cord, while NCX3 is generally
expressed in the brain and skeletal muscle [141–144] (Table 1). Therefore, the NCX1
isoform is present in the heart and is a plasma membrane protein capable of binding and
transporting Na+ and Ca2+ across the plasma membrane [145,146]. Recent evidence also
indicates its presence at the levels of mitochondria [119–121] and nuclear [16] membranes.
It is a crucial Ca2+ efflux mechanism having an essential role in cytosolic, mitochondrial,
and nuclear Ca2+ regulation. Thus, it may indirectly contribute to the regulation of the
ER/SR function [147,148]. The NCX1 is a bidirectional ion transporter. Under normal
physiological conditions, the NCX1 will exchange three extracellular Na+ ions for one
intracellular Ca2+ ion. However, when the Na+ electrochemical gradient is reversed, such
as in the case of membrane depolarization, the NCX will transport Ca2+ ions into the
cell and Na+ ions out of the cell [140,145]. Following depolarization and contraction, the
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myocyte relaxation will begin once the Ca2+ is removed from the cytoplasm [149]. This can
be partly accomplished by NCX1, which will pump out the calcium entered through the
L-type calcium channels and restore the balance. Hence, NCX1 has an important role in the
excitation–contraction coupling of the heart [149].

NCX1 is also implicated in certain pathologies as it prevents the accumulation of
intracellular Na+, such as in ischemia/reperfusion and heart failure [150–152]. Therefore, if
a pathology causes an intracellular Na+ overload, such as in cardiac hypertrophy [151], the
NCX1 will extrude the excess Na+ and bring in Ca2+ [150–152]. This Ca2+ influx through
the NCX1 induces an intracellular calcium overload, which promotes the activation of
calcium-dependent kinases responsible, at least in part, for the development of cardiac
hypertrophy [153]. Furthermore, many hypertrophic factors, such as angiotensin II and
endothelin-1, activate the NCX1 [154,155].

NCX is also present at the inner mitochondrial membrane and is called Na+- and
Li+-dependent mitochondrial Ca2+ release system that was later found to be linked to NCX
and was called NCLX [156,157] (for review, please see refs. [158–161]). Similar to the ER/SR
and the nucleus [8,11,16,17], the mitochondria are an essential intracellular reservoir of
Ca2+. It contributes to regulating cytosolic Ca2+ homeostasis by removing intracellular Ca2+

overload and then releasing it slowly once intracellular free Ca2+ returns to an average
level. The kinetics of intracellular Ca2+ uptake and release of free Ca2+ of the ER/SR and
the nucleus is faster than that of the mitochondria. Similarly to the nucleus [8,11,16,17], the
mitochondrial uptake and release of cytosolic Ca2+ from intracellular pools may depend on
the minimum (100 nM) and maximum (500 nM) buffering capacities of the nucleus [7,8].
The proximity of the mitochondria to the ER/SR and the nucleus permits these three
intracellular pools of Ca2+ of the uptake and release of Ca2+ to closely interact with buffer
cytosolic Ca2+ overload and release this Ca2+ when needed to maintain normal resting
cytosolic Ca2+ homeostasis, as shown in Figure 4. The close presence of the mitochondria
around the nucleus and its high cytosolic free Ca2+ overload capacity prevents nucleo-
plasmic Ca2+ overload [7,8]. The prevention of nucleoplasmic free Ca2+ overload is also
prevented by high densities of nuclear Ca2+ binding proteins, which act as a Ca2+ buffering
system such as calmodulin.

Figure 4. Using quantitative 3D confocal microscopy shows rapid time-lapse scans and graphic
representations of cytosolic and nuclear free Ca2+ variations during spontaneous contraction in
10 day-old chick embryonic ventricular myocytes loaded with Ca2+ dye fluo-3. Whole-cell images show
the relative fluorescence level and distribution of free Ca2+ during the propagation of Ca2+ waves. The
graphic representations present the corresponding variations of the spontaneous waves of Ca2+ within
the cytosol and the nucleus. The spontaneous wave of calcium quickly spreads across the cytosol and
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the nucleus. The free Ca2+ fluorescence intensity levels are particularly intense in the nuclear region
and remain elevated even after cytosolic Ca2+ has returned to basal levels. The resting and peak levels
of nuclear Ca2+ are higher than that of the cytosol. Spontaneous cytosolic and nuclear Ca2+ waves
may have fast and slow decay components. Images are shown as pseudocolored representations
according to the colored calibration bar of fluorescence intensity on a scale from 0 (black, absence of
fluorescence) to 255 (white, maximal fluorescence) (modified from [17]).

The mitochondrial calcium uniporter (mtCU) is a Ca2+-gated ion channel complex
that controls mitochondrial Ca2+ entry via the calcium-activated calcium channel ryan-
odine receptor type 1 present at the level of the mitochondria (mRyR1) [162,163]. For
more details, please see refs. [162,164–168]. The mitochondrial Ca2+ uniporter regulator
1 (MCUR1) of the intermembrane space (IMS) carries Ca2+ influx into the mitochondria.
Overexpression of MCUR1 promotes calcium uptake by the mitochondria [162]. The mtCU
dysfunction plays an essential role in several diseases, such as cancer, Parkinson’s disease,
and cardiovascular pathologies, including ischemia/reperfusion and pulmonary arterial
hypertension [169–173]. Targeting the uniporter for the treatment of diseases related to the
dysfunction of the mtCU has a significant translational potential for a novel therapy in
particular cardiovascular diseases [168].

2.5.2. Ca2+ Pumps

The exchange flickering between Ca2+ influx and efflux highly contributes to mito-
chondrial and ER/SR cytoplasmic free Ca2+ homeostasis. The direction of the Na+ efflux
depends on the concentration of Na+ rise at the inner side of the exchanger [174]. In the
absence of an increase in intracellular Na+ level, the exchanger will drive the efflux of Ca2+.
Such calcium efflux is accompanied by efflux through the plasma membrane calcium Ca2+-
ATPases (PMCA) and calcium influx into the ER/SR via a calcium pump called SERCA.
The four basic PMCA isoforms (the PMCA is the product of four separate genes) have a
tissue-specific expression [175]. The transcript of each of the four genes encoding PMCA
pumps is subject to alternative splicing. The sites in which it occurs are named A, B, and
C [175,176]. Of the many splice variants theoretically possible, about 30 have been detected
at the RNA or protein levels [175,176]. PMCA1 and 4 are ubiquitously expressed and, thus,
are thought to be the “housekeeping forms” [175,176]. PMCA2 and 3 are highly expressed
in excitable cells and are known for their high basal activity, in contrast to PMCA1 and 4
for which the basal activity is much lower [175,176].

PMCAs were discovered by Schatzmann in 1966 [177]. Ten transmembrane domains
form one, belonging to the P-type pump family [178–182]. The C-terminal cytosolic tail
contains its binding sites for ATP and [183] calmodulin (CaM) [184]. PMCA has a high
affinity and low capacity for calcium [175,185,186] and pumps Ca2+ from the cytosol
against its electrochemical gradient. PMCA is stimulated by protein kinases A (PKA) [184],
Ca2+/calmodulin kinase (CaMK), and is inhibited by protein kinase C (PKC) [175,187].

Ca2+-ATPases are also present at the ER/SR membrane [188] and are called the sar-
coplasmic/endoplasmic reticulum Ca2+-ATPases (SERCAs) [189–191]. It is crucial in re-
filing the superficial and central ER/SR and decreasing cytosolic calcium overload. The
SERCAs generate and maintain about a 10,000-fold Ca2+ gradient between the ER/SR lu-
men and the cytoplasm [187]. Three genes encode SERCA pumps (SERCA1-3), with
SERCA2b and SERCA3 highly expressed in VSM [192,193]. SERCA is composed of
10 transmembrane (TM) domains [183] which include the two Ca2+ binding domains
and three main cytosolic domains for ATP binding [182,191]. Phospholamban constitutes
the intracellular active site of the pump, and its phosphorylation by PKA, PKG, and Ca2+-
CaMK regulates the activities of the pump [182,191]. In addition, the sesquiterpene lactone,
thapsigargin [194], is a specific blocker of this pump [189]. PMCAs and SERCAs were
reported to be implicated in several cardiovascular diseases (for a review, see [152,195,196]).
It is postulated that alterations in the function of the SR due to ischemia/reperfusion
(R/R) depression in cardiac activity are accompanied by decreased SERCA and PMAC



Int. J. Mol. Sci. 2023, 24, 8803 12 of 25

functions [152]. Thus, it is expected that there will be an increase in interest on the role of
SERCAs in cardiovascular physiopathology as well as in developing a new strategy to treat
pathologies related to defects in this type of transporter.

2.5.3. Ca2+ Release Channels

The first report of the presence of an ER/SR-release channel appeared in the late
seventies by Fabiato and Fabiato [197,198]. This calcium channel was sensitive to a plant
with alkaloid ryanodine (Ry) [199]. This type of release channel was named the ryanodine
receptor (RyR). It is present on the ER/SR [200,201] and is opened by calcium binding to
the cytoplasmic side of the channel [202]. RyRs are located at the epicenter of the regulatory
mechanism involved in excitation–contraction coupling [203]. Ryanodine binds with high
affinity and selectivity to RyRs [201,204]. The channel assembles four RyR subunits of
the same isoform (thus a homotetramer), forming a central Ca2+-conducting pore with a
diameter of 2–3 Å [205]. Three genes encode RyRs, generating a specific isoform (RyR 1 to
3), with RyR 2 and 3 being the prominent isoforms [206,207]. RyR is anchored to the ER/SR
membrane by interaction with the Ca2+ binding storage protein calsequestrin [208].

The second system that can release Ca2+ from the ER/SR pools is the inositol
3 phosphate sensitive receptor (IP3R) [209,210]. The IP3R is formed by co-assembling
four subunits of about 300 kDa each [211,212]. Three genes code the IP3R subunits (iso-
forms IP3R 1 to 3) [211,212]. The receptor isoforms share 60 to 70% of amino acid residue
homolog even though they differ in affinity for the ligand, inositol 1,4,5-inositol triphos-
phate (IP3), and their regulation by different modulators, such as Ca2+ [213–215], Mg2+,
and ATP. Nevertheless, these isoforms share the same structural and functional organiza-
tion; a ligand-binding domain, a large coupling (regulatory) domain that transduces the
signal of ligand binding in addition to sites for Ca2+ and ATP binding, phosphorylation by
protein kinases, and a short Ca2+ channel domain in the C-terminal portion [216]. IP3Rs
form clusters of 25–35 receptors, with a cluster diameter of ~near 800 nm and a distance
of several microns between clusters [217]. We must mention that cytosolic IP3 alone is
insufficient to activate its receptor, and Ca2+ is required to activate the IP3R.

In summary, intracellular organelle calcium transporters play an essential role in
simplifying the entry of calcium into the cytosol by releasing calcium via transporters
such as ryanodine and IP3 sensitive channels and uptake of cytosolic calcium via Na–Ca2+

exchangers and Ca2+ pumps present at the nuclear, mitochondrial, and the ER/SR (SERCA)
levels [8,16,17]. The proximity of these intracellular organelles to each other permits an
efficient synchronization of the regulation of intracellular calcium homoeostasis. Finally, it
is important to mention that mitochondrial Ca2+ overload contributes to reactive oxygen
species (ROS) generation and apoptotic signaling [111,218], indicating the mitochondria’s
importance in life and death.

2.6. Organic and Inorganic Calcium Channel Blockers

The most clinically used calcium blockers (or commonly called calcium antagonists)
are directed against the cardiovascular VOCC L-type Ca2+ channels. The reason for this
is historical [48] because of the discovery of the importance of calcium in contraction and
cardiac action potential by the group of Coraboeuf in the early 60s [219]. At this time, the
different subtypes of VOCCs were not known, and the channel was called the slow calcium
channel in comparison to the fast kinetics of the sodium channel and was referred to as an
inward slow current (Isi).

Calcium channel blockers have been used since their discovery in the seventies [220].
This Isi calcium blocker was used in several cardiovascular diseases, such as supraventricu-
lar tachycardia, hypertension, and angina pectoris.

In the 80s, Bean reported for the first time in atrial cells that Isi is the product of two
types of VOCCs [221]. Later on, several papers appeared confirming this discovery in
all excitable cells, such as ventricular cardiomyocytes [44,45]. At the same time, the first
member of the dihydropyridine (DHP) family, nifedipine, was introduced as a calcium
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antagonist [58]. Similarly to nifedipine, several DHP derivatives, such as nitrendipine,
nimodipine, nisoldipine, and isradipine (Figure 5) were introduced as L-type calcium
blockers. As seen in Figure 5, isradipine (PN200-110) blocked the L-type calcium current
(Figure 5A,B), and since DHP drugs are sensitive to light, turning on the light photo-
bleached isradipine and restored the L-type current (Figure 5A,C). Turning off the light
and reapplying isradipine inhibited once again the L-type current (Figure 5A,C). The DHP
calcium blockers are known to act at the closing state of the channel and are thus used as
antihypertensive drugs. In contrast, the phenylethylamine verapamil and its derivatives
gallopamil (D600) and D888 act at the opening state of the L-type Ca2+ channel. It exerts an
equipotent coronary vasodilation and negative chronotropic effect.

Figure 5. Using whole-cell patch clamp technique blockade of the L-type Ca2+ current in a human
ventricular single cell by PN 200-110 (isradipine). The L-type ICa was activated from a holding
potential (HP) of −50 mV with a voltage step (VS) to +20 mV. Superfusion with 10−6 M PN 200-110
completely blocked the L-type ICa within 5 min ((A), open triangles and (B), current traces in the
left panel). Inactivation of PN 200-110 with a flash of light returned the L-type ICa amplitude to
the control level ((A), open square and (C), right panel current trace). After turning off the light, a
very low concentration of PN 200-110 (10−9 M) decreases the L-type ICa by 88% within 11 min (close
square and current trace in right panel) (modified from [44]).

The benzothiazepine diltiazem is considered a weak calcium antagonist that shares
both DHP and phenylethylamine effects of cardiac and vascular L-type calcium chan-
nels [57,222,223]. There are many other clinical applications for organic calcium chan-
nel blockers. Nimodipine is used to prevent neurological deficits, nifedipine in cere-
bral vasospasm, and all three categories of blockers found effective in Raynaud’s phe-
nomenon [224]. One important aspect of organic L-type Ca2+ channel blockers is the
stereo-selectivity of the drug (−)-enantiomers or (+)-enantiomers [50]. However, for exam-
ple, the racemic form of verapamil is used clinically [50]. A critical aspect of the organic
calcium blocker is their water and lipid solubility. As described in Section 3, all organic
calcium blockers do not affect the L-type Ca2+ channel uniformly due to their specificity to
specific subtypes of the channels (please see Table 1). Organic L-type Ca2+ channel blockers
differ from each other depending on the gating mechanism of the subtype of the channel as
well as its binding site in the aqueous pore and whether they decrease the probability of
opening or decrease the duration of opening [225–228].
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Inorganic VOCC blockers include Mn2+, Mg2+, Cd2+, Co2+, La3+, and zinc (Zn2+) [229].
Unlike organic Ca2+ blockers, inorganic Ca2+ blockers do not distinguish between the
L-type calcium channel’s opening, closing, resting, and frequency. Therefore, they usually
compete with Ca2+ to pass through the channel.

Organic ROCC blockers are a matter of extensive research due to the recent literature
suggesting their implications in several cardiovascular and neuronal diseases (for review,
please see refs. [61,101,102,109,124,125,130]). Among ROCCs, TRPC1 was reported to be the
predominant isoform present in human-cultured endothelial cells [230]. As mentioned ear-
lier, we limited our review to those well-studied TRPC1, TRPP2, NMDARs, and AMPARs.
LOE-908 and amiloride block TRPC1 and TRPP2, as well as the inorganic blocker La3+ [231].
The AMPA receptor is blocked by the joro spider toxin (JSTX-3) and DNQX [101,130].
NMDA receptor is blocked by ifenprodil (selective GluN2B), D-2-amino-5-phosphonic-
pentanoic acid (APS), MK-801, memantine, and by the inorganic blockers, Zn2+, Mg2+, and
lead (Pb2+) [102,109]. There is no doubt that some ROCC blockers constitute an excellent
future for clinical use, and particularly the NMDA receptor blocker memantine [232,233].

2.7. Role of Ca2+ Channels, Exchangers, and Pumps in Cardiovascular Diseases

It is not clear in the literature whether an increase in VOCCs’ densities and functions
occur in cardiovascular diseases, which may contribute to an increase in blood pressure,
cardiac arrhythmia, and hypertrophy. However, a decrease in the density and loss of α2δ-1
subunit of the L-type channels were reported [234,235]. This will logically tend to decrease
blood pressure and the development of arrhythmia and hypertrophy. In addition, such a
decrease in the density and loss of α2δ-1 subunit was reported to be compensated by an
increase in the activities of the T-type Ca2+ channels [235] and/or TRPP2 [234,236,237] as
well as TRPC1 [235,238].

An explanation of how L-type channels contribute to the development of cardiovas-
cular diseases could be due to their stimulation by the signaling of receptors implicated
in cardiac and vascular diseases such as those activated by: Ang II [1,3], ET-1 [11,17],
neuropeptide Y (NPY) [3,109], and β-adrenergic agonists [44]. Hence, the overstimulation
of L-type channels contributes to the development of hypertension [235,239,240], arrhyth-
mia [241], hypertrophy [242], cardiomyopathy [243], angina [235], angiogenesis [14], and
proliferation [12,244,245]. Thus, the beneficial effect of L-type Ca2+ channel antagonists
is mainly due to the blockade of its overstimulation by an implication in cardiovascular
diseases.

The abnormal functioning of L-type channels due to overstimulation increase in
the signaling of receptors by second messengers generated by the activation of insulin
receptors [234,236] was reported to take place in type 2 diabetes. This could be due in
part to the increase in cytosolic and nuclear Ca2+ via insulin activation of R-type Ca2+

channels [7,11,92] and IP3 activating ER/SR Ca2+ release [92]. This may suggest that
targeting the R-type Ca2+ channel and/or IP3 Ca2+ release channel could be used for the
treatment of cardiovascular diseases in type 2 diabetes. This should be verified in the
future.

It is also reported that other VOCCs, such as P-, Q-, and N-types, are implicated in neu-
ronal dysfunction in diseases such as Parkinson’s [235,239,240], pain [235], epilepsy [235],
Alzheimer’s [234], as well as obesity [235] and cancer [235]. The inhibition of N- and
P/Q-type calcium channels by G-proteins contributes to presynaptic inhibition [84], which
decreases ligand release and synaptic transmission. Furthermore, a decrease in the activity
of the L-type Ca2+ along with ER/SR release affects excitation–secretion coupling, as well
as the release of insulin from pancreatic cells [235].

Finally, due to the versatility and complexity of Ca2+ signaling [246] and its implication
of excitation–contraction coupling as well as excitation–secretion coupling and excitation–
gene transcription coupling, an abnormal functioning calcium homeostasis will contribute
to the remodeling of many cell functions leading to cell proliferation and apoptosis. Thus,
Ca2+ is life and becomes a killer when its intracellular homeostasis is compromised.
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3. Discussion, Conclusions, and Perspective

Our knowledge of Ca2+ and Ca2+ transporters has evolved with the development of
the technology to study the mechanisms responsible for their transport into and out of the
living cell and its organelles. The discovery and commercialization of techniques, such
as patch clamp and measurements of intracellular free calcium using fluorescent calcium
probes and immunofluorescence coupled with 2D and 3D confocal microscopy imaging,
have allowed the identification of the mechanisms and the intracellular sources of this ion.
These different techniques, including that of the deletion or expression of different types of
channels, have also permitted the identification of the subtypes of various transporters as
well as their contribution to the functioning of excitable and non-excitable cells. Although
the best method to determine the fingerprint of a Ca2+ channel is its unitary conductance,
this method becomes slightly difficult when it comes to channels localized at the level of
intracellular organelles such as the ER/SR, mitochondria, and nucleus. For this reason, the
function and contribution of these channels, present at the membranes of the organelles, to
cellular physiology and pathology are based on the interpretations of indirect evidence.

Furthermore, the controversy regarding the localization and role of some ROCC [111]
types make it difficult to identify and study the function of specific channels, such as
AMPA [40], NMDA [100,124,131], and TRP (TRPP2) [111]. In addition, the difficulty in
studying the contribution of ROCCs in cardiovascular and neuronal physiopathology is
also due to the lack of specific organic and inorganic inhibitors.

It is not clear in the literature whether the presence and the density of some types and
subtypes of a Ca2+ transporter may be tissue- and sex-dependent [247]. Failure to consider
these latter aspects can lead to different results from one laboratory to another, and thus
fuel controversy and confusion in the literature.

Controversy can also arise from the expression of a transporter in cell lines that have
nothing to do with normal cells, and most of the time, these originate from fetal tissues or
cancer cells. Furthermore, expressing a transporter in a cell line will expose it to different
environments than those in its native milieu, such as lipid composition and intracellular
content. This latter aspect is crucial since almost all calcium transporters depend on the
density of kinases involved in their activities. For all these reasons, great care must be taken
when interpreting data obtained in cell lines.

In the 1960s, only the inorganic inhibitors of calcium transporters were available.
These inorganic inhibitors act by binding to the transporter’s Ca2+ binding site. It was not
until the 1970s, with the discovery of the first organic blocker, verapamil, that diseases
related to plasma membrane Ca2+ transport were better understood and treated. The role
of calcium channels and their pharmacology was made possible by the use of biophysical
methods such as electrophysiology and, in particular, measurements of the cardiac action
potential [57], vascular smooth muscle contraction [248], and endothelial cell secretion [249].
It is noteworthy that, since the discovery of the three classes of VOCC organic Ca2+ channel
antagonists in the 1970s, there has been no advance in the development of new specific
Ca2+ blockers for each subtype of L-type Ca2+ channels. Most notably, there has been the
development of more DHP derivatives. The L-type DHP inhibitors have also been shown to
affect the activity of other ion channels, including fast Na+ and T-type Ca2+ channels [250].
It is important to mention that some DHPs decrease contractility by inhibiting protein
kinase C [251]. However, it is worth noting that L-type calcium channel blockers as well
as other antihypertensive drugs do not affect resistant arterial hypertension [252], and the
development of a specific blocker for such a type of hypertension awaits to be discovered.

On the other hand, calcium-permeable ROCCs are recently a subject for the develop-
ment of specific organic blockers since they were reported to be implicated in neurode-
generative disorders (TRP and AMPA receptors) [100,125,133], mental health (AMPAR),
neuropsychiatric disorders (NMDAR) [124], and cardiovascular diseases (NMDA and TRP
receptors) [102,109,121]. Recently, the TRPM7 channel was reported to be implicated in
pulmonary arterial hypertension [123]. Thus, it would not be surprising if other subtypes
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of ROCCs are involved in different cardiovascular diseases. Indeed, it is very important to
increase our search for specific blockers of ROCCs in the future.

Similar to VOCCs and calcium-permeable ROCCs, NCXs are indirectly implicated
in intracellular calcium overload in cardiac necrosis, hypertrophy, and heart failure in
response to the increase in the activities of sodium–hydrogen exchangers [150]. Thus, any
increase in intracellular sodium by any sodium transporter, including the fast sodium
channel and taurine–sodium symporters, will indirectly induce calcium influx through
the NCXs [253,254]. Although it is claimed that several cardiovascular diseases are related
to NCXs, it is difficult to establish a direct implication because any up-regulation of the
exchanger could be a rather adaptive mechanism to a cardiac pathology [175]. Thus,
there is no report directly implicating NCXs in cardiovascular diseases. Amiloride and its
derivatives block the exchangers but are not specific. However, SN-6, a new benzyloxy
phenyl NCX, is considered the most specific inhibitor of the exchanger [255]. Therefore,
it is possible to indirectly control the contribution of NCXs by targeting exchangers and
symporters that induce intracellular sodium overloads, such as the sodium–hydrogen
exchanger (NHE1) and the sodium–taurine cotransporter [140,150,151,253,254,256].

Both PMCA and SERCA pumps seem not to be directly implicated in cardiovascular
diseases [175] since they mainly maintain normal resting intracellular Ca2+ homeostasis.

The abnormal functioning of calcium-released channels, such as IP3R and RyR
types 1 and 2, are implicated in the development of cardiovascular diseases and neu-
rodegeneration [257,258]. Therefore, several natural products were identified as specific
blockers [257,258]. However, the presence of the Ca2+ release channels in the membranes
of organelles makes it challenging to study and develop organic-specific blockers.

Finally, developing specific blockers for the different types and subtypes of Ca2+

transporters still awaits completion. In addition, further studies on the role of specific
intracellular organelles, such as the nucleus and the mitochondria, in regulating cytosolic
and nuclear homeostasis under normal and pathological conditions and developing specific
antagonists of nuclear ion transporters remain to be accomplished. Targeting the disruption
of mitochondria-to-cell redox communication represents a promising avenue for future
therapy [259].
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