
Citation: Choudhury, N.; Sahu, T.K.;

Rao, A.R.; Rout, A.K.; Behera, B.K.

An Improved Machine

Learning-Based Approach to Assess

the Microbial Diversity in Major

North Indian River Ecosystems.

Genes 2023, 14, 1082. https://

doi.org/10.3390/genes14051082

Academic Editor: Raul J. Cano

Received: 28 March 2023

Revised: 8 May 2023

Accepted: 12 May 2023

Published: 14 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

An Improved Machine Learning-Based Approach to Assess the
Microbial Diversity in Major North Indian River Ecosystems
Nalinikanta Choudhury 1,2 , Tanmaya Kumar Sahu 3 , Atmakuri Ramakrishna Rao 2,4,* ,
Ajaya Kumar Rout 5,6 and Bijay Kumar Behera 5,6

1 ICAR—Indian Agricultural Research Institute, New Delhi 110012, India; nalini.ctc.7@gmail.com
2 ICAR—Indian Agricultural Statistics Research Institute, New Delhi 110012, India
3 ICAR—Indian Grassland and Fodder Research Institute, Jhansi 284003, India; tanmayabioinfo@gmail.com
4 Indian Council of Agricultural Research (ICAR), New Delhi 110001, India
5 ICAR—Central Inland Fisheries Research Institute, West Bengal 700120, India;

ajayabi2012@gmail.com (A.K.R.); beherabk18@yahoo.co.in (B.K.B.)
6 Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India
* Correspondence: rao.cshl.work@gmail.com

Abstract: The rapidly evolving high-throughput sequencing (HTS) technologies generate voluminous
genomic and metagenomic sequences, which can help classify the microbial communities with high
accuracy in many ecosystems. Conventionally, the rule-based binning techniques are used to classify the
contigs or scaffolds based on either sequence composition or sequence similarity. However, the accurate
classification of the microbial communities remains a major challenge due to massive data volumes at
hand as well as a requirement of efficient binning methods and classification algorithms. Therefore,
we attempted here to implement iterative K-Means clustering for the initial binning of metagenomics
sequences and applied various machine learning algorithms (MLAs) to classify the newly identified
unknown microbes. The cluster annotation was achieved through the BLAST program of NCBI, which
resulted in the grouping of assembled scaffolds into five classes, i.e., bacteria, archaea, eukaryota, viruses
and others. The annotated cluster sequences were used to train machine learning algorithms (MLAs)
to develop prediction models to classify unknown metagenomic sequences. In this study, we used
metagenomic datasets of samples collected from the Ganga (Kanpur and Farakka) and the Yamuna
(Delhi) rivers in India for clustering and training the MLA models. Further, the performance of MLAs
was evaluated by 10-fold cross validation. The results revealed that the developed model based on the
Random Forest had a superior performance compared to the other considered learning algorithms. The
proposed method can be used for annotating the metagenomic scaffolds/contigs being complementary
to existing methods of metagenomic data analysis. An offline predictor source code with the best
prediction model is available at (https://github.com/Nalinikanta7/metagenomics).

Keywords: metagenomics; K-Means clustering; support vector machine; binning; river sediment

1. Introduction

Rivers are an essential source of development not only for mankind, but also for the
aquatic ecosystems consisting of microbes to fish. Microbial communities have a crucial role
in aquatic ecology as they regulate biogeochemical cycles, decompose organic matter and
provide a food source for higher trophic levels. Microbes are omnipresent and abundantly
found in river water and sediments. Thus, there is a need to explore the diversity and
density of microbes to analyze their impact on human as well as fish health [1]. The Ganga
and the Yamuna rivers, the most important river ecosystems in northern India and the
third-largest aquatic ecosystem globally, discharge water into the sea [2]. These two rivers,
along with their tributaries, are the heart of water resources in northern India and they
hold a wide diversity of microbes. With the rapid advancements in sequencing techniques,
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metagenomics has been extensively applied to study the microbial communities of aquatic,
soil and other ecosystems.

In metagenomics, the genomes of several microbes are analyzed from the sediment
samples collected from a particular niche that is otherwise difficult to culture in a labora-
tory [3]. It includes research avenues such as systems biology, bioinformatics [4] and statis-
tics. One of the crucial steps in metagenomic studies is the process of binning that allows
the assignment of microbial assembled contigs to their respective phylogenetic groups [5].
The available binning techniques are categorized into two major groups, i.e., composition-
based [6] and similarity-based methods [7]. Among the sequence similarity-based binning
methods, MEGAN [8], Phylopythia [9], BLAST [10,11], etc., are popular, and they use a se-
quence alignment that depends on a known genome database. Therefore, similarity-based
binning algorithms are time-consuming. On the other hand, composition-based binning
takes less execution time by considering sequence compositional features such as GC
content, nucleotide frequencies, k-mer (di, tri, tetra nucleotides) frequencies, composition–
transition–distribution (CTD) features, etc. These features encode the sequences and
categorize them into different taxonomic groups. Methods such as MetaCAA [12] and
self-organizing maps [13] were previously used to cluster the metagenome sequence data
based on the sequence as mentioned above, compositional features. All these methods are
rule-based and require higher computational resources such as memory and execution time,
whereas MegaR [14] and MetAML [15] are recently developed machine learning-based
approaches which can classify the metagenome data efficiently.

In-depth taxonomic profiles and roles of bacterial, viral and planktonic communities,
as well as population interactions, are now best understood through metagenomics [16,17].
The density and diversity of the microbial population from the sediments of the Ganga and
the Yamuna rivers are reported by Behera et al. [18], Sahu et al. [17] and Samson et al. [19].
However, a large number of microbes from these river ecosystems remained unclassified.
Behera et al. [18] used Kaiju [20] for binning purposes, a rule-based method (which is
neither a supervised nor an unsupervised machine learning technique), and classified a
limited number of microbes. In the metagenomic study, supervised MLAs perform well but
consume more time as compared to unsupervised MLAs due to the diversity of organisms
present [21]. The supervised learning requires labeled data and focuses on predicting a
target variable, while unsupervised learning works on unlabeled data to uncover patterns
and relationships within the data. The accuracy of MLAs can be improved by balancing the
number of microbial sequences present in each class. Therefore, a mixture of unsupervised
and supervised learning algorithms is required to develop a faster method with improved
accuracy for microbial diversity analysis.

Here, we propose a method involving iterative K-Means clustering for binning metage-
nomic data and MLAs for developing a classifier to predict the unknown microbes. The
iterative K-Means clustering is an unsupervised learning algorithm that operates on unla-
beled datasets, with the aim of dividing the data points into distinct clusters. The number
of clusters to be created, which is denoted by K, is specified prior to the execution of the al-
gorithm. This iterative algorithm repeatedly partitions the data points into K clusters based
on their similarity, until the clusters are well defined and the partitioning converges. In this
study, the iterative K-Means clustering assigns the unannotated assembled scaffolds into
the clusters of known scaffolds based on their distances from the prebuilt cluster centroid
of the annotated scaffold data. The MLAs were applied on the labeled data generated from
the K-Means clustering method, and subsequently, the performance matrices were derived.
The performances of the MLAs were improved by using the best set of parameters obtained
through the grid search technique. The proposed model can assist in the improvement
of the classification of microbial populations present in aquatic ecosystems into different
groups, such as bacteria, archaea, eukaryota, viruses and others, etc., based on metage-
nomic data. A portable program is also scripted here to help metagenomic scientists and
researchers classify the microbial diversity in any ecosystem.
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2. Materials and Methods
2.1. Data Acquisition

The sediment samples from the Ganga River at Kanpur and Farakka locations and the
Yamuna River at Delhi were collected from three sites each. Using a genomic DNA (gDNA)
isolation kit, gDNA was extracted from 250 mg of river sediment samples (Nucleospin
Soil, Takara, Mountain View, CA, USA). Subsequently, the high-quality isolated DNA was
subjected to 1% agarose gel (loaded 5 µL) electrophoresis at 110 V for 30 min and acceptable
quality of sediment gDNA was used later on for next-generation library preparation.
The quality of the gDNA was determined based on A260/280 ratio, where 1 µL from
each sample was loaded in Nanodrop 2000. The concentration of gDNA was further
assessed using Qubit 3.0 Fluorometer developed by Thermo Fisher Scientific, Waltham,
MA, USA The DNA extracted from the collected samples was sequenced by Illumina
Trueseq technology [22]. The data was generated at ICAR-Central Inland Fisheries Research
Institute, West Bengal, India. The sequencing depths for the metagenomic samples from
Kanpur, Farakka and Delhi were ~32 million reads/sample, ~37 million reads/sample and
~66 million reads/sample, respectively.

2.2. Preprocessing and Genome Assembly

The Illumina Trueseq (Illumina, San Diego, CA, USA) paired-end raw sequence reads
were initially checked for quality by using FASTQC (version 0.11.9) [23]. The low-quality
reads (Phred score < 33) and vector sequences were trimmed out using the Trimmo-
matic tool (version 0.40) [24]. The trimmed sequences were then assembled using SOAP-
DENOVO2 [25] that is capable of assembling Illumina short reads from metagenomic
samples. The steps for preprocessing the sequence data are illustrated in Figure 1. The ex-
tracted scaffolds were aligned to the ‘nr’ database [26] of NCBI by using offline BLAST [27].
The scaffold hits with the nr-database were designated as Scaffolds with Hits (SWH),
whereas the scaffolds left without hits were named as Scaffolds without Hits (SWoH). The
genus and super-kingdom of SWH using ENTRENZ gateways were identified by using an
in-house R-script (provided in the GitHub account). The identical sequences and sequences
with non-standard residues were filtered out from the dataset using the in-house scripts,
and remaining sequences were used for further analysis.

2.3. Feature Extraction

The feature extraction from the SWH and SWoH scaffold sequences was performed
using BioSeqClass [28,29], Seqinr [30] and BioStrings [31] packages of Bioconductor using a
high-end server with 16 nodes of Linux-based cluster available at ICAR-Indian Agricultural
Statistics Research Institute, New Delhi, India that is configured with 192 cores of processor.
Four features including CTD (composition, transition and distribution), fragment composi-
tion, gap-pair composition, and CKSAAP (composition of k-spaced amino acid pairs) were
combined and used in this study to generate a numeric vector of length 258. All of these
features are briefly described in the following subsections.

2.3.1. CTD (Composition, Transition and Distribution) Feature

The sequences are encoded based on their composition (C), transition (T) and dis-
tribution (D) properties by using the CTD [32] features. C is the number of nucleotides
of a particular property divided by the total number of nucleotides. T characterizes the
percent frequency with which nucleotides of a different property follow the nucleotide of
a particular property. D measures the chain length within which the first 25, 50, 75 and
100 nucleotides of a specific property are located. This sequence encoding feature returns a
matrix with 30 columns.

2.3.2. Fragment Composition Feature

In the FragmentComposition [33] features, the sequences are encoded based on the
frequency of k-mer sequence fragments. It returns a matrix with 84 columns.
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2.3.3. Gap-Pair Composition Feature

The sequences are encoded based on the frequency of g-spaced nucleotide pairs based
on GapPairComposition [34] features. It returns a matrix with 48 columns.

2.3.4. CKSAAP (Composition of K-Spaced Amino Acid Pairs) Features

In featureCKSAAP [35], sequences are encoded based on the frequency of k-spaced
amino acids/base pairs. It returns a matrix with 96 columns.
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2.4. Clustering for Binning
2.4.1. K-Means Clustering

The execution of the K-Means clustering method was performed in R [36]. It attempts
to create the intra-cluster datasets as related as possible and create the clusters as distinct
as possible. The assignment of new data points to a prebuilt cluster such that the sum of
squared distance between the data points and the prebuilt cluster’s centroid is minimal.
The variation within the clusters should be minimum and the divergence between the
clusters should be maximum. The algorithm initially examines as a group of “k” centroids,
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and each centroid connects to each scaffold in the dataset to the adjacent centroid based on
the Euclidean distance [37] measure, which is given as follows:

Euclidean distance (X, Y) =
√

∑n
i=1(xi − yi)

2

where (X, Y) are the coordinates of a point or instance with n number of features and xi,
yi denote the ith element of the corresponding (X, Y) coordinate. The K-Means clustering
implemented here is depicted in Figure 2.
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2.4.2. Evaluation of Clusters

The performance of the clusters was evaluated through a silhouette plot that describes
how well the samples are clustered with others. The average distance between an obser-
vation and all other observations in the same cluster is measured as mean intra-cluster
distance and denoted by a. The average distance between an observation with all other
observations of the nearest neighbor cluster is calculated as mean inter-cluster distance and
denoted by b. Then, the silhouette score [38] is defined as follows:

Si =
b(i)− a(i)

max{a(i), b(i)}

where S(i) = silhouette coefficient of the data point “i”. a(i) = mean distance of one data
point from all other data points in the clusters to which “i” belongs and b(i) = least mean
distance from “i” to all clusters to which “i” does not belong.

The range of silhouette coefficient ranges from −1 to 1. A score of 1 indicates that
the observation “i” is highly dense within the cluster to which it belongs to, but at a far
distance from other clusters. A score of −1 denotes a worst value be a part of a cluster and
0 denotes the overlapping of clusters.

2.5. Machine Learning for Classification

Here, six MLAs viz., support vector machine, Random Forest, Gradient Boosting
decision tree, XGBoost, AdaBoost and BiLSTM were evaluated with a considered set of
features described earlier under “Feature Extraction” sub-section. These MLAs were widely
used in earlier studies to solve various biological problems, and thus, they are considered
here in this study. Subsequently, performances of these MLAs were compared based on
performance metrics and the best prediction model was used to develop the classifier.
These MLAs are described briefly in the following subsections. Further, the advantages
and disadvantages of the MLAs used in this study are given in Table S1.
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2.5.1. Support Vector Machine

A support vector machine (SVM) is a non-parametric and statistically robust super-
vised machine learning algorithm [39,40]. It works based on the principle of structural risk
minimization and can handle high-dimensional noisy datasets. Its performance greatly
depends on the kernel function and hyperplane type, which can discriminate the observa-
tions using the optimal linear technique. The SVM was implemented using the scikit-learn
Python package [41].

2.5.2. Random Forest

Random Forest is an ensemble-based classifier developed by Breiman and Cutler [42].
The method involved in RF combines two approaches, viz., Breiman’s bagging predic-
tors [43] and random feature selection [44], to construct a set of decision trees. A class is
assigned to an observation based on majority rule, i.e., the observation is assigned to a class
which appears in a majority of the decision trees. The RF was implemented here using the
“sklearn ensemble” library of Python. Random Forest (RF) technique reduces the variance
by averaging several decision trees.

2.5.3. Gradient Boosting Decision Tree

GBDT is an ensemble-boosting integrated learning model, also known as Gradient
Boosting Machine (GBM), based on greedy function approximation [45]. It uses multiclass
logistic likelihood for classification. It fits a decision tree on the residual errors, due to
which it is called a gradient. The GBDT classifier was implemented through the “sklearn
ensemble” library of Python.

2.5.4. XGBoost

XGBoost is a widely used end-to-end tree-boosting MLA for classification. It is imple-
mented with the “sklearn” Python package. It creates parallel tree enhancements to solve
the machine learning problems such as regression, classification and ranking [46]. Here,
XGBoost was implemented through the xgboost package available in Python.

2.5.5. AdaBoost

AdaBoost (Adaptive Boosting) [47], an ensemble MLA, is generally used to increase
the classifier efficiency. It is an iterative approach where the classifier learns from the weak
classifier’s errors, making them stronger. It applies weights to specific samples. AdaBoost
was implemented here using the “sklearn ensemble” library of Python.

2.5.6. BiLSTM

Bidirectional Long Short-Term Memory (BiLSTM) [48] is a deep learning algorithm
which consists of two independent Recurrent Neural Networks (RNNs) where the bidi-
rectional run inputs in two ways, one unidirectional from past to future and the other
unidirectional from future to past. BiLSTM was implemented here using the “Tensor-
flow.keras.layer” library of Python.

2.6. Training and Validation

The extracted and combined features with a well-labelled SWH dataset were used to
train the models of the machine learning approaches (MLA). Here, 80% of the data was used
for training, and the remaining 20% was used for testing the machine learning classifiers. SVM
was trained using the “sklearn” library [49] of Python with the Radial Basis function (RBF) as
kernel function. A grid search of parameters was carried out to find the best parameter set
with which the model was developed. For training the RF model, a grid search of parameters
was also performed based on which the “n_estimators” parameter was set as 20, the criterion
parameter was selected as “Gini” and the rest of the parameters were kept as default. The
grid search of parameters was also performed for the GBDT, XGBoost, AdaBoost and BiLSTM,
and the best set of parameters was selected (Table 1). The performance of all the MLA models
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was validated using a ten-fold cross-validation technique [50]. The performance metrics
such as accuracy, precision, F1 Score, sensitivity and area under curve-receiver operating
characteristics (AUC–ROC) were calculated as an average of over the ten-folds. The formulae
of accuracy, precision, sensitivity and F1 Score aregiven as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Sensitivity or Recall =
TP

TP + FN

F1 Score =
2× Precison× Recall

Precision + Recall
where TP = True Positive, TN = True Negative, FN = False Negative and FP = False
Positive. Further, a test dataset was prepared from 20% of the datasets used to validate
the performance of the models. Confusion matrices [51] were made with limited decision
boundaries from validation results to calculate the performance metrics. The confusion
matrix for multiclass classification is given in Figure 3. The accuracy estimation was carried
out by both macro averaging and weighted averaging techniques, where macro averaging
is a simple arithmetic mean of all metrics across classes, whereas in the weighted average
method, each score is multiplied by the number of occurrences of each class and divided
by the total number of samples.

Table 1. Parameters of machine learning algorithms used after a grid search for the best set of parameters.

Classifiers Parameters

SVM C = 10, gamma = 0.001, kernel = ‘rbf’

RF max_depth = 25, min_samples_leaf = 2, n_estimators = 25, random_state = 42

GBDT n_splits = 10, n_repeats = 3, random_state = 1

XGBoost
learning_rate = 0.2, n_estimators = 1000, max_depth = 4,min_child_weight = 6, gamma = 0,
subsample = 0.8, colsample_bytree = 0.8, objective = ‘binary:logistic’,nthread = 4,
scale_pos_weight = 1, seed = 27

AdaBoost learning_rate = 0.1, n_estimators = 100

BiLSTM

Layer (type) Output Shape Param

bidirectional (Bidirectional) (None, 30, 128) 164,864

bidirectional_1 (Bidirectional) (None, 128) 98,816

dense (Dense) (None, 1) 129

Total params: 263,809 Trainable params: 263,809 Non-trainable params: 0
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2.7. Comparison with the State-of-the-art Tools

The proposed prediction model was compared with the MegaR and MetAML for
the classification of microbial diversity of the metagenomic dataset. MegaR and MeAML
reported RF as the best MLA in metagenomics data classification. It was also reported that
the accuracy of these two RF-based machine learning classification models were 0.6683 and
0.6640, respectively. Thus, these two methods were compared with the proposed method
by using their test dataset.

3. Results
3.1. The Metagenome Assembly

The assembly statistics for the contigs and scaffolds generated from the assembly of
trimmed and filtered reads are given in Table 2. The metagenome data of the Delhi location
was found to contain the highest number of contigs, followed by the Farakka and Kanpur
locations. However, the highest number of scaffolds was observed for the metagenomic
data collected from the Kanpur location, followed by Delhi and Farakka. Furthermore, the
longest scaffold was also found for the Kanpur location. The average scaffold length for
the Kanpur and Delhi locations was at par, whereas the average scaffold length for Farakka
was between 100 to 150 bases less than that of the other two locations. The N50 parameter
at Farakka and Delhi were observed to be equal, whereas the N50 for Kanpur was 18 bases
lesser than that of Farakka and Delhi. The N90 parameter for all three locations was found
to fall within the range of 90–100.

Table 2. The metagenomic assembly statistics for three locations obtained using SoapDenovo2.

Parameters Farakka Kanpur Delhi

No. of raw reads 111,809,841 98,019,576 195,606,736
No. of trimmed reads 108,526,822 96,309,665 192,296,837
Number of scaffolds 9771 83,982 69,083
Number of contigs 44,132,563 18,200,983 54,832,125
Total scaffold length(bp) 4,232,650 49,399,583 36,990,293
Average scaffold length 433 588 535
Longest scaffold (bp) 3859 7427 5265
N50 128 110 128
N90 95 91 96

3.2. Diversity of Microbial Population

The microbes identified from metagenomic scaffolds were classified into cellular and
non-cellular organisms. Some microbes were found explicitly in the Ganga and the Yamuna
rivers independently. The microbial diversity of these two rivers is given in Table 3. Out of
162,836 scaffolds generated from the metagenomic data of the three locations, 99,819 scaf-
folds were found classified (~61.30%) into different microbial clusters. The remaining
63,017 scaffolds were left unclassified (~38.7%). Among the classified scaffolds, the bacte-
rial scaffolds were the most dominated (83.36%) followed by the archaeal scaffolds (8.97%),
the eukaryota scaffolds (7.21%) and the viral scaffolds (0.46%). It was observed that bac-
terial species such as Pseudomonas sp. and Streptomyces sp. were found to be abundant
in the Ganga River at the Farakka and Kanpur locations, whereas Dechloromonas sp. and
Paraburkholderia sp. were predominantly observed in the Yamuna River at the Delhi location.
Further, it was also noticed that the proportion of Pseudomonas sp. and Streptomyces sp.
are relatively lower at Farakka as compared to Kanpur. The archaeal sp.cies such as Na-
trinema sp., Nitrososphaera sp. and Cenarchaeum sp. were seen to be plenteous at the Farakka
location, whereas Haloterrigena sp., Aeropyrum sp. and Haloarcula sp. were observed to be
highly abundant at the Kanpur location. Though Thermococcus sp. was noticed at both the
Farakka and Delhi locations, it was found to be more abundant in Delhi than the Farakka
site. Other archaeal sp.cies such as Haloferax sp., Halobacterium sp. and Halogeometricum sp.
were seen to be present in the Yamuna River at the Delhi location. The abundance of
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eukaryotic sp.cies such as Paracoccus sp., Lobosporangium sp.and Parastrongyloides sp. was
noted to be higher at the Farakka location, whereas Cyclotella sp., Timema sp. and As-
pergillus sp. were observed to be elevated at the Kanpur location. However, the eukaryota
Gaeumannomyces sp., Phoenix sp. and Strongyloides sp. were found predominantly at the
Yamuna River of Delhi. The viral sp.cies such as Variovorax sp. and Roseovarius sp. were
observed to be widespread across all three sites; however, their abundance was found to be
less at Farakka as compared to Kanpur and Delhi.

Table 3. The microbial diversity showing the abundance of major microbial genus in the Ganga and
Yamuna rivers at three different locations.

Microbial Diversity
Ganga Yamuna

Farakka Kanpur Delhi

Cellular

Bacteria

Streptomyces(400),
Pseudomonas(180),
Sphingomonas(180),
Bradyrhizobium(140),
Burkholderia(130),
Azospirillum(100)

Pseudomonas(2980),
Streptomyces(2910),
Burkholderia(1370),
Sphingomonas(1320),
Bradyrhizobium(1280)

Dechloromonas(3095),
Paraburkholderia(2047),
Streptomyces(2012),
Achromobacter(1359),
Acidobacteria(1125),
Aeoliella(1063)

Archaea

Natrinema (258),
Nitrososphaera(197),
Cenarchaeum(125),
Thermococcus(95),
Salinigranum(54)

Haloterrigena (395),
Aeropyrum (187),
Haloarcula(135),
Methanothrix(123)

Thermococcus(348),
Haloferax(295),
Halobacterium(181),
Halogeometricum(126)

Eukaryota

Paracoccus(147),
Lobosporangium(159),
Parastrongyloides(57),
Emiliania(38)

Cyclotella(356),
Timema(329),
Aspergillus(259)

Gaeumannomyces(124),
Phoenix(98),
Strongyloides(56)

Non-cellular Virus Variovorax(45),
Roseovarius(21)

Variovorax(347),
Roseovarius(321)

Roseovarius(124),
Variovorax(119)

3.3. Binning of Metagenomic Data

Using K-Means clustering, five different clusters representing bacteria, archaea, eukary-
ota, viruses and others were obtained, annotated through BLAST with a cutoff similarity
>99%. The clusters evaluated through silhouette plots revealed the stability of the silhouette
score for five different clusters (Figure 4). The width of each silhouette plot in each cluster
is a deciding factor in calculating the optimal clusters to consider. The silhouette scores
for two, three, four, five and six clusters were observed to be 0.6501, 0.5826, 0.5549, 0.5424
and 0.5419, respectively. Further, the absolute differences between clusters two and three,
three and four, four and five and five and six were found to be 0.0675, 0.0277, 0.0125 and
0.0005, respectively. A non-significant change is observed between the silhouette scores
between five and six clusters. Therefore, five clusters were identified to be an optimal
number of clusters, whereas two, three and four clusters seem to be suboptimal. The
clusters were annotated based on the annotation of the individual sequences found in each
cluster obtained from the BLAST results.
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3.4. Performance of Machine Learning Algorithms at Different Locations
3.4.1. Overall Prediction Performance

The annotated clusters were used as the input data for training and validating the
MLA models. The performance metrics of the MLAs are given in Table 4 for different
locations. It was found that the accuracy of the SVM for the Delhi location is 86%, which is
higher than the other two locations. The precision and recall of the SVM for Delhi are 81%
and 79%, respectively, which are also higher than that of the other two locations. However,
the F1 Score at the Farakka location is found to be 80% higher than the other locations.
The AUC–ROC of the SVM for Delhi was observed to be 86%, which is greater than that
of Farakka and Kanpur. As far as the performance of the RF is concerned, the accuracy,
precision, recall and AUC–ROC values for Delhi were noticed to be 88%, 85%, 80% and
87%, respectively, which are higher than that of Farakka and Kanpur. The F1 Score of
the RF for Farakka and Delhi are found to be equivalent (i.e., 80%), whereas it was a bit
lower for Kanpur. The accuracy of the GBDT for Delhi was 85%, which is 5% higher than
that of the Farakka and Kanpur locations. Further, the recall of the GBDT for the Kanpur
location is 82%, which is higher than the recall observed for the other two locations and the
highest AUC–ROC of 81% was observed at Delhi. The XGBoost performed well for Delhi,
with the highest values for precision, recall and F1 Score; however, it showed the highest
accuracy for Farakka and the highest AUC–ROC for Kanpur. It is noted that the accuracy
of AdaBoost at Kanpur was found to be 84%, which is higher than the accuracy observed
for the other two locations. However, the precision and recall were observed to be 84%
and 81%, respectively, for Delhi, and the highest F1 Score was observed for the Farakka
and Delhi datasets (80%). Further, the AUC–ROC of AdaBoost was found to be the highest
(78%) for the Farakka dataset. The BiLSTM performed better with the Kanpur dataset with
highest values for recall, F1 Score and AUC–ROC. However, the highest accuracy (81%) at
Farakka and the highest precision at Farakka and Delhi (80%) were also observed.
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Table 4. The overall performance metrics of machine learning algorithms in classifying the microbial
diversity in the river metagenomic samples.

Classifiers Dataset (Location) Accuracy Precision Recall F1 Score AUC–ROC

SVM
Farakka 0.76 0.80 0.75 0.80 0.81
Kanpur 0.78 0.78 0.78 0.78 0.83
Delhi 0.86 0.81 0.79 0.79 0.86

RF
Farakka 0.85 0.83 0.76 0.80 0.85
Kanpur 0.84 0.79 0.79 0.79 0.80
Delhi 0.88 0.85 0.80 0.80 0.87

GBDT
Farakka 0.80 0.80 0.78 0.80 0.79
Kanpur 0.80 0.80 0.82 0.79 0.80
Delhi 0.85 0.81 0.79 0.80 0.81

XGBoost
Farakka 0.85 0.79 0.77 0.79 0.75
Kanpur 0.79 0.76 0.73 0.79 0.81
Delhi 0.80 0.83 0.79 0.80 0.79

AdaBoost
Farakka 0.77 0.78 0.77 0.80 0.78
Kanpur 0.79 0.78 0.79 0.77 0.74
Delhi 0.80 0.84 0.81 0.80 0.77

BiLSTM
Farakka 0.81 0.80 0.75 0.79 0.75
Kanpur 0.75 0.79 0.80 0.80 0.79
Delhi 0.79 0.80 0.78 0.78 0.76

3.4.2. Class-Wise Prediction Performance

As we have implemented a multiclass classifier to represent five different classes of
microorganisms, i.e., bacteria, archaea, eukaryota, viruses and others, the MLAs were
compared in terms of class-wise prediction performance (Tables 5–7) using metagenomic
data from all considered locations. The SVM classifier confirmed the highest accuracy
of 76% for the virus class and the highest AUC–ROC of 81% for the archaea class with
the metagenomic dataset of Farakka (Table 5). In the case of Kanpur, the SVM showed
the highest accuracy of 78% and AUC–ROC of 86% for the eukaryota and virus classes,
respectively (Table 6). However, with the Delhi location dataset, the classifier showed
the highest values for accuracy, precision, recall, F1 Score and AUC–ROC for the virus
class (Table 7). The RF performed well for the virus class with the highest accuracy of 85%
and the highest AUC–ROC (85%) for the bacteria and archaea classes with the Farakka
dataset. RF also confirmed the highest accuracy and AUC–ROC for the virus class with
both the Kanpur (80%, 87%) and Delhi (84%, 87%) datasets. The GBDT confirmed the
highest values for all the considered performance metrics with the Farakka dataset and
the highest accuracy (81%) and AUC–ROC value (81%) with the Delhi dataset. However,
with the Kanpur dataset, it showed the highest accuracy (81%) for the virus class and the
highest AUC–ROC (80%) for the archaea class.

Table 5. The class-wise performance metrics of machine learning algorithms in classifying the
microbial diversity in the river metagenomic sample collected from Farakka.

Classifiers Multiclass Accuracy Precision Recall F1 Score AUC–ROC

SVM

Bacteria 0.75 0.80 0.75 0.79 0.74
Archaea 0.58 0.78 0.76 0.78 0.72
Eukaryota 0.65 0.75 0.71 0.69 0.81
Virus 0.76 0.80 0.75 0.80 0.80
Others 0.66 0.76 0.74 0.80 0.78
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Table 5. Cont.

Classifiers Multiclass Accuracy Precision Recall F1 Score AUC–ROC

RF

Bacteria 0.70 0.76 0.68 0.80 0.85
Archaea 0.72 0.72 0.76 0.79 0.85
Eukaryota 0.69 0.78 0.62 0.78 0.72
Virus 0.85 0.83 0.77 0.80 0.80
Others 0.68 0.71 0.77 0.79 0.75

GBDT

Bacteria 0.69 0.80 0.78 0.80 0.59
Archaea 0.58 0.68 0.82 0.79 0.68
Eukaryota 0.74 0.78 0.76 0.78 0.72
Virus 0.80 0.80 0.78 0.80 0.79
Others 0.77 0.76 0.74 0.80 0.78

XGBoost

Bacteria 0.72 0.79 0.77 0.79 0.75
Archaea 0.79 0.76 0.73 0.69 0.61
Eukaryota 0.69 0.68 0.78 0.80 0.75
Virus 0.82 0.79 0.77 0.79 0.75
Others 0.74 0.78 0.76 0.78 0.52

AdaBoost

Bacteria 0.77 0.78 0.77 0.80 0.78
Archaea 0.61 0.78 0.79 0.77 0.64
Eukaryota 0.69 0.75 0.65 0.77 0.78
Virus 0.71 0.84 0.81 0.80 0.67
Others 0.74 0.78 0.76 0.78 0.52

BiLSTM

Bacteria 0.52 0.80 0.75 0.79 0.75
Archaea 0.75 0.79 0.75 0.71 0.72
Eukaryota 0.82 0.78 0.77 0.79 0.70
Virus 0.79 0.80 0.78 0.78 0.71
Others 0.64 0.79 0.65 0.79 0.74

Table 6. The class-wise performance metrics of machine learning algorithms in classifying the
microbial diversity in the river metagenomic sample collected from Kanpur.

Classifiers Multiclass Accuracy Precision Recall F1 Score AUC–ROC

SVM

Bacteria 0.79 0.81 0.75 0.80 0.74
Archaea 0.74 0.78 0.76 0.78 0.72
Eukaryota 0.78 0.75 0.71 0.69 0.80
Virus 0.78 0.78 0.78 0.79 0.86
Others 0.77 0.76 0.74 0.80 0.78

RF

Bacteria 0.78 0.76 0.76 0.78 0.85
Archaea 0.71 0.79 0.71 0.79 0.80
Eukaryota 0.74 0.78 0.76 0.78 0.72
Virus 0.80 0.70 0.69 0.73 0.87
Others 0.70 0.79 0.73 0.71 0.75

GBDT

Bacteria 0.69 0.80 0.78 0.78 0.79
Archaea 0.75 0.80 0.82 0.79 0.80
Eukaryota 0.74 0.78 0.76 0.78 0.72
Virus 0.81 0.80 0.79 0.70 0.78
Others 0.77 0.76 0.74 0.72 0.78

XGBoost

Bacteria 0.72 0.75 0.69 0.79 0.75
Archaea 0.79 0.76 0.73 0.79 0.81
Eukaryota 0.69 0.68 0.73 0.79 0.79
Virus 0.78 0.63 0.71 0.70 0.79
Others 0.74 0.71 0.59 0.72 0.72
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Table 6. Cont.

Classifiers Multiclass Accuracy Precision Recall F1 Score AUC–ROC

AdaBoost

Bacteria 0.77 0.78 0.77 0.71 0.71
Archaea 0.81 0.78 0.79 0.77 0.74
Eukaryota 0.69 0.75 0.65 0.77 0.70
Virus 0.80 0.78 0.78 0.75 0.69
Others 0.74 0.78 0.76 0.70 0.72

BiLSTM

Bacteria 0.62 0.68 0.75 0.79 0.75
Archaea 0.75 0.79 0.80 0.80 0.79
Eukaryota 0.71 0.78 0.77 0.80 0.78
Virus 0.73 0.77 0.78 0.78 0.76
Others 0.64 0.72 0.65 0.79 0.74

Table 7. The class-wise performance metrics of machine learning algorithms in classifying the
microbial diversity in the river metagenomic sample collected from Delhi.

Classifiers Multiclass Accuracy Precision Recall F1 Score AUC–ROC

SVM

Bacteria 0.71 0.80 0.75 0.79 0.74
Archaea 0.74 0.78 0.76 0.78 0.72
Eukaryota 0.80 0.75 0.71 0.69 0.80
Virus 0.82 0.81 0.79 0.79 0.86
Others 0.77 0.76 0.74 0.80 0.78

RF

Bacteria 0.78 0.76 0.76 0.80 0.85
Archaea 0.80 0.79 0.79 0.79 0.80
Eukaryota 0.74 0.78 0.76 0.78 0.72
Virus 0.84 0.85 0.78 0.80 0.87
Others 0.82 0.79 0.77 0.79 0.75

GBDT

Bacteria 0.69 0.80 0.78 0.70 0.79
Archaea 0.55 0.80 0.82 0.79 0.80
Eukaryota 0.74 0.78 0.76 0.78 0.72
Virus 0.81 0.81 0.79 0.80 0.81
Others 0.77 0.76 0.74 0.80 0.78

XGBoost

Bacteria 0.72 0.79 0.77 0.79 0.75
Archaea 0.79 0.76 0.73 0.79 0.81
Eukaryota 0.69 0.80 0.78 0.80 0.79
Virus 0.81 0.83 0.79 0.80 0.79
Others 0.74 0.78 0.76 0.78 0.72

AdaBoost

Bacteria 0.77 0.78 0.77 0.80 0.78
Archaea 0.80 0.78 0.79 0.77 0.74
Eukaryota 0.69 0.75 0.65 0.77 0.79
Virus 0.80 0.84 0.81 0.80 0.77
Others 0.74 0.78 0.76 0.78 0.72

BiLSTM

Bacteria 0.78 0.80 0.75 0.72 0.75
Archaea 0.75 0.79 0.78 0.78 0.72
Eukaryota 0.77 0.78 0.77 0.78 0.76
Virus 0.79 0.80 0.78 0.78 0.76
Others 0.64 0.79 0.65 0.75 0.70

As far as the boosting-based classifiers are concerned, the XGBoost showed the highest
accuracy for the virus class (82%) and the highest AUC–ROC (75%) in predicting eukaryota
with the Farakka dataset. It confirmed the highest accuracy (79%) and AUC–ROC (81%)
in predicting the archaea class with the Kanpur dataset. Further, in the case of the Delhi
dataset, the XGboost showed the highest accuracy (81%) for the virus class and the highest
AUC–ROC (81%) for the archaea class. The AdaBoost performed well in predicting the
archaea class with the Farakka dataset with an accuracy of 81% and AUC–ROC of 74%.
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However, it performed well for bacteria and eukaryota with the Kanpur dataset (Table 6),
and for archaea, virus and eukaryota with the Delhi dataset (Table 7). The BiLSTM, a deep
learning-based algorithm, exhibited the highest accuracy (82%) for eukaryota and highest
AUC–ROC (75%) for the bacteria class with the Farakka dataset. However, it showed the
highest values for all performance metrics in predicting the instances of the archaea class
with the Kanpur dataset (Table 6) and the virus class with the Delhi dataset (Table 7).

3.5. Comparison of Different Classification Models

The performance comparison of MLAs at three different locations as a violin plot is
given in Figure 5. The width and height represent the frequency of the density plot and
the coverage of the maximum and minimum values of the accuracy, respectively. It is
noticed that the overall accuracy, precision and AUC–ROC of the RF with Delhi dataset
are highest compared to the other MLAs, irrespective of location. The ROC (Receiver
Operating Characteristic) curves for the best models of the SVM, RF, GBDT, XGBoost,
AdaBoost and BiLSTM are shown in Figure 6. The RF confirmed the highest AUC–ROC
(87%) and highest accuracy (88%) for the Delhi location, which is also highest irrespective
of location and methods. With the recall, as well as the F1 Score of 80%, the best RF model
was observed for Delhi. All models were found to perform well with the Delhi dataset.
The performance of the SVM follows the RF with the Delhi dataset. The RF was also found
to perform suitably with the Kanpur and Farakka datasets when all performance metrics
were taken into consideration. The performance metrics of the MLAs with the datasets
from the considered locations implies that the RF is more suitable than the SVM, GBDT,
XGBoost, AdaBoost and BiLSTM in predicting aquatic microbes.
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3.6. Comparison with the State-of-the-Art Tools

MegaR and MetaML are two recent ML-based metagenomics data analysis tools available
in the public domain. A comparison of our proposed model with the said tools revealed
a higher accuracy of the proposed method than the abovementioned tools. It is worth
mentioning that a comparison was made using a standard test dataset based on which the
tools’ accuracies were reported. The reported accuracy of MegaR and MeAML were 66.83%
and 66.40%, respectively, whereas the proposed method confirmed an accuracy of 88%.

4. Discussion

In metagenomics, the complex environmental genomes of several microorganisms
present in a particular niche are analyzed. The metagenome provides a true representation
of the microbes in a particular environment. Among the several microbial niches, the rivers
are one of the major sinks of beneficial and harmful microbes. A better understanding
of the microbial community helps to identify the major pollution sources from harmful
microbes and their bioremediation measures to bring the pollution under control [52].
River metagenomics plays a significant role in analyzing microbial population and their
diversity. It provides a deep knowledge of microbes in that stretch of river, which can cause
skin and other human and animal diseases [53]. The analysis of the river metagenome
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was previously performed using heuristic approaches, which take much time to analyze
the data. Thus, we analyzed the metagenomic datasets collected from two major river
ecosystems in India at three locations. Here, we unraveled the microbial diversities in the
collected samples and proposed an MLA-based method for annotating unknown samples.

The river metagenomic dataset was collected from three distinct locations with a
comprehensive coverage where the sampling units are located more than a thousand
kilometers apart from one another. The assembly statistics confirm suitably long N50
contigs from each location. It is observed from Table 2 that fewer numbers (9771) of
scaffolds are generated for the Farakka dataset than the Delhi (69,083) and Kanpur (83,982)
datasets, even though the N50 and N90 scores are nearly equal. This could be due to less
microbial diversity in Farakka than in the Delhi and Kanpur locations. To validate this
assumption, we carried out the αdiversity analysis using vegan R-package and represented
the diversity in terms of Shanon [54] and Simpson [55] indices (Figure 7), which also shows
low microbial diversity at Farraka compared to the other two locations.
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Water pollution often affects the microbial diversity of the ecosystem [56]. Pollution
can have significant effects on water quality through various mechanisms. According to the
US Environmental Protection Agency (https://www.epa.gov/caddis-vol2/ph, accessed
on 6 May 2023), certain pollutants can decrease pH levels, which can create an acidic
environment that can be harmful to many aquatic organisms. Additionally, pollution can
lead to the buildup of dissolved organic matter, which can cause issues such as reduced light
penetration and decreased oxygen levels. This decrease in dissolved oxygen can lead to
the development of hypoxic or anoxic zones, where the lack of oxygen can have a negative
impact on many aquatic species. Furthermore, changes in the chemical composition of water
resulting from pollution can affect the diversity and abundance of microbial communities
present in the water. These changes can have a cascading effect on the entire aquatic
ecosystem, potentially leading to long-term ecological damage. The difference in microbial
diversity between Farakka and Delhi/Kanpur could be due to the impact of pollution in
these two cities. It is also worth mentioning here that several kinds of leather, thermal
and manufacturing industries are present in Kanpur and Delhi, which discharge industrial

https://www.epa.gov/caddis-vol2/ph
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waste into the rivers, contributing significantly to the water pollution [57,58]. Further,
Delhi and its peripheries such as Faridabad and Ghaziabad are also designated as the most
polluted cities in the world [59]. The BLAST-based identification of microbes provided a
bird’s eye view of microbial diversity in the collected river metagenomic samples. Based on
the geographical and environmental conditions, varied microbial diversity was observed
at different locations (Table 3). We also observed several microbial genera to be uniquely
present at specific locations. Further, the abundance of bacteria at each site was found to be
higher as compared to the other classes of microbes. This could also be due to the pollution
level in the considered river ecosystems as the bacterial diversity in an aquatic ecosystem is
often related to its pollution level [60]. Thus, the microbial diversity in the river ecosystems
should be identified and analyzed to take protective measures in improving the health of
aquatic animals. The correct identification of microbial diversity also provides information
on the water quality, its fitness for agriculture and the pollution status of the river ecosystem.
Thus, NGS techniques, along with suitable computational algorithms, are required for
developing efficient prediction systems for identifying a correct microbial class from a
metagenomic sample. Several clustering and machine learning techniques were applied for
metagenomic data analysis [61]. Here, we implemented K-Means clustering for grouping
metagenomic scaffolds into five different microbial classes. The classified contigs were used
to train various machine learning algorithms to find out the best prediction model that can
correctly identify the microbial diversity. We implemented the SVM, RF, GBDT, XGBoost,
AdaBoost and BiLSTM for this purpose, and we found that the RF performs consistently
well with an acceptable accuracy (88%) irrespective of the location.

The overall accuracies were evaluated by calculating the weighted means of all five classes’
accuracies. However, the tradeoff between the precision, recall, F1 Score and AUC–ROC curve
varied from class to class and location to location. Most of the methods were found to perform
well with the Delhi location dataset compared to Farakka and Kanpur. This is expected due to
the high data quality of Delhi in terms of N50, N90, average scaffold length and the number of
scaffolds (Table 2). The RF also performed better, with an accuracy of 88% for the Delhi dataset,
which is the highest irrespective of location and method. The violin plot presented in Figure 5
also indicates a consistent accuracy of the RF at different locations with minimal variance in the
accuracy. The SVM showed a high variance in the accuracy with the Delhi dataset, whereas the
GBDT showed the least deviation. However, the GBDT showed a high variance in the accuracy
with the Kanpur dataset. Further, the XGBoost, AdaBoost and BiLSTM showed a high variance
in the accuracy with the Farakka dataset, and AdaBoost also showed a high variance with the
Kanpur dataset. Further, the RF also confirmed higher performance values of AUC–ROC for all
location datasets. Thus, the level of accuracy and consistency of accuracy of the RF in classifying
microbial diversity from river metagenomic data suggests that the RF with the considered set of
parameters (Table 1) can be a suitable prediction model for correctly classifying the contigs or
scaffolds generated from metagenomic samples.

5. Conclusions

Metagenomics is a broader field to identify microbial ecology. It plays a significant
role in the field of metagenomic research and the industrial community. The experimental
identification and characterization of microbes from their niche impact the lives of humans,
plants and animals. However, the process is cumbersome, time- and money-consuming. In
contrast, computational approaches being complementary to experimental methods allow
for the faster characterization and annotation of river microbiome in a particular niche. With
the advancement of NGS and machine learning technologies, metagenomic analyses have
become easy and convenient. In this study, the role of K-Means clustering for initial binning
of the metagenomic scaffolds was explored. Approximately 61% of metagenomic scaffolds
from three locations were classified into different microbial clusters. Further, a Random
Forest-based classifier with a suitable set of parameterswas proposed for identifying the
unknown microbial genus from a metagenomic sample, which is made publicly available
at (https://github.com/Nalinikanta7/metagenomics).The proposed model is expected to

https://github.com/Nalinikanta7/metagenomics
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help the researchers and related stockholders to identify the type of microbes present in a
river ecosystem, which, in turn, will help in analyzing the water quality and aquatic health.
Accordingly, preventive measures can be taken by the concerned organizations to ensure
suitable quality of water for the aquatic health, agriculture and animal health dependent
on the river ecosystem.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/genes14051082/s1, Table S1: Comparison of different machine learning
algorithms used in this study.
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