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Abstract: (1) Background: The probability of technical success in percutaneous coronary intervention
(PCI) for chronic total occlusion (CTO) represents essential information for specifying the priority
of PCI for treatment selection in patients with CTO. However, the predictabilities of existing scores
based on conventional regression analysis remain modest, leaving room for improvements in model
discrimination. Recently, machine learning (ML) techniques have emerged as highly effective methods
for prediction and decision-making in various disciplines. We therefore investigated the predictability
of ML models for technical results of CTO-PCI and compared their performances to the results from
existing scores, including J-CTO, CL, and CASTLE scores. (2) Methods: This analysis used data from
the Japanese CTO-PCI expert registry, which enrolled 8760 consecutive patients undergoing CTO-PCI.
The performance of prediction models was assessed using the area under the receiver operating
curve (ROC-AUC). (3) Results: Technical success was achieved in 7990 procedures, accounting for an
overall success rate of 91.2%. The best ML model, extreme gradient boosting (XGBoost), outperformed
the conventional prediction scores with ROC-AUC (XGBoost 0.760 [95% confidence interval {CI}:
0.740–0.780] vs. J-CTO 0.697 [95%CI: 0.675–0.719], CL 0.662 [95%CI: 0.639–0.684], CASTLE 0.659
[95%CI: 0.636–0.681]; p < 0.005 for all). The XGBoost model demonstrated acceptable concordance
between the observed and predicted probabilities of CTO-PCI failure. Calcification was the leading
predictor. (4) Conclusions: ML techniques provide accurate, specific information regarding the
likelihood of success in CTO-PCI, which would help select the best treatment for individual patients
with CTO.
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1. Introduction

Despite progressive declines in cardiovascular mortality, coronary artery disease
(CAD) remains the leading cause of death in developed countries [1]. For CAD, accumu-
lated evidence has led to the standardization of treatment selection among percutaneous
coronary intervention (PCI), coronary artery bypass grafting, or optimal medical treat-
ment alone. However, due to the broad and heterogeneous spectrum of CAD patients,
complex cases should be discussed individually to identify the optimal solution for each
specific patient.

The probability of technical success for CTO-PCI represents essential information
for specifying the priority of PCI in preprocedural discussions regarding treatment se-
lection for CAD patients with CTO. Indeed, numerous scores for predicting CTO-PCI
results have been derived based on regression analyses [2–6]. Nevertheless, the predictive
ability of those scores remains modest at best [7,8], leaving room for improvements in
model discrimination.

Machine learning (ML) techniques have emerged as highly effective methods for
prediction and decision-making in a multitude of disciplines, including internet search
engines, customized advertising, finance trending, and natural language processing [9,10].
When the goal is to generate a model that most accurately predicts an outcome, ML
algorithms can prove quite advantageous over traditional regression methods. To date,
the benefits of utilizing ML for predicting the technical results of CTO-PCI have not been
evaluated on a large scale.

We therefore investigated the feasibility and accuracy of ML models for predicting
the technical outcomes of CTO-PCI and compared their performances to the results from
existing scores, including J-CTO [2], CL [4], and CASTLE [5] scores.

2. Materials and Methods
2.1. Study Population

This analysis used data from the Japanese CTO-PCI expert registry. This registry is a
prospective, non-randomized study enrolling consecutive patients who are undergoing
CTO-PCI performed by 46 highly experienced Japanese operators, all certified by the
Japanese Board of CTO Interventional Specialists.

The requirements for certification are that the PCI operator has performed more
than 300 CTO-PCIs and performs more than 50 CTO-PCIs per year. Certified specialists
need to enrol all consecutive CTO-PCI datasets into the registry. The planned patient
enrollment is from January 2014 to December 2022, and clinical follow-up will continue
until December 2027. The design and enrollment status have been reported in detail [11,12].
Notably, an independent body of researchers (Clinical Research Center, Kurashiki Central
Hospital, Ohara Healthcare Foundation, Okayama, Japan) monitors and controls data
analysis, and procedural-related images (PCI angiograms, computed tomography images,
and intravascular ultrasound images) are all uploaded into the central server of the core
laboratory (Cardiovascular Imaging Center, Aichi, Japan) where independent physicians
and technicians validate the content. This study protocol was approved by the review
board of each institution, and written informed consent was obtained from all participants.

The study population was randomly divided into a training set (80%), from which ML
models for predicting CTO-PCI results were derived, and a test set (20%), in which ML
models and the existing scores were evaluated.

2.2. Definitions and Study Endpoint

Hyperlipidemia was defined as a total cholesterol level ≥220 mg/dL, a low-density
lipoprotein cholesterol level ≥140 mg/dL, a high-density lipoprotein cholesterol level
<40 mg/dL, a triglyceride level ≥150 mg/dL, or treatment for hyperlipidemia. Hemodial-
ysis was defined as undergoing regular hemodialysis. The definition of CTO and the
angiographic analysis of the target procedures have already been described [11,12]. The
indication for CTO-PCI was completely left to the discretion of each operator and the
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discussion among the heart team of each institution. The selection of a CTO-PCI strategy
depended on the operator’s discretion. The definitions of predictor variables for angio-
graphic findings are provided in Supplemental Table S1. Viable CTO territory was defined
as the presence of viability of myocardium in the perfusion territory of the target CTO lesion
based on the findings of imaging modalities such as echocardiography, single photon emis-
sion computed tomography, cardiovascular magnetic resonance, or left ventriculography.
Technical success was defined as successful guidewire CTO achieving <50% residual diame-
ter stenosis without major side branch occlusion and thrombolysis in myocardial infarction
flow grade 3. According to CTO-ARC consensus recommendations [13], in-hospital major
adverse cardiovascular event included any of the following adverse events prior to hospital
discharge: death, myocardial infarction, or clinically driven target vessel revascularization
with PCI or coronary artery bypass grafting. Procedural success was defined as technical
success plus the absence of an in-hospital major adverse cardiovascular event.

2.3. Predictor Variables

To ensure the availability of all predictor variables in prediction model development,
we excluded variables with a missing data rate exceeding 20%. Missing values were filled
with the median and mode of each continuous and categorical variable, respectively. To
handle overfitting with regularization, continuous variables were normalized by z-scoring
so that each continuous variable had both a mean of zero and a standard deviation of
one. Multicategory variables were one-hot encoded in binary variables. Finally, a total of
65 predictor variables consisting of clinical and angiographic characteristics were used as
independent predictor variables for model development.

2.4. ML Algorithm Models

To develop the prediction model for technical failure of CTO-PCI, we applied and
compared the performances of 5 ML classifiers that are widely used in the literature:
random forest; extreme gradient boosting (XGBoost); deep neural networks; support vector
machine classifier; and L2-regularized logistic regression. For hyperparameter selection, a
stratified 10-fold cross-validation and grid search was performed. The ranges of optimized
hyperparameters for each classification algorithm are provided in Supplemental Table S2.

2.5. Comparison of Results from ML Models and Conventional Prediction Scores

We compared the performance of the developed ML algorithms with standard pre-
dictive multivariate logistic regression models: J-CTO, CL, and CASTLE scores. With the
CASTLE score [5], the score component of “tortuosity” was defined as either 2 or more
pre-occlusive bends of >90◦ or at least one bend of >120◦ in the CTO vessel. Because
of the absence of identical findings obtained in the current registry, we used the finding
“lesion bending”, defined as at least one bend of >45◦ throughout the occluded segment, as
a substitute.

To compare ML models with those existing scores, we evaluated the existing scores
directly on the test dataset, essentially performing an external validation of the prediction
rules. However, comparing the external performance of those regression-based scores
with the internal performance of ML algorithms could provide an unfair advantage to the
ML algorithms. We therefore further developed a prediction score for technical failure of
CTO-PCI in the training dataset using multivariate logistic regression analysis in a similar
way with the existing scores. Potential predictive factors for CTO-PCI failure showing
values of p < 0.005 in the univariate model were entered into the multivariate analysis.
An integer scoring system (the CURRENT score) was developed by assigning points for
each strong and independent predictor according to the beta coefficient and summing all
points accrued. We also compared the predictive performance of ML models with that of
the CURRENT score.
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2.6. Evaluation Metrics

The models were evaluated in the test dataset, which was independent from the
training dataset. Receiver operating characteristics (ROC) and precision/recall (PR) curve
analysis were performed to assess the discriminatory ability of each ML model and the
conventional prediction scores. Pairwise comparisons of the area under the ROC curves
(ROC-AUC) were performed as described by Delong et al. [14].

Calibration of the best model (XGBoost) was evaluated using the Brier score method
(range, 0–1) [15] and a figure comparing the observed and predicted risk of CTO-PCI failure.

2.7. Variable Importance

We also computed the variable importance of the best model (XGBoost) by measuring
the average gain of splits using the variable across all decision trees within the model.

2.8. Software

Model development codes were developed in Python 3.6.6 (Python Software Foun-
dation, Wilmington, DE, USA). The open-source library scikit-learn was used for the
implementation of ML classifiers. The XGBoost 0.90 was used to build the XGBoost model.

2.9. Statistical Analysis

Data were statistically analyzed using SPSS Statistics version 24 (IBM, Armonk, NY,
USA) and Medcalc version 20.110 statistical program (Medcalc, Ghent, Belgium). Continu-
ous variables are presented as mean ± standard deviation. Categorical data are presented
as frequencies and percentages. Normality was evaluated using the Shapiro–Wilk test. Nor-
mally distributed values were compared by unpaired t-test, and non-normally distributed
values were compared by the Mann–Whitney U test. Categorical data were compared
using the χ2 test or Fisher’s exact test.

We used logistic regression models for the training dataset to extract the score com-
ponent of the CURRENT score by uni- and multivariate analyses. Given many variables,
strong and independent predictor variables were identified using a stepwise approach
with p < 0.005 as the inclusion criterion. All statistical tests were two-tailed and values of
p < 0.05 were considered significant.

3. Results
3.1. Patient Characteristics

Among the 8760 CTO-PCI procedures performed between January 2014 and Decem-
ber 2019, technical success was achieved in 7990, representing an overall success rate of
91.2%. Each patient was randomly assigned to either the training cohort (80%, 7008 pro-
cedures) or the test cohort (20%, 1752 procedures). Patient characteristics in the training
and test datasets are shown in Table 1 and Supplemental Table S3. Except for sex, smok-
ing, hemodialysis, and viability of CTO territory, no significant differences in clinical or
lesion-related characteristics were identified between the training and test cohorts.

Each training and test cohort was divided according to the technical outcome, and
patient characteristics were analyzed (Supplemental Tables S4 and S5). In univariate
analyses for the training dataset, patients with failed CTO-PCI were significantly more
likely to have the following clinical characteristics: hypertension; diabetes; prior CABG;
prior PCI; chronic occlusive pulmonary disease; arteriosclerosis obliterans; higher serum
creatinine; and lower estimated glomerular filtration rate.

On uni- and multivariate logistic regression analysis for the training dataset, 8 variables
were identified as strong independent predictors of the failure of CTO-PCI, collectively
forming the CURRENT score (hemodialysis [+1], CTO vessel diameter < 2.5 mm [+1], CTO
entry—no stump [+1], severe calcification [+2], lesion bending [+1], lesion length ≥ 20 mm
[+1], proximal right coronary artery diseased [+1], and proximal left circumflex artery
diseased [+1]) (Table 2).
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Table 1. Patient characteristics.

Overall Population Training Set Test Set p Value

(n = 8760) (n = 7008) (n = 1752)

Age, years 67 ± 11 67 ± 11 67 ± 11 0.70
Female 1294 (14.8%) 1062 (15.2%) 232 (13.2%) 0.044

History of MI 4191 (47.8%) 3378 (48.2%) 813 (46.4%) 0.18
Prior CABG 615 (7.0%) 494 (7.0%) 121 (6.9%) 0.83

Hypertension 6801 (77.6%) 5451 (77.8%) 1350 (77.1%) 0.51
Diabetes mellitus 3954 (54.1%) 3173 (45.3%) 781 (44.6%) 0.60
Hyperlipidemia 7004 (80.0%) 5592 (79.8%) 1412 (80.6%) 0.46

Smoking
Never 3481 (39.7%) 2830 (40.4%) 651 (37.2%) 0.046
Past 3821 (43.6%) 3021 (43.1%) 800 (45.7%)

Current 1458 (16.6%) 1157 (16.5%) 301 (17.2%)
ASO 1069 (12.2%) 834 (11.9%) 235 (13.4%) 0.084

Hemodialysis 585 (6.7%) 448 (6.4%) 137 (7.8%) 0.032
CCS

0: The absence of anginal symptoms 4075 (46.5%) 3239 (46.2%) 836 (47.7%) 0.71
I 1794 (20.5%) 1438 (20.5%) 356 (20.3%)
II 2463 (28.1%) 1992 (28.4%) 471 (26.9%)
III 317 (3.6%) 250 (3.6%) 67 (3.8%)
IV 111 (1.3%) 89 (1.3%) 22 (1.3%)

Cr, mg/dL 1.23 ± 1.49 1.23 ± 1.49 1.23 ± 1.50 0.90
eGFR, mL/min/1.73 m2 63.4 ± 22.5 63.4 ± 22.5 63.5 ± 22.8 0.85

LVEF, % 54.2 ± 13.0 54.3 ± 13.0 53.9 ± 13.0 0.27
Viable CTO territory 8639 (98.6%) 6901 (98.5%) 1738 (99.2%) 0.020

Cerebrovascular disease 644 (7.4%) 512 (7.3%) 132 (7.5%) 0.74
EuroSCORE II 1.55 ± 2.23 1.57 ± 2.38 1.50 ± 1.44 0.26

Number of diseased vessels
Single 3792 (43.3%) 3047 (43.5%) 745 (42.5%) 0.42

Double 2789 (31.8%) 2239 (31.9%) 550 (31.4%)
Triple 2179 (24.9%) 1722 (24.9%) 457 (26.1%)

CTO vessel
Graft 3 (0.03%) 3 (0.04%) 0 (0%) 0.39
Right 4374 (49.9%) 3499 (49.9%) 875 (49.9%) 0.99

Left anterior descending 2814 (32.1%) 2267 (32.3%) 547 (31.2%) 0.37
Left circumferential 1535 (17.5%) 1210 (17.3%) 325 (18.6%) 0.21

Left main trunk 34 (0.4%) 29 (0.4%) 5 (0.3%) 0.44
In-stent occlusion 1165 (13.3%) 947 (13.5%) 218 (12.4%) 0.24

Blunt stump
Tapered/tunnel 5720 (65.3%) 4548 (64.9%) 1172 (66.9%) 0.15

Blunt 1582 (18.1%) 1293 (18.5%) 289 (16.5%)
No stump 1458 (16.6%) 1167 (16.7%) 291 (16.6%)

Lesion calcification
None 4342 (49.6%) 3482 (49.7%) 861 (49.1%) 0.95
Mild 2612 (29.8%) 2085 (29.8%) 527 (30.1%)

Moderate 1187 (13.6%) 951 (13.6%) 236 (13.5%)
Severe 618 (7.1%) 490 (7.0%) 128 (7.3%)

Lesion bending 1848 (21.1%) 1480 (21.1%) 368 (21.0%) 0.92
Occlusion length

<20 mm 3995 (45.1%) 3158 (45.1%) 797 (45.5%) 0.82
≥20 mm 4681 (53.4%) 3753 (53.6%) 928 (53.0%)

Unmeasurable 124 (1.4%) 97 (1.4%) 27 (1.5%)
Reattempted lesion

No reattempt 7136 (81.5%) 5706 (81.4%) 1430 (81.6%) 0.85
Reattempted by the same operator 157 (1.8%) 124 (1.8%) 33 (1.9%) 0.75
Reattempted by another operator 1467 (16.7%) 1178 (16.8%) 289 (16.5%) 0.75
Collateral channel classification
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Table 1. Cont.

Overall Population Training Set Test Set p Value

(n = 8760) (n = 7008) (n = 1752)

CC0 485 (5.5%) 387 (5.5%) 98 (5.6%) 0.99
CC1 3733 (42.6%) 2987 (42.6%) 746 (42.6%)
CC2 4542 (51.8%) 3634 (51.9%) 908 (51.8%)

Technical failure 770 (8.8%) 616 (8.8%) 154 (8.8%) 1.0
Procedural failure 872 (10.0%) 695 (9.9%) 177 (10.1%) 0.82
In-hospital MACE 134 (1.5%) 106 (1.5%) 28 (1.6%) 0.79
In-hospital death 24 (0.3%) 21 (0.3%) 3 (0.2%) 0.36

In-hospital MI 106 (1.2%) 84 (1.2%) 22 (1.3%) 0.85
Clinically driven TVR 10 (0.1%) 7 (0.1%) 3 (0.2%) 0.43

Values are presented as means ± standard deviation or as numbers (percentages). ASO, arteriosclerosis obliterans;
CABG, coronary artery bypass grafting; CC, collateral channel; CCS, Canadian Cardiovascular Society; Cr,
creatinine; CTO, chronic total occlusion; eGFR, estimated glomerular filtration rate; J-CTO, Multicenter CTO
Registry in Japan; LVEF, left ventricular ejection fraction; MACE, major adverse cardiovascular event; MI,
myocardial infarction; PCI, percutaneous coronary intervention; TVR, target vessel revascularization.

Table 2. Score components of the CURRENT score.

Coefficient (β) p Value Odds Ratio (95% CI) Score

Hemodialysis 0.695 <0.001 2.00 (1.49–2.70) 1
CTO vessel diameter < 2.5 mm 0.360 <0.001 1.43 (1.20–1.71) 1

CTO entry—no stump 0.422 <0.001 1.53 (1.26–1.84) 1
Severe calcification 0.897 <0.001 2.45 (1.94–3.10) 2

Lesion bending 0.545 <0.001 1.72 (1.45–2.06) 1
Length ≥ 20 mm 0.490 <0.001 1.63 (1.38–1.93) 1

Proximal RCA (AHA segment 1) diseased 0.284 <0.001 1.33 (1.23–1.56) 1
Proximal LCX (AHA segment 11) diseased 0.356 <0.001 1.43 (1.18–1.73) 1

AHA, American Heart Association; CABG, coronary artery bypass grafting; CI, confidence interval; CTO, chronic
total occlusion; LCX, left circumflex artery; RCA, right coronary artery.

3.2. Comparison of Prediction Models

Figure 1 shows the ROC and PR curves for the 5 ML models. Among these ML mod-
els, XGBoost exhibited the highest ROC-AUC (XGBoost: 0.760 [95% confidence interval
{CI}: 0.740–0.780] vs. random forest: 0.746 [95%CI: 0.725–0.766], deep neural networks:
0.737 [95%CI: 0.715–0.757], L2-regularized logistic regression: 0.733 [95%CI: 0.712–0.754],
and support vector machine classifier: 0.679 [95%CI: 0.657–0.701]) and PR-AUC (XGBoost:
0.291 [95%CI: 0.224–0.367] vs. random forest: 0.280 [95%CI: 0.215–0.356], deep neural
networks: 0.275 [95%CI: 0.211–0.351], L2-regularized logistic regression: 0.268 [95%CI:
0.204–0.344], and support vector machine classifier: 0.180 [95%CI: 0.127–0.249]) for predic-
tion of failed CTO-PCI. Regarding ROC-AUC, XGBoost allowed the prediction of CTO-
PCI failure with higher accuracy than L2-regularized logistic regression (0.760 vs. 0.733,
p = 0.034) and support vector machine classifier (0.760 vs. 0.679, p < 0.001). No significant
differences were observed in predictive performance between XGBoost and random forest
(0.760 vs. 0.746, p = 0.223) or deep neural networks (0.760 vs. 0.737, p = 0.071). In addition,
XGBoost allowed an acceptable predictive ability for procedural failure (ROC-AUC 0.748
[95%CI: 0.727–0.768] and PR-AUC 0.323 [95%CI: 0.258–0.396]).

Figure 2 shows the ROC and PR curves for comparing the XGBoost model with the
J-CTO, CL, CASTLE, and CURRENT scores. The prediction accuracy of the XGBoost
model outperformed those of the conventional prediction scores: J-CTO (ROC-AUC 0.697
[95%CI: 0.675–0.719] and PR-AUC 0.176 [95%CI: 0.124–0.244]), CL (ROC-AUC 0.662 [95%CI:
0.639–0.684] and PR-AUC 0.179 [95%CI: 0.126–0.248]), CASTLE (ROC-AUC 0.659 [95%CI:
0.636–0.681] and PR-AUC 0.156 [95%CI: 0.107–0.222]), and CURRENT (ROC-AUC 0.702
[95%CI: 0.680–0.724] and PR-AUC 0.213 [95%CI: 0.156–0.285]). XGBoost exhibited a higher
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ROC-AUC than existing scores and the CURRENT score for prediction of failed CTO-PCI
(p < 0.005 for all).
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The Brier score for XGBoost was 0.074, indicating good calibration between the esti-
mated predicted risk and observed risk of CTO-PCI failure. Calibration was also assessed
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by comparing estimated predicted and observed risk of CTO-PCI failure stratified by decile
of predicted risk (Figure 3). A high correlation of predicted versus observed CTO-PCI
failure was found (r = 0.97; p < 0.001).
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3.3. Variable Importance

The importance matrix plot for XGBoost is shown in Figure 4. The first 6 variables con-
tributing to the predictive performance of the XGBoost model were as follows: calcification;
hyperlipidemia; reattempted by another operator; CTO distal diameter; lesion bending;
and hemodialysis.
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4. Discussion

This study had two major findings. First, XGBoost was our best-performing ML model
for predicting CTO-PCI results. Second, XGBoost showed significantly better performance
than existing scores for predicting the technical outcomes of CTO-PCI.

To the best of our knowledge, the present study represents the first large-scale, multi-
center evaluation of ML for predicting the technical results of CTO-PCI. ML techniques
provide accurate, specific information regarding the likelihood of success in CTO-PCI,
which would optimize treatment selection for CAD patients with CTO in preprocedural
discussions.

4.1. Prediction Accuracy of CTO-PCI Results

In the decision-making process for treatment selection when managing patients with
complex CAD, recent revascularization guidelines have advocated a ‘Heart Team’ ap-
proach, referring to non-invasive cardiologists, anesthetists, and other specialists if deemed
necessary [16]. A Heart Team approach facilitates more transparent decision-making but
requires specific and accurate information regarding the likelihood of a successful result
for each candidate’s procedural treatment instead.

To date, numerous risk prediction models for the results of CTO-PCI have been
developed based on regression analysis, but the accuracy of those scores is modest at
best [2,6]. Attempts to create new or additional scores have thus been made by integrating
procedural algorithms [3] or increasing the number of patients included [5]. However, the
predictive ability of scores has not been markedly improved through such efforts [7,8],
emphasizing the need for improvements in model discrimination.

4.2. Advantages of ML Methods

ML models have been shown to work well when provided with large amounts of
data [17–20], and the current registry provided data from 8760 procedures and 65 vari-
ables. Moreover, ML methods usually offer incremental gains in predictive performance
while handling vast numbers of variable–variable interactions in each patient, effectively
individualizing risk assessments and overcoming many limitations of standard statistical
approaches using regression-based analysis [21]. In conventional prediction models for
CTO-PCI results, most score components comprise angiographic findings of the CTO le-
sion and, in particular, the finding of severe calcification has been the most consistently
included variable. However, the decision tree for CTO-PCI success in our previous re-
port [22] showed that, among patients suffering CTO with severe calcification, no other
angiographic findings affected CTO-PCI results. Additionally, a recent report showed
apparent differences in the performance of prediction scores according to the procedural
techniques applied, with higher predictability for patients who underwent CTO-PCI with
antegrade-only procedures compared to those with bidirectional procedures [7]. Moreover,
in the current study, hyperlipidemia was one of the leading predictors of CTO-PCI results.
Hyperlipidemia has not been included as a score component among recently developed
scoring systems based on regression analysis to gauge the likelihood of success in CTO-
PCI. However, our previous report [11] showed that hyperlipidemia was an independent
predictor of successful CTO-PCI in a primary retrograde approach, but not in overall or
primary antegrade procedures. The effects of statin treatment on endothelium-mediated
responses [23] and collateral development [24,25] of the coronary arteries might be ben-
eficial for collateral channel crossing and retrograde procedures. Such findings suggest
complex variable–variable interactions in clinical data for CTO-PCI, indicating incremental
predictive performance by using ML methods, particularly for tree-based models.

4.3. Disadvantages of ML Methods

ML methods are usually more time-consuming than conventional regression analysis.
Further, attention should be paid to the interpretation of the results of ML models. Impor-
tant predictor variables may not be causal factors but just useful markers. The conversion
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to a points-based score based on coefficients for each variable obtained from conventional
regression analysis cannot be applied to many ML methods.

To date, prediction models for CTO-PCI results have been developed to be as simple as
possible, prioritizing the ease of remembering and calculation [2–6]. However, unlike those
traditional scores from regression analysis, ML models require a computer for calculation
and cannot be converted to a bedside arithmetical risk score. While the need to favor
simplicity over accuracy might have been reasonable in the past, such considerations are
no longer relevant within computerized medical care. Sufficient simplicity to be hand-
calculable would not be acceptable if the trade-off were the sacrifice of accuracy in the
prediction model providing critical information for treatment selection.

4.4. Future Directions

As described in the original report of the J-CTO score [2], which was originally devel-
oped to predict guidewire crossing within 30 min and remains the most widely applied
score for technical results, clinical prediction systems should be continually updated to im-
prove predictive performance by handling new data and optimizing algorithms. Recently,
prediction models for CTO-PCI results, including coronary computed tomographic an-
giography (CCTA) findings, have shown relatively high performance [26,27]. CCTA offers
advantages over CAG for direct visualization of CTO vessel trajectory, three-dimensional
depiction of lesion bending, the distribution of calcification, and the presence of multiple
occlusions. CCTA was not routinely obtained in the current registry, and ML prediction
models for CTO-PCI results using CCTA findings have not yet been developed using a
large-scale dataset. However, such analyses should be carried out in the future. Although
experienced specialists have interpreted CCTA findings for developing prediction models,
ML models such as neural networks might facilitate image interpretation and improve the
predictive performance based on much larger datasets [28,29].

4.5. Limitations

This study has several potential limitations. First, the developed ML models have
not been externally validated on a separate cohort. Second, in the CASTLE score [5], the
score component of “tortuosity” was defined as either two or more pre-occlusive bends of
>90◦ or at least one bend of >120◦ in the CTO vessel. Because of the absence of identical
findings obtained in the current registry, we used the finding of “lesion bending”, defined
as at least one bend of >45◦ throughout the occluded segment, as a substitute. This may
have resulted in an underestimation of the performance of the CASTLE score. Finally, all
CTO-PCIs were performed by highly experienced specialists, and the results may not be
generalizable to the daily clinical practice of less-experienced operators. However, previous
consensus reports on CTO have specified that CTO-PCI should be aggressively referred to
a skilled operator [30]. As recent guidelines indicate, success rates for CTO-PCI are strongly
associated with operator skillset, procedural volume, and the availability of dedicated
equipment [16].

5. Conclusions

ML techniques improve the prediction of technical results of CTO-PCI. These tech-
niques may help select the best treatment for individual patients with CTO in the standard-
ized preprocedural discussion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12103354/s1; Table S1: Definitions of the predictor variables
for angiographic findings; Table S2: The ranges of optimized hyperparameters for machine learning
models; Table S3: Patient characteristic in the training and test cohort; Table S4: Patient characteristics
in the training cohort; Table S5: Patient characteristics in the test cohort.
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