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Natural sounds contain rich patterns of amplitude modulation (AM), which is one of the essential sound dimensions for au-
ditory perception. The sensitivity of human hearing to AM measured by psychophysics takes diverse forms depending on the
experimental conditions. Here, we address with a single framework the questions of why such patterns of AM sensitivity
have emerged in the human auditory system and how they are realized by our neural mechanisms. Assuming that optimiza-
tion for natural sound recognition has taken place during human evolution and development, we examined its effect on the
formation of AM sensitivity by optimizing a computational model, specifically, a multilayer neural network, for natural sound
(namely, everyday sounds and speech sounds) recognition and simulating psychophysical experiments in which the AM sensi-
tivity of the model was assessed. Relatively higher layers in the model optimized to sounds with natural AM statistics exhib-
ited AM sensitivity similar to that of humans, although the model was not designed to reproduce human-like AM sensitivity.
Moreover, simulated neurophysiological experiments on the model revealed a correspondence between the model layers and
the auditory brain regions. The layers in which human-like psychophysical AM sensitivity emerged exhibited substantial neu-
rophysiological similarity with the auditory midbrain and higher regions. These results suggest that human behavioral AM
sensitivity has emerged as a result of optimization for natural sound recognition in the course of our evolution and/or devel-
opment and that it is based on a stimulus representation encoded in the neural firing rates in the auditory midbrain and
higher regions.

Key words: auditory; modulation; neural network; neurophysiology; psychophysics; sound recognition

Significance Statement

This study provides a computational paradigm to bridge the gap between the behavioral properties of human sensory systems
as measured in psychophysics and neural representations as measured in nonhuman neurophysiology. This was accomplished
by combining the knowledge and techniques in psychophysics, neurophysiology, and machine learning. As a specific target
modality, we focused on the auditory sensitivity to sound AM. We built an artificial neural network model that performs nat-
ural sound recognition and simulated psychophysical and neurophysiological experiments in the model. Quantitative compar-
ison of a machine learning model with human and nonhuman data made it possible to integrate the knowledge of behavioral
AM sensitivity and neural AM tunings from the perspective of optimization to natural sound recognition.

Introduction
Amplitude modulation (AM) is a critical sound feature for hear-
ing (Fig. 1). Not only is AM associated with basic hearing sensa-
tions such as loudness fluctuation, pitch, and roughness (Joris et
al., 2004) but it is also an essential clue for recognizing natural

sounds, including everyday sounds and speech (Dudley, 1939;
Shannon et al., 1995; Gygi et al., 2004). The significance of AM
sensitivity to our hearing functions is supported by its correla-
tions with speech recognition performance, as revealed by
experiments mostly conducted on hearing-aid and cochlear-
implant users (Cazals et al., 1994; Fu, 2002; Luo et al., 2008; Won
et al., 2011; De Ruiter et al., 2015; Bernstein et al., 2016).

The properties of AM sensitivity have been investigated
mainly through two separate approaches, psychophysics and
neurophysiology. On the one hand, psychophysical studies have
identified a wide variety of sensitivity curves in the form of the
temporal modulation transfer function (TMTF; Viemeister,
1979; Dau et al., 1997a; Lorenzi et al., 2001a, b). The TMTF is
defined as the AM-detection threshold (i.e., the minimum AM
depth required for detection) as a function of the AM rate (Fig.
2). Typically, it is measured with a sinusoidal AM (Fig. 1c). It
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shows apparent interactions with the carrier bandwidth. The
detection thresholds are higher (less sensitive) at an AM rate
equal to the carrier bandwidth. These patterns have been inter-
preted in terms of frequency masking in the modulation domain.
Stimulus parameters other than the carrier bandwidth (e.g., stim-
ulus duration) may be additional factors determining the TMTF
form.

On the other hand, neurophysiological studies have found
that many neurons throughout the mammalian auditory nervous
system (ANS) show tuning to AM (Joris et al., 2004). Their spike
rate and/or spike timing depends on the stimulus AM rate. Their
preferred AM rate varies widely over the range of behaviorally
detectable values. Although these findings suggest that AM-tuned
neurons are somehow involved in behavioral AM sensitivity, the
lack of single-unit neural data in humans has made it difficult to es-
tablish a direct link with human behavior.

Inspired by the psychophysical and neurophysiological find-
ings, Dau et al. (1997a,b) have proposed that a bandpass filter
bank in the modulation domain, called a modulation filter bank
(MFB), is involved in auditory signal processing. They built a
computational model that includes an MFB with which they
reproduced a variety of psychoacoustic properties including
stimulus-parameter-dependent TMTFs (Dau et al., 1997a,b). To
reproduce a wider range of psychoacoustic phenomena, they

have gradually incremented and refined the model components
that each performs a specific signal processing computation
(Derleth et al., 2001; Jepsen et al., 2008). Building a model in
such a bottom-up fashion is advantageous for theorizing on what
kinds of signal processing are implemented in the human audi-
tory system. However, to fully understand the properties of AM
sensitivity, we should also answer two critical questions, Why has it
emerged during our evolution and development? and How is it
realized by our neural mechanisms? The neural mechanisms of AM
sensitivity have been studied mostly by animal neurophysiology,
but explaining why and how in a single computational framework
would help us understand those neurophysiologically elucidated
mechanisms from the perspectives of human behavior and the pro-
cess of their emergence.

To provide answers to these questions, we built a computa-
tional model that performs natural sound recognition and com-
pared its psychophysical and neurophysiological properties with
those of the auditory system (Fig. 3). First, to investigate why
AM sensitivity has emerged, we optimized an artificial neural
network (NN) for natural sound recognition (Fig. 3a) as a way of
simulating the optimization that is presumably happening in
the auditory system during its evolution and development.
We assumed that better recognition of natural sounds yields better
evolutionary fitness and hypothesized that natural sound recognition
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Figure 1. a, Examples of AM in natural sounds. Excerpts of a dog barking (top) and speech (bottom) are shown. Sound waveforms and their amplitude envelopes are shown by gray and
black lines, respectively. b, Modulation spectra of the sounds in a. Each sound has a distinct modulation pattern. c, Illustration of the AM depth and rate (actually, the inverse of the rate) of si-
nusoidally amplitude-modulated white noise. Generally, the shallower the AM depth is the more difficult AM becomes to detect.

Single person

Figure 2. TMTFs of humans, sorted by the carrier bandwidth of the stimulus. The TMTF is defined as the AM detection threshold as a function of the AM rate. Amplitude modulation of
broadband carriers yields low-pass-shaped TMTFs with lower thresholds at low AM rates and higher thresholds at high AM rates, whereas it yields high-pass-shaped TMTFs for narrowband car-
riers. Other stimulus parameters also appear to affect TMTFs. The depicted TMTFs were taken from psychophysics papers (Viemeister, 1979; Dau et al., 1997a; Lorenzi et al.,2001a,b). Each line
shows a TMTF in a single person.
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plays a major role in shaping human AM sensitivity. We used
everyday sounds (Piczak, 2015) and speech sounds (https://doi.
org/10.35111/17gk-bn40) as examples of natural sounds. Then,
we simulated psychophysical experiments on the NN to see
whether human-like AM sensitivity emerges in some of its layers
(Fig. 3b). This kind of two-step optimization and analysis proce-
dure has explained a number of auditory properties (Lewicki,
2002; Terashima and Okada, 2012; Khatami and Escabí, 2020;
Ashihara et al., 2021; Saddler et al., 2021; Francl and McDermott,
2022), as well as properties in other sensory modalities (Kriegeskorte
and Douglas, 2018; Kanwisher et al., 2023).

Finally, to investigate how AM sensitivity is realized, we per-
formed neurophysiological experiments on the same model and
made a hierarchical correspondence with the ANS (Fig. 3c). By
taking advantage of a method established in our previous study
that maps the AM representation between an NN and the ANS
based on single-unit activity (Koumura et al., 2019), we roughly
mapped the layerwise AM sensitivity measured in the psycho-
physical simulation onto the hierarchical processing stages in the
ANS. In this way, we could infer which brain regions are most
likely to be responsible for human AM sensitivity.

Parts of this article have been previously presented in
Koumura et al. (2020).

Materials and Methods
Model construction and evaluation. We used a multilayer feedfor-

ward NN as a model of the auditory system. Each layer consisted of a
dilated convolution (van den Oord et al., 2016) followed by an exponen-
tial linear unit (ELU; Clevert et al., 2016). Convolution was along the
time axis. Above the topmost layer was a classification layer consisting of
a convolution with a filter size of one. In this way, the model worked as a
fully convolutional NN. The input time window was 0.2 s. In other
words, the model estimated the sound category of every 0.2 s of the input

sound. During optimization, softmax cross entropy for sound categories
was computed at a single time step of the model output (corresponds to
the input sampling rate), and the parameters (namely, convolutional
weights and biases) were updated to minimize the error. During the
evaluation, the output of the classification layer was averaged over time
to estimate a single category per sound clip for the everyday sounds or
per phoneme interval for the speech sounds.

The trainable parameters of the model were the connection weights
and biases in the convolutional layers. Initially, the connection weights
were random, and the biases were zero. These parameters were opti-
mized for sound recognition with a standard backpropagation method
using the Adam optimizer with a learning rate of 10�4. We refer to a
model with initial parameters (random weights and zero biases) as a
“nonoptimized model” and a model after optimization as an “optimized
model.” The sound data were divided into training and validation sets.
We used the early stopping strategy. This means that the parameter
update was conducted with part of the training set until recognition ac-
curacy stopped improving for the other part of the training set.

The model was very similar to the one in our previous study in that
it consisted of a stack of a dilated temporal convolution followed by an
ELU activation function and that it was optimized to categorize everyday
sounds or speech sounds based on the softmax cross entropy (Koumura
et al., 2019). On the other hand, there are some nonessential differences.
In the present study we newly sampled the architectural parameters
(namely, the number of layers, number of units per layer, convolutional
filter width, and convolutional dilation width), the connection weights
and biases are newly optimized, the input duration of the previous
model was 0.19 or 0.26 s, the previous study used the Eve optimizer for
optimization, and the previous study used a subset of the environmental
sound classification (ESC)-50 dataset without human-originated sounds
because it focused on comparison with the nonhuman ANS, whereas the
present study used the entire dataset as described below.

Sound data for optimization.We used two datasets for optimization,
ESC-50 (Piczak, 2015) and TIMIT (Linguistic Data Consortium; https://
doi.org/10.35111/17gk-bn40). Both datasets are commonly used for
sound recognition and are relatively small (Fonseca et al., 2022). We did
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Figure 3. a–c, Schematic illustration of the framework of the present study, consisting of three stages. Humans have evolved and developed the ability to precisely recognize natural sounds
(a). We realized a computational simulation of this process by optimizing a model for natural sound recognition. Specifically, we used a deep NN that takes a sound waveform as input and esti-
mates its category. We froze the learned parameters and measured the AM sensitivity in the NN by using the same procedure as in human psychophysical experiments (b). A TMTF was com-
puted for each layer. It was compared with previously reported human AM-sensitivity data in an attempt to answer why AM sensitivity has emerged in humans in its current form. We
measured neurophysiological AM tuning in the units in the NN by using the same procedure as in animal neurophysiological experiments (c). On the basis of the similarity of the AM tuning
with the auditory brain regions and the results of the psychophysical experiments, we could infer possible neural mechanisms underlying behavioral AM sensitivity.
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not use larger datasets because our purpose was not to achieve
state-of-the-art sound-recognition performance. The optimization
to the two datasets was conducted independently using different
NNs.

ESC-50 defines five folds. We used folds 1–4 for training and fold 5
for validation. In the training, folds 1–3 were used for the parameter
update and fold 4 was used for early stopping. Some sound clips end
with absolute zero amplitude values, probably to make the clip duration
5 s in otherwise shorter sounds. We excluded such zero tailings. The
dataset contains 50 categories of everyday sounds, which are roughly
grouped into the following five category groups: animals, natural sound-
scapes and water sounds, human nonspeech sounds, interior/domestic
sounds, and exterior/urban noises. The optimization objective is a 50-
way classification of a sound input. Although the name of the dataset
ESC stands for environmental sound classification, in this study we call
it “everyday sound” because the dataset contains not only environmental
sounds (e.g., rain, sea waves, crackling fire) but also sounds from a single
event (e.g., sneezing, door knock, mouse click). Such sounds are often
called everyday sounds (Van Grootel et al., 2009; Norman-Haignere et
al., 2015).

TIMIT defines training and test sets. The test set includes sentences
spoken by the core-test speakers and non-core-test speakers. For valida-
tion, we used sentences spoken by the core-test speakers. For training,
we used the training set for the parameter update and the sentences spo-
ken by the non-core-test speakers for early stopping. We excluded sen-
tences included in both the training and test sets. This process ensured
that there was no duplication of sentences or speakers in the training
and validation sets. We merged 61 categories contained in the dataset
into 39 categories as proposed by the previous study (Lee and Hon,
1989). Because a single sound clip consists of a sequence of phonemes, a
0.2 s input can contain multiple phonemes. During training, the optimi-
zation objective was to estimate the phoneme category at the center of
the 0.2 s input. During evaluation, the output of the classification layer
was averaged over the interval of a single phoneme to produce a single
output for each phoneme interval.

Before being fed to the model, the sound signals were high-pass fil-
tered at 20Hz, and the 10 ms raised-cosine ramps were applied to the
onset and the offset. During training, the sound amplitude was slightly
varied clip by clip. During the evaluation, it was fixed to the mean value
of that for training.

Architecture search. For the architecture search, we tested architec-
tures that varied in the number of layers, number of units per layer, and
convolutional filter size and dilation width. The number of layers was 7,
9, 11, or 13. For each number of layers, we sampled 20 models by varying
the number of units per layer, convolutional filter size, and convolu-
tional dilation width. The convolutional filter width and the dilation
width were randomly sampled for each layer with the constraint on the
input time window being 0.2 s. The number of units per layer was either
32, 64, 128, 256, or 512. To avoid an expensive computation of training
all models over numerous iterations (Zhou et al., 2020), we conducted a
two-step architecture search as follows. In the first step, we sought the
number of layers that would potentially achieve the highest recognition
accuracy. All models were trained until the recognition accuracy for a
subset of the training set stopped improving for 32 epochs. Average rec-
ognition accuracy at this point of the four best models among those with
the same number of layers was the highest for the 13-layer models (Fig.
4). Thus, we selected the 13-layer architectures and discarded the others.
In the second step, we further trained those 20 models until the recogni-
tion accuracy on a subset of the training set stopped improving for 96
epochs. We selected the four models with the highest recognition accu-
racy for the subsequent psychophysical and neurophysiological analyses.

Experimental design and statistical analyses. To measure the AM
detection threshold in the model, we simulated AM detection experi-
ments in human psychophysics. To compare our results fairly with those
produced by humans, the simulations duplicated the procedure of the
human experiments as precisely as possible. One exception was that in
human studies a detection threshold is estimated with a staircase
method, whereas we computed the AM detection accuracy for each
modulation depth independently.

We simulated a two- or three-interval forced-choice (IFC; 2IFC or
3IFC) task. In each trial, two or three stimuli were presented to the
model, one of them being modulated, the others not. The task was to
correctly identify the modulated interval. We conducted this task by
assuming an AM detection process based on the model activities. We
conducted 128 trials for each AM depth, from which the proportion of
correct trials was calculated.

The proportion of correct trials plotted against the AM depth yields
a psychometric curve. It was fitted with an asymmetric sigmoid function
(Richards, 1959; Fekedulegn et al., 1999). The detection threshold was
defined as the AM depth at which detection accuracy was 70.7% on the
fitted curve. In some conditions, the threshold could not be estimated
because the proportion of correct responses was either too high or too
low at all tested AM depths. Excluding such a condition would result in
an overestimation of the similarity to human TMTFs. To avoid the over-
estimation, instead of excluding such a condition, the threshold was
clipped to the maximum or minimum values of the tested range of the
AM depth. The range is described below.

AM detection based on time-averaged unit activities. An xIFC (x = 2
or 3) task was conducted by estimating the modulated interval from
model activities. Specifically, we assumed AM detection based on time-
averaged unit activities. For each stimulus interval, unit activities in the
model were averaged over time. From the time-averaged activities in a
single layer, a logistic regression was trained to estimate whether the
stimulus was modulated. The proportion of correct trials was computed
in a 4-fold cross validation of a total of 128 trials. In each of the 32 held-
out trials, the probability of the stimulus being modulated was calculated
for each stimulus interval, and the interval with the maximum probabil-
ity was considered as the response in that trial. If that interval was
actually the modulated interval, the trial was considered correct. L2 regu-
larization was applied to logistic regression. The regularization coef-
ficient was optimized in another 4-fold cross validation within the
training set.

Stimulus.We tested six stimulus parameters from three independent
human studies. All of them were sinusoidally amplitude modulated
narrowband or broadband white noise. The stimulus parameters and

Single model
Top 4 average

Chance level

Step 1 Step 2

Figure 4. Sound recognition accuracy of the models with different architectures. Left, In
the first step of the search process, four models with 13 layers had the highest average accu-
racy (area with the white background). Right, In the second step, the accuracy of the models
with 13 layers improved after further optimization (area with the blue background).
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generation procedure were as close as possible to those in the human
studies, except for amplitude scaling; in the human studies, it was based
on sound pressure levels, whereas in this study, it was based on the root
mean square (RMS). The stimulus RMS was adjusted to the average
RMS of the training set. In the short broadband condition, the stimulus
amplitude was scaled before applying modulation (Viemeister, 1979). In
the other conditions, it was scaled after modulation (Dau et al., 1997a;
Lorenzi et al., 2001a, b).

In the narrowband carrier conditions, Gaussian noise was bandpass
filtered with a digital Fourier transform. In the 314 Hz carrier bandwidth
condition, bandpass filtering was applied after modulation (Dau et al.,
1997a). In the other conditions, bandpass filtering was applied before
modulation (Dau et al., 1997a; Lorenzi et al., 2001b). The Gaussian noise
carrier was sampled independently in each stimulus.

AM depth is expressed in dB relative to the sound amplitude. In the
case of sinusoidal AM, a sound with an AM depth m in dB and rate f is
defined as follows:

11 10
m
20ð Þsin 2p ft1wð ÞC tð Þ;

where w is the AM starting phase, t is time, and C(t) is a carrier signal.
The AM starting phase was fixed to zero in the 3Hz, 31Hz, and 314Hz
bandwidth conditions and in the long broadband condition (Viemeister,
1979; Dau et al., 1997a). In the other conditions, it was randomly
sampled independently in each stimulus (Lorenzi et al., 2001a,b).

The range and steps of the AM rate differ among the human experi-
ments. For each condition, we chose eight AM rates evenly spaced on a
log scale within the range in the particular human experiment. The AM
depths ranged from�60 to 0 dB in the 2 Hz carrier bandwidth condition
and from �40 to 0 dB in the other conditions. They were spaced every
4 dB.

Quantitative comparison of model and human TMTFs. Previous
human studies reported TMTFs in multiple human subjects. We took
TMTF values from those studies and compared them with those in our
model. Before calculating the quantitative similarities, we averaged the
TMTFs across subjects. When the AM rates did not match among sub-
jects, linear interpolation along the log-scaled AM rate was conducted.

Likewise, we averaged TMTFs of the four selected models. Then, we
compared the averaged human TMTFs and averaged model TMTFs in
terms of their relative patterns and absolute values. Similarity of their rel-
ative patterns was quantified by the pattern similarity index, that is, the
correlation coefficient of the human and model TMTFs. Similarity of the
absolute values was quantified by the discrepancy index, that is, the RMS
deviation as follows:

Discrepancy index

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meancondition;fm ðð ymodelðcondition; fmÞ � yhumanðcondition; fmÞÞ2Þ

q
;

where condition and fm are the experimental conditions (size = 6) and
the AM rates in each condition (size = 8), and y is a detection threshold.

The net difference between the human and model TMTFs was
defined as the average signed difference between them as follows:

Net difference ¼ meancondition;fmð ymodelðcondition; fmÞ
� yhumanðcondition; fmÞÞ:

Positive/negative values of net difference mean larger/smaller thresh-
olds in the model than in humans on average. To take all stimulus con-
ditions into account, TMTFs in all conditions were pooled when
calculating those indices.

Statistical analysis of correlations between the recognition accuracy
and the (dis)similarity. Correlations between the recognition accuracy
and the pattern similarity and the discrepancy were assessed with
Pearson correlation coefficients. The p values were Bonferroni corrected
for the number of layers.

Manipulation of the training data for exploring critical features.
To evaluate the importance of amplitude envelope (Env) and tem-
poral fine structure (TFS), we made degraded versions of the train-
ing data by disrupting either the Env or TFS components of the
sound.

Single-band Env signals were made by combining the Env com-
ponent of a sound and a TFS component of white noise as in the
following:

Single band Env signal ¼ realðEnvxðtÞexpðiTFSwnðtÞÞÞ;

where Envs and TFSs are the Env and TFS components of a signal s,
x and wn are the original sound and a white noise with the same
RMS as x, t is time, i is the imaginary unit, and real converts a com-
plex signal to its real part. The Env and TFS components are
defined as the magnitude and phase of the Hilbert-transformed
complex analytic signal.

Single-band TFS signals were made by flattening the Env component
of a sound as follows:

Single bandTFS signal ¼ realðFlatEnvxexpðiTFSxðtÞÞÞ

FlatEnvx ¼ RMSðEnvxðtÞÞ;

where FlatEnvs is a flattened Env of a signal s, which takes a constant
RMS value of the Env component.

When making multiband Env and TFS signals, we first decom-
posed the sound into sub-bands with a linear bandpass filter bank.
The filter center frequencies ranged from 20 Hz to the Nyquist fre-
quency and were spaced every one equivalent rectangular band-
width (Moore, 2013). Because the Nyquist frequency of the
everyday sound dataset is 22.05 kHz and that of the speech sound
dataset is 8 kHz, the number of bands was 42 and 33, respectively.
Then we computed the Env and TFS components for each sub-
band. The Env or TFS components were disrupted in the same way
as in the single-band signals, and the multiband signals were added
to form the final output as follows:

Multi band Env signal ¼
X
f

realðEnvxf ðtÞ expðiTFSwnf ðtÞÞÞ

Multi bandTFS signal ¼
X
f

realðFlatEnvxf expðiTFSxf ðtÞÞÞ;

where sf is the fth sub-band of the frequency-decomposed signal s. Other
than the difference in the training data, the procedures of the optimiza-
tion and analysis were completely the same as the models trained on the
original sounds.

AM detection based on template correlation. For each sound inter-
val in the xIFC task, the correlation was calculated between the
unit activities in a layer in response to the stimulus and the tem-
plate. The interval with the largest correlation was taken to be the
response to the trial. The correlation was defined by the sum of
products as in the previous study (Dau et al., 1997a). It was calcu-
lated for all units in each layer as follows:

Correlationlayer ¼
X
unit;t

xlayer;unitðtÞTemplatelayer;unitðtÞ;

where xlayer,unit is the activity in a specific unit in the target layer, and t is
time.

To make a template, first, we averaged the unit activities across 128
independent fully modulated and nonmodulated stimuli. The template
was defined as average unit activities for fully modulated stimuli minus
the average unit activities for nonmodulated stimuli (Dau et al., 1997a)
as in the following:
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Templatelayer;unitðtÞ ¼ meani¼1 to 128

ðxlayer;unit;modulatedi ðtÞÞ �meani¼1 to 128

ðxlayer;unit;nonmodulatedi ðtÞÞ;

where xlayer,unit,modulatedi and xlayer,unit,nonmodulatedi are the unit activities in
response to the ith modulated and nonmodulated stimulus, respectively.

Neurophysiological similarity between NN layers and brain regions.
The neurophysiological similarity between NN layers and brain regions
was computed in the same way as in our previous study, except that the
resolution of the AM rates at which AM tuning was computed was
decreased in this study for reducing the computational cost. A detailed
description of the method is provided in our previous paper
(Koumura et al., 2019).

Unit activities in the model were recorded while presenting it with si-
nusoidally amplitude-modulated broadband white noise. The AM tun-
ing was defined in terms of the time-averaged unit activities and the
synchrony of the activities to the stimulus modulation. It was character-
ized by the best AM rate and the upper cutoff rate. The best AM rate was
defined as the AM rate at which the tuning curve reached a maximum.
The upper cutoff rate was defined as the AM rate at which the tuning
started to decrease. Distributions of best and upper cutoff rates were
compared between NN layers and brain regions. Similarity between an
NN layer and a brain region was defined as one minus the Kolmogorov–
Smirnov distance of the distributions. The AM tuning in the ANS was
taken from previous neurophysiological studies (Müller-Preuss, 1986;
Langner and Schreiner, 1988; Schreiner and Urbas, 1988; Batra et al.,
1989; Frisina et al., 1990; Preuss and Müller-Preuss, 1990; Joris and Yin,
1992; Rhode and Greenberg, 1994; Zhao and Liang, 1995; Bieser and
Müller-Preuss, 1996; Condon et al., 1996; Schulze and Langner, 1997;
Eggermont, 1998; Huffman et al., 1998; Joris and Smith, 1998; Joris and
Yin, 1998; Kuwada and Batra, 1999; Krishna and Semple, 2000; Lu and
Wang, 2000; Lu et al., 2001; Liang et al., 2002; Batra, 2006; Zhang and
Kelly, 2006; Bartlett andWang, 2007; Scott et al., 2011; Yin et al., 2011).

Data availability. All data and code are available
at https://github.com/cycentum/Human-like-
Modulation-Sensitivity-through-Natural-Sound-
Recognition.

Results
Optimizing a neural network for natural
sound recognition
Our NN consists of multiple layers, which in
turn consist of multiple units (Fig. 5). An input
sound waveform was fed to the first layer,
which performed temporal convolution and a
static nonlinear operation. The outputs of the
first layer were fed to the second layer, and this
process continued to the topmost layer. There
was no feedback or recurrent connections.
Above the topmost layer was a classification
layer that computed the categories of the input
sound. The classification layer was not included
in the psychophysical or neurophysiological anal-
ysis. To reduce the number of hard-coded
assumptions and clarify the relationship between
the optimization procedure and the emergent
properties, we applied an NN directly to a raw
sound waveform without any preprocessing
(Hoshen et al., 2015; Tokozume and Harada,
2017). This is in contrast with typical auditory
models that attempt to implement a hard-coded
frequency-decomposition stage in the cochlea
(Bruce et al., 2018; Verhulst et al., 2018).

The model was optimized to correctly clas-
sify natural sounds. We used two types of
sounds, everyday sounds (Piczak, 2015) and

speech sounds (https://doi.org/10.35111/17gk-bn40). The opti-
mization objective was to correctly estimate the category of an
everyday sound or the phoneme categories in a speech sound.
We built and analyzed a model for each sound type. Because the
results were generally consistent across different sound types,
below we report the results for everyday sounds before those for
speech sounds.

The recognition performance of an NN generally depends on its
architecture (Bergstra and Bengio, 2012; Bergstra et al., 2013; Klein
et al., 2017). In this study, we trained multiple NNs with different
architectures and performed psychophysical and neurophysiological
analyses on the NNs that achieved the highest recognition accuracy.
To reduce possible biases by a specific architecture, unless otherwise
stated, the reported recognition accuracy, TMTFs, and neurophys-
iological similarities are averages of the results of the four models
with the highest recognition accuracies. This could be considered as
a modeled version of reporting average quantities in multiple partic-
ipants in human studies (Francl andMcDermott, 2022). Four archi-
tectures with 13 layers were selected by performing an architecture
search (see above, Materials and Methods for the detailed proce-
dure). Their parameters are in Table 1.

After optimization, we evaluated the recognition performance
for sounds not used in the model construction. The recognition ac-
curacy was 0.477. This value is well above the chance level (0.02)
but lower than that of state-of-the-art machine learning studies
(Gong et al., 2021). Although tuning the hyperparameters or
increasing the amount of training data may lead to an improvement
in accuracy, we used the model as is in the subsequent analysis
because our goal was to understand the properties of the human
hearing system, not to pursue accuracy improvements.

Input

Units

Convolution

2nd layer

Categories

1st layer

Classification layer

Training
Softmax cross entropy 

Average over time

Argmax

Evaluation

13th layer

Figure 5. Schematic illustration of the NN architecture. Units in the first layer took a waveform as input and applied a
nonlinear temporal convolution to it. Subsequent layers took the activations in the layer below as input. Above the topmost
convolution layer (13th layer in the figure) was a classification layer. The number of units in the classification layer equals
the number of sound categories. During training, softmax cross entropy was calculated for a single time frame at a time (cor-
responding to the input sampling rate). During the evaluation, values in the classification layer were averaged over time, and
the category with the maximum average value was chosen as the estimated output category. The classification layer was
not included in the psychophysical or neurophysiological analysis. This figure is a simplified illustration. The length of the con-
volutional filters and the number of units are not the same as those in the actual architectures used in this study.
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Simulating psychophysical experiments as a way of
measuring the AM sensitivity of the models
To investigate the relationship between sound recognition and
AM sensitivity, we measured the TMTFs in each of the four best
models by simulating psychophysical AM detection experiments.
To fairly compare the TMTF of the model with those of humans,
we replicated the procedures of human psychophysical experi-
ments as precisely as possible. We simulated six psychophysical
experiments from three independent human studies (Viemeister,
1979; Dau et al., 1997a; Lorenzi et al., 2001a, b). In all of them,
human subjects conducted a 2IFC or 3IFC task. In each trial of
the task, two or three stimuli were sequentially presented, and
only one among them was modulated. The task of a subject was
to identify the modulated stimulus. At a given AM rate, an AM
detection threshold was estimated with an adaptive method to
find the AM depth that gave a 70.7% correct rate (Levitt, 1971).

The stimuli were sinusoidally amplitude-modulated broad-
band or narrowband Gaussian noise. They differ in their stimu-
lus parameters (Table 2). Because the most notable difference is
in the carrier bandwidth (2Hz, 3Hz, 31Hz, 314Hz, or broad-
band), hereafter, we specify the conditions with their carrier
bandwidths, except for two conditions with the broadband car-
rier. We call the broadband condition with the 0.5 s stimulus du-
ration “broadband, short,” and the broadband condition with the
2 s duration “broadband, long.”

In the present study, to conduct an xIFC task, we presented a
stimulus to the model and averaged the activity of each unit over
the stimulus duration (Fig. 6). Then, from the vector represent-
ing the time-averaged activity of the units in a single layer, we
estimated the probability of the stimulus being modulated with
logistic regression. The stimulus with the maximum probability
was considered to be the response of the model to that xIFC trial.
If the interval actually contained the modulated stimulus, the
trial was considered correct. For simplicity, the threshold was
estimated with a constant stimulus method. That is, the propor-
tion of correct trials was computed independently for each AM
depth. An asymmetric sigmoid function was fitted to the plot of
the proportion of correct responses versus AM depth (Fig. 6c).
The threshold was defined as the AM depth at which the propor-
tion of correct trials was 70.7% on the fitted curve.

Emergence of human-like TMTFs in the model
The forms of the TMTFs of the model (detection thresholds as a
function of AM rate) varied depending on the stimulus condition
and model layer (Fig. 7, orange lines). The forms of the human
TMTFs (black dotted lines) also depend largely on the stimulus
condition. In all conditions, the model and human TMTFs tended
to overlap in the middle to higher layers.

Quantitative analyses supported the above observations. The
similarity of the TMTFs of the models to that of humans was
evaluated in terms of relative patterns (reflecting mainly similar-
ity in TMTF shape) and absolute values (reflecting similarity in
both shape and sensitivity in decibels; Fig. 8). An index of

similarity of relative patterns, the correlation coefficient, was cal-
culated from pairs of model and human TMTFs. Hereafter, we
call it the pattern similarity index (Fig. 8, top). As an index of
absolute measure of dissimilarity, we calculated the root mean
square (RMS) deviation and called it the discrepancy index (Fig.
8, bottom). To take all stimulus conditions into account, TMTFs
in all stimulus conditions were pooled when calculating the indi-
ces. The two measures consistently indicated that layers around
the 10th layer exhibited TMTFs most similar to those of humans
(highest pattern similarity and lowest discrepancy). This result
indicates the emergence of human-like AM sensitivity in the
model optimized for natural sound recognition.

Human-like TMTFs did not emerge in the nonoptimized
model with random initial parameters. The sound recognition
accuracy in the nonoptimized model was 0.013, which was as
low as the chance level, 0.02. Generally, the TMTFs in the non-
optimized model were relatively invariant across the layers and
showed marked discrepancies from those of humans and the
optimized models. These discrepancies were particularly appa-
rent in the higher layers (Fig. 7). These observations are sup-
ported by the quantitative analyses, showing a low pattern
similarity index and high discrepancy index throughout the
layers (Fig. 8). These results suggest that optimization to sound
recognition is an essential factor for the emergence of human-
like TMTFs and that the NN architecture only could not explain
human AM sensitivity.

Models with better recognition performance were more
human-like
An additional analysis revealed a close link between the sound
recognition performance of the model and the TMTF similar-
ities. During the NN architecture search, we trained 20 models
with 13 layers with different architectures. (Remember that the
above analyses targeted the best 4 models of the 20.) The 20
models exhibited recognition accuracies ranging from 0.043 to
0.492 and produced TMTFs with a varying degree of similarity
to those of humans (Fig. 9a,b). We examined the relationship
between the recognition accuracy and TMTF similarity indices
(i.e., pattern similarity and discrepancy indices).

The TMTF similarity indices correlated with the recognition
accuracy in the higher layers (Fig. 9c). The positive and negative
correlations, respectively for pattern similarity and discrepancy

Table 1. Architectural parameters of the models with the highest recognition accuracy

Architecture Number of units per layer Convolutional filter size (from lower to higher layers) Dilation width (from lower to higher layers)

Architecture 1 256 5, 3, 6, 5, 2, 7, 8, 8, 7, 4, 4, 6, 5 231, 603, 18, 138, 14, 97, 105, 7, 137, 381, 193, 208, 266
Architecture 2 512 3, 4, 4, 3, 6, 6, 4, 6, 8, 8, 7, 7, 3 449, 12, 161, 374, 175, 193, 120, 209, 161, 47, 151, 16, 465
Architecture 3 128 7, 4, 4, 2, 7, 3, 7, 5, 2, 4, 3, 7, 2 42, 125, 341, 603, 96, 410, 44, 269, 747, 152, 528, 122, 823
Architecture 4 512 3, 7, 2, 7, 7, 4, 5, 5, 3, 8, 8, 8, 2 676, 105, 581, 54, 16, 192, 214, 2, 173, 173, 184, 92, 887

The layers all had the same number of units for simplicity. The size and dilation width of the convolutional filter were randomly sampled for each layer. The input time window of the filter was calculated as
(dilation width) � (filter size � 1) 1 1.

Table 2. Stimulus parameters in the AM detection experiments

Carrier bandwidth Duration
AM starting
phase Amplitude equalization Reference

2 Hz 2 s Random After applying AM Lorenzi et al., 2001b
3 Hz 1 s Constant After applying AM Dau et al., 1997a
31 Hz 1 s Constant After applying AM Dau et al., 1997a
314 Hz 1 s Constant After applying AM Dau et al., 1997a
Broadband 0.5 s Constant Before applying AM Viemeister, 1979
Broadband 2 s Random After applying AM Lorenzi et al., 2001a

Other parameters such as the fade duration vary among the studies, but not all of them are shown here.
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indices, mean that the models that performed sound recognition
better exhibited AM sensitivity more similar to that of humans.
This result further supports the idea that there is a strong rela-
tionship between optimization for natural sound recognition
and emergent AM sensitivity.

Training signals must have natural AM patterns for the
emergence of human-like AM sensitivity
What components of the optimization for natural sound
recognition are essential for acquiring human-like AM sen-
sitivity? We hypothesized that natural AM patterns in the
sound are the critical feature. To test this hypothesis, we
conducted control experiments in the models optimized for
the manipulated sound signals. Only the training signals were
manipulated. No modifications were made to the stimuli for
measuring AM sensitivity.

The manipulation involved dividing a sound signal into an
amplitude envelope and TFS and disrupting either of them
while preserving the other for the entire signal or each sub-band.
This is a common strategy for manipulating the AM structure of

sound in auditory science (Smith et al., 2002; Lorenzi et al., 2006).
Specifically, we tested the following four types of signals (see
above, Materials andMethods for details): single-band Env signals,
which preserved Env while TFS was replaced with that of broad-
band noise in the entire signal; multiband Env signals in which the
original signal was divided into multiple frequency bands, and
Env for each band was preserved while TFS was replaced with a
random narrowband noise corresponding to that band, then the
multiband signals were added together; single-band TFS signals,
which, for the entire signal preserved TFS while Env was flattened;
and multiband TFS signals in which the original signal was di-
vided into multiple frequency bands, and TFS for each band
was preserved while Env was flattened, then the multiband sig-
nals were added together.

We optimized the NN models to recognize the manipulated
sounds. Hereafter, we call the optimized models for the above
signals the single-band Env model, multiband Env model, single-
band TFS model, and multiband TFS model. We refer to the
model trained for intact sounds (i.e., the one described in the ear-
lier sections) as the original model.
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Figure 6. a, Schematic illustration of the AM detection method in a 3IFC trial. Three stimuli were presented to the model, and the probabilities of the stimuli being modulated were esti-
mated for each layer from its unit activities. The probability was estimated independently for each stimulus. The interval with the maximum probability was taken to be the response of the
model to the task. It was calculated for each layer. In this example, it is the third interval, which is correct because the third stimulus was modulated. b, The boxes labeled AM detection in a
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in the layer. c, An example of a psychometric curve obtained from a single layer. The proportion of correct trials (filled circles) was fitted with an asymmetric sigmoid curve (solid line). The
detection threshold (vertical dotted line) was defined as the AM depth at a 0.707 correct proportion (horizontal dotted line).
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Differences in the TMTFs across the models were more appa-
rent for higher layers. TMTFs of the single-band ENV model
appeared to be closest in general shape to the human TMTFs
(Fig. 10a, blue lines). The pattern similarity index for the single-
band Env model was at a comparable level to the original model
throughout its layers (Fig. 10b, top). However, the discrepancy
index of the single-band Env model deviated from the original
one in the layers above the eighth, exhibiting higher values (Fig.
10b, middle). These results indicate that the model had TMTFs

whose patterns were similar to those of humans, while its sen-
sitivity to AM was higher than that of humans (i.e., lower thresh-
olds; the blue lines were generally lower than the black dotted
lines; Fig. 10a). This difference in AM sensitivity was quantified
as the net difference, the average signed difference between the
model TMTFs and the human TMTFs (Fig. 10b, bottom). The
net difference was largely negative in the single-band Env model,
indicating that its thresholds were on average lower than that of
humans. These results suggest that optimizing to sounds that

Optimized
Non-optimized
Humans

Figure 7. TMTFs in the model optimized to everyday sounds (orange circles), those in the nonoptimized model (blue squares), and those in humans (black dotted lines). The columns corre-
spond to different experimental conditions, and the rows correspond to the different layers. The TMTFs in the higher layers of the optimized model appear to be more similar to those of
humans than those of the lower layers or the nonoptimized model.
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only retain natural single-band AM patterns made the model
more sensitive than humans to AM. This is probably because the
model was biased toward exploiting the AM that was the only
available feature for recognition.

The TMTFs of the multiband Env model were somewhat
similar to those of humans. Both pattern similarity and dis-
crepancy indices gradually approached the original model
with increasing layer numbers, reaching a comparable level
at the 12th and 13th layers. In contrast, the TMTFs of the
single-band and multiband TFS models were consistently
different from those of humans. This result, together with
the results of the two Env models, suggests that natural AM
patterns are essential for the emergence of human-like AM
sensitivity.

It is important to note that all models achieved suffi-
ciently high accuracy in the sound recognition task, well
above chance level, and that the accuracies of the single-
band Env and TFS models were comparable (Fig. 11). This
indicates that all the signals contained a sufficient amount
of information for sound recognition and that all the mod-
els were capable of using the information. Thus, the results
of TFS models exhibiting TMTFs that were not similar to humans
could not be attributed to failures in their optimization.

Comparison with temporal-template-based AM detection
strategy
In this study, we assumed AM detection is based on time-aver-
aged activities in the model. On the other hand, previous compu-
tational studies used a method based on the temporal template
for simulating the psychophysical AM detecting process (Dau et
al., 1997a). There might be a possibility that different detection
strategies yield different forms of TMTF. In Dau et al.’s (1997a)
study, template-based AM detection was performed on the out-
puts of the MFB. A template for a given AM rate was generated
by averaging the MFB outputs over multiple independent car-
rier instances. In an xIFC trial, a correlation coefficient was

calculated between the template and the MFB output for a test sig-
nal. The stimulus interval with the highest correlation was chosen
as the response of the model. Here, to test whether the same
detection method works well for our NN model, we applied it
to the unit activities in a single NN layer (Fig. 12a). A template
was defined as the average unit activities in response to fully
modulated stimuli minus the average activities in response to
nonmodulated stimuli. The average was taken over multiple
carrier instances. Then, in each trial of the xIFC task, the
response of the model was defined as the stimulus interval
with the largest correlation between the activities of the
model and the template. In accordance with the previous
study (Dau et al., 1997a), the correlation was non-normal-
ized, that is, the dot product.

The resulting TMTFs differed from human TMTFs (Fig.
12b). The similarity to human TMTFs was the highest at the top-
most layers (Fig. 12c, open circles), but it was still lower than the
similarity of the TMTFs of the time-average-based detector (Fig.
12c, gray circles; same data as in Fig. 8). This result indicates that
human-like AM sensitivity was not observed in our model when
it used temporal correlation with templates for AM detection.
Template-based detection might work well for MFB outputs but
not for NN activities. Our results alone could not elucidate the
reason for this difference. Perhaps different AM detection strat-
egies should be applied to different sound representations (in an
NN or in an MFB output).

Neurophysiology of the model suggested involvement of the
auditory midbrain and higher regions
In an earlier section, we indicated that human-like AM sensitiv-
ity was observed when the stimulus representation in layers
around the 10th layer was used for AM detection (Fig. 8). Does
this finding provide a significant insight into neural processes
in the ANS? More specifically, to which brain regions do these
layers correspond?

We addressed this question by mapping the NN layers onto
the auditory brain regions based on the similarity of their neuro-
physiological AM tuning, as in our previous study (Koumura et
al., 2019). Neurophysiological AM tuning in the model was
measured by simulating neurophysiological experiments. AM
tuning in a unit was calculated from its response to modulated
white noise. It was characterized by its best rate (the AM rate
with the maximum tuning value) and upper cutoff rate (the
AM rate at which the tuning curve starts to decrease). The dis-
tribution of the best and upper cutoff rates in each layer was
compared with that in the ANS to yield the similarity between
the NN layers and the brain regions.

The neuronal tuning properties in the ANS were taken from
the neurophysiological literature (Müller-Preuss, 1986; Langner
and Schreiner, 1988; Schreiner and Urbas, 1988; Batra et al.,
1989; Frisina et al., 1990; Preuss and Müller-Preuss, 1990; Rhode
and Greenberg, 1994; Zhao and Liang, 1995; Bieser and Müller-
Preuss, 1996; Condon et al., 1996; Schulze and Langner, 1997;
Eggermont, 1998; Huffman et al., 1998; Joris and Smith, 1998;
Joris and Yin, 1998, 1992; Kuwada and Batra, 1999; Krishna and
Semple, 2000; Lu and Wang, 2000; Lu et al., 2001; Liang et al.,
2002; Batra, 2006; Zhang and Kelly, 2006; Bartlett and Wang,
2007; Scott et al., 2011; Yin et al., 2011). The target brain regions
from peripheral to central were auditory nerves (AN), the coch-
lear nucleus (CN), superior olivary complex (SOC), nuclei of the
lateral lemniscus (NLL), inferior colliculus (IC), medial genicu-
late body (MGB), and auditory cortex (AC). AM tuning in the
ANS is often described in terms of the spike synchrony to the
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Figure 8. Quantitative comparison of the TMTFs in the model and humans.
Pattern similarity index (top) and discrepancy index (bottom) in the models opti-
mized to everyday sounds (orange circles) and the nonoptimized models (blue
squares) are shown. The relatively higher layers of the optimized models show large
pattern similarity and small discrepancy. The lower layers and the nonoptimized
models show low similarity.
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stimulus envelope and the average spike rate during stimulus
presentation. The properties of the AM tuning transform along
the peripheral to central pathway (Joris et al., 2004; Sharpee et
al., 2011). The spike synchrony is tuned to a higher AM rate in
the peripheral regions and to a lower AM rate in the central
regions. The average firing rate is not tuned to the AM in the pe-
ripheral regions but is tuned in the central regions.

The neurophysiological similarity of the NN layers and brain
regions shows that lower and higher layers were relatively similar
to the peripheral and central brain regions, respectively (Fig. 13).
Thus, the results of our previous study were replicated with the
newly constructed model. Layers around the 10th layer roughly
corresponded to the IC, MGB, and AC. This result indicates that
the NN layers that exhibited human-like AM sensitivity had
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Figure 9. AM sensitivity in different architectures and its relationship to recognition performance. a, TMTFs in the models with different architectures. Each colored line shows results for a
single model with a specific choice of NN architecture. The color indicates the recognition accuracy (legend at right) of the corresponding architecture. Black dotted lines show human TMTFs. b,
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similar neural representations to those of the IC and higher brain
regions.

Emergent TMTFs through optimization to speech sounds
We conducted the same analysis on the models optimized for
phoneme classification of speech sounds (https://doi.org/
10.35111/17gk-bn40). The results were generally consistent
with those of the models optimized for everyday sounds reported
above. This indicates that human-like TMTFs robustly emerged
in the models that were independently optimized to two different
types of sound.

The phoneme classification accuracy was 0.747, which is high
above the chance level, 0.026. The TMTFs of the layers around
the eighth and ninth layers in the optimized model were similar
to those of humans (Fig. 14a,b, orange lines), whereas neither the
TMTFs of the nonoptimized model nor those calculated with the
template correlation were similar. According to the neurophysio-
logical analysis, the brain region most similar to the eighth and
ninth layers was the IC (Fig. 14c). The MGB and AC also exhib-
ited high neurophysiological similarity.

On the other hand, we did not observe high correlations
between similarity to human TMTFs and recognition accuracy.
The pattern similarity indices and the discrepancy indices did
not exhibit appreciable variations across the 20 models with dif-
ferent architectures (Fig. 15a), and there was no significant
correlation with recognition accuracy (Fig. 15b). This lack of

correlation may be explained by the dynamic range of the rec-
ognition accuracy in the models for speech sounds: Their rec-
ognition accuracies ranged from 0.499 to 0.771, whereas, for
the models optimized to everyday sounds, the range was from
0.043 to 0.492. All models trained on speech sounds showed
recognition accuracies well above chance level, whereas some
models trained on everyday sounds exhibited very low recog-
nition accuracy almost as low as chance level. Probably, the
correlations between the recognition accuracy and the simi-
larity to human TMTFs are nonlinear. Models that failed to
perform sound recognition exhibited AM sensitivity that was not
similar to humans, but models with good sound recognition per-
formance exhibited more or less human-like AM sensitivity
regardless of the small variation in their performance. Probably,
once the performance of sound recognition surpasses a certain
level, the similarity of AM sensitivity to humans does not change
largely on any further increase in recognition accuracy.

When the Env or TFS was disrupted in the speech sounds,
the recognition accuracies of the optimized models were well
above the chance level, except for the multiband TFS model (Fig.
16a). The multiband Env model had the highest recognition ac-
curacy, followed in order by the single-band TFS model, single-
band Env model, and multiband TFS model. This order is con-
sistent with human performance as shown in a previous study
(Smith et al., 2002) and thus supports the conclusion that our
models behave similarly to humans when recognizing those
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Figure 10. a, TMTFs of the models optimized to degraded sounds. b, Their pattern similarity index (top), discrepancy (middle), and net difference from humans (bottom) are shown. The
indices of the original optimized and nonoptimized models are shown as gray lines. Overall, in the higher layers, the TMTFs of the Env models were more similar to those of humans than were
the TMTFs of the TFS models. Single-band Env models exhibited high pattern similarity but also showed a high discrepancy, indicating that the patterns of the TMTFs, but not their absolute
values, were similar to those of humans. Their thresholds appeared to be lower than those of humans, as shown by the negative net difference.

Koumura et al. · Human-Like AM Sensitivity from Sound Recognition J. Neurosci., May 24, 2023 • 43(21):3876–3894 • 3887

https://doi.org/10.35111/17gk-bn40
https://doi.org/10.35111/17gk-bn40


degraded speech sounds. The multiband TFS model trained on
everyday sounds showed relatively low recognition accuracy,
although it was above the chance level (Fig. 11).

The TMTFs of the models optimized to degraded speech
sounds were qualitatively consistent with those of the models
optimized to degraded everyday sounds (Fig. 16b). The TMTFs
of the single-band Env model exhibited high pattern similarity to
those of humans, and their net difference shows their thresholds
were lower than those of humans. The TMTFs of the multiband
Env model were similar to those of humans in terms of both
their pattern and absolute value. The TMTFs in the TFS models
were not similar to those of humans.

Discussion
AM sensitivity emerging through sound recognition
The present study demonstrated that a model optimized to rec-
ognition of sounds with natural AM statistics exhibited human-
like AM sensitivity. In building the model, we did not make any
attempt to design model architectures or adjust parameters for
achieving similarity to humans, nor did we use any knowledge
about human AM sensitivity. The results therefore suggest that
the nature of AM sensitivity in humans might also be a conse-
quence of optimizing to natural sound recognition in the course
of evolution and/or development in the natural environment
and that it would not have emerged if the input sounds would
have had different AM characteristics.

By simulating previous human experiments as precisely as
possible, we could quantitatively compare the TMTFs of our
model and of humans. We explained TMTFs in six experiments
conducted in three independent human studies with a single uni-
fied framework. Our findings strengthen the existing knowledge

that general AM sensitivity is closely linked to sound recognition
ability (Cazals et al., 1994; Fu, 2002; Luo et al., 2008; Won et al.,
2011; De Ruiter et al., 2015; Bernstein et al., 2016).

We built two types of models using either everyday sounds or
speech sounds and analyzed each one independently. The results
on the two datasets were qualitatively similar, although some
relationships were stronger for everyday sounds. They suggested
that human-like AM sensitivity is related to both sound types.
This conclusion is consistent with the previous studies on coch-
lear frequency tuning and neural AM tuning, where qualitatively
similar tunings were obtained from optimization to everyday
sounds and speech sounds (Smith and Lewicki, 2006; Koumura
et al., 2019). There might be a common representation of these
sound types in the auditory system perhaps because the human
auditory system has taken advantage of already evolved mecha-
nisms to represent everyday sounds and built speech recognition
functions on top of it.

Relation to modulation filter bank theory
The MFB is a conceptual realization of midbrain neurons that
are tuned to the modulation rate. It was formalized to explain
various psychoacoustic phenomena, for example, frequency se-
lectivity in the modulation domain (Dau et al., 1997a,b). Our
NN model, in contrast, does not include any explicit implemen-
tation of auditory mechanisms (e.g., a cochlear filter bank or an
MFB), nor does it attempt to reproduce any psychophysical phe-
nomena (e.g., modulation masking). This is because the purpose
of our study is not to delve into the auditory signal processing
mechanisms but to investigate emergent TMTFs in a sound-rec-
ognizing model and the effect of optimization and sound features
to be optimized on the emergent AM sensitivity. Thus, it is diffi-
cult to make a fair comparison between models based on MFB
theory and those in the present study. Nevertheless, we consider
it worth discussing the present findings in relation to MFB
theory.

Compared with previous computational studies involving the
MFB (Jepsen et al., 2008), the TMTFs of our model were less
similar to human TMTFs. The TMTFs in Jepsen et al. (2008)
showed a pattern similarity index of 0.95 and a discrepancy index
of 2.3 dB (derived from Jepsen et al., 2008, their Fig. 8; but there
is a caveat as they did not test a 2 Hz bandwidth or long broad-
band conditions). This, however, is not surprising and does not
indicate the inferiority of our model. That is, the previous study
designed the model explicitly for reproducing human psycho-
physical properties including AM sensitivity, whereas our model
does not explicitly try to reproduce any psychophysical or neuro-
physiological properties.

Our previous study showed that middle layers in an opti-
mized NN (as the nuclei in the ANS) exhibited units with tuning
to various AM rates, some of which probably work as modula-
tion-domain filters (Koumura et al., 2019). This alone, however,
does not guarantee that the units in the NN (and even the audi-
tory neurons) function as the MFB model that predicts human’s
carrier-dependent TMTFs. It should be repeated that our previ-
ous study evaluated similarities only with the nonhuman ANS,
and that both the NN and the ANS contained not only band-
pass-like units (as assumed in the MFB) but also multipeaked
and broadly tuned units. Thus, the present study is not an (indi-
rect) replication of our previous study or the MFB study but pla-
ces the AM tuning in a broader context under considerably
different configurations from those in the MFB theory. The emer-
gence of human-like TMTFs in our configurations suggested that
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Figure 11. Recognition accuracy of models optimized to degraded sounds. The result of a
model optimized to the original sounds is also shown on the left. Generally, the recognition
accuracy of the model dropped when it was optimized to degraded sounds, but the drop
was not catastrophic.
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the NN may have implicitly acquired through optimization a
function equivalent to an MFB.

Although we did not implement hardwired cochlear filters,
our previous study suggested that lower layers in the optimized
NN conducted some kind of initial frequency analysis (Koumura
et al., 2019, their Fig. 15). Their frequency responses were multi-
peaked but not sharply tuned to a single frequency as in the auditory
periphery. Measuring TMTFs in a model with explicit implementa-
tion of ANS-like peripheral filters would be an interesting future
work, considering that pitch-related psychophysical behavior is more

similar to humans in the model with hardwired ANS-like peripheral
filters (Saddler et al., 2021).

In the MFB models, additive noise was applied to the internal
representation of the model from which AM detection was
simulated. In contrast, our model is deterministic, meaning that
the unit responses are the same for the same stimulus, except
for the nondeterministic behaviors of atomic operations in a
graphics processing unit. In our AM detection experiments, the
only source of stochasticity was the noise carrier and the AM
starting phase in the conditions with a random starting phase,
both of which were sampled independently stimulus by stimu-
lus (Table 2). Psychophysically relevant internal noise (as pro-
posed by Ewert and Dau, 2004) could increase the similarity of
the TMTFs of the model to human ones.

Neural mechanisms of behavioral AM sensitivity
Hierarchical brain regions and AM detection
In the optimized model, TMTFs in the middle to higher layers
were most similar to humans’ TMTFs. Here, we discuss the impli-
cations of this result in terms of signal processing and anatomic
brain regions. Generally, an optimized NN behaves as an effec-
tive signal processor and feature extractor. While process-
ing an input signal, each of its cascading layers computes its
representation by integrating and nonlinearly transforming
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the one below. Its lower layers compute relatively simple
and temporally and/or spatially local features. As the proc-
essing stage progresses, the extracted features gradually
become more complex and global (Mahendran and Vedaldi,
2015; Yosinski et al., 2015). Therefore, our results suggest
that the AM detection ability of humans might be based on
relatively higher-order features of the stimulus.

Interestingly, a similar tendency can also be seen in the ANS.
Peripheral regions in the auditory pathway are generally sensitive
to fast temporal changes in a sound and relatively linear features,
whereas central regions are sensitive to slower changes and more

nonlinear features (Joris et al., 2004; Sharpee et al., 2011). In the
present study, we found that layers with human-like psychophys-
ical TMTFs showed neurophysiological AM tuning similar to
that in the IC, MGB, and AC (Figs. 13, 14c). This result suggests
that human-like TMTFs could be observed when conducting an
AM detection task from the stimulus representation in these
brain regions. A human brain might also use stimulus represen-
tations in these regions when conducting AM detection tasks,
but our results alone cannot distinguish whether such a compu-
tation is running within those brain regions or somewhere out-
side, possibly regions associated with higher-order cognitive
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functions. Another unanswered question is which (possibly all?)
of these regions is actually the source of the neural representation
used by the AM detector (if it exists) implemented in the human
brain. Nevertheless, the present results, at least, suggest that the
stimulus representation necessary for AM detection emerges
as early as in the IC and is kept until the signal reaches
the AC.

Neural AM representation relevant to AM detection
We obtained human-like TMTFs by assuming an AM detec-
tion process based on time-averaged unit activities. Time-
averaged unit activities can be interpreted as the average
neuronal firing rate (Koumura et al., 2019). Together with
the above discussion, it can be suggested that the behavioral
AM sensitivity of humans might be based on the average fir-
ing rate in the IC, MGB, and AC. This is consistent with the
previous neurophysiological findings that relatively central
auditory brain regions perform rate coding of AM (Joris et
al., 2004).

The other AM coding strategy in the ANS is temporal
coding (Joris et al., 2004). We also tested temporal-coding-
based AM detection by performing the temporal template
correlation method, but findings were elusive. Our results
alone could not distinguish whether the brain relies on tem-
poral coding when performing AM detection. Our tem-
plate-based detection strategy might have been too simple
to simulate a temporal-coding-based AM detection process
in the human brain. Using a more sophisticated detection
process (Bashivan et al., 2019) might result in more human-
like TMTFs.

Differences among experimental conditions
The TMTFs in the lower layers were less similar to those in
humans, and as the layer number went higher, the similarity also
became higher (Figs. 8, 14b). Detailed inspections of the individ-
ual stimulus parameters, however, indicate that changes in the
form of TMTFs along the layers appeared to vary with the stimu-
lus parameters. The change seems most prominent in the broad-
band carrier conditions, and least in the condition with the 314
Hz carrier bandwidth, showing almost constant TMTF forms
across layers (Figs. 7, 14a). In this study, we could not see a con-
sistent relationship between the TMTF difference across layers
and the stimulus parameters. There is a possibility that humans
perform AM detection with different strategies in different ex-
perimental conditions. These results highlight the importance of
testing multiple stimulus parameters when investigating AM
sensitivity.

Analyzing machine learning models with a combination of
psychophysics and neurophysiology
From a machine learning point of view, this study can be
viewed as an attempt to understand an NN with a combina-
tion of psychophysical and neurophysiological methods. A
number of methods have been proposed for analyzing the
behavior and stimulus representations of an NN (Montavon
et al., 2018; Cammarata et al., 2020). It would be important
to analyze an NN from a variety of perspectives. We can
learn from a tradition of psychophysical and neurophysio-
logical studies that have established various methods to
investigate complicated biological systems (Eijkman, 1992;
Leibo et al., 2018; Barrett et al., 2019; RichardWebster et al.,
2019). The present study demonstrated the utility of multi-
disciplinary analysis on a single platform.
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