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Abstract: Antimicrobial peptides (AMPs), or host defence peptides, are short proteins in various
life forms. Here we discuss AMPs, which may become a promising substitute or adjuvant in
pharmaceutical, biomedical, and cosmeceutical uses. Their pharmacological potential has been
investigated intensively, especially as antibacterial and antifungal drugs and as promising antiviral
and anticancer agents. AMPs exhibit many properties, and some of these have attracted the attention
of the cosmetic industry. AMPs are being developed as novel antibiotics to combat multidrug-resistant
pathogens and as potential treatments for various diseases, including cancer, inflammatory disorders,
and viral infections. In biomedicine, AMPs are being developed as wound-healing agents because
they promote cell growth and tissue repair. The immunomodulatory effects of AMPs could be helpful
in the treatment of autoimmune diseases. In the cosmeceutical industry, AMPs are being investigated
as potential ingredients in skincare products due to their antioxidant properties (anti-ageing effects)
and antibacterial activity, which allows the killing of bacteria that contribute to acne and other skin
conditions. The promising benefits of AMPs make them a thrilling area of research, and studies
are underway to overcome obstacles and fully harness their therapeutic potential. This review
presents the structure, mechanisms of action, possible applications, production methods, and market
for AMPs.

Keywords: antimicrobial peptides; biofilm disruption; drug development; healthcare; immunomodulatory
effects; multidrug-resistant pathogens; peptide design and engineering; resistance mechanisms;
smart ageing

1. Introduction

The discovery of antibiotics was probably one of the greatest achievements of medical
sciences. During the last half of the century, antibiotics have found widespread use not
only in human medicine but also in veterinary medicine and the prevention of diseases
in animals. When Pasteur discovered the effect of substances produced by Penicillium
moulds on bacteria, there were probably already existing counter defence mechanisms
in nature, today called antibiotic resistance, which is the widespread antibiotic-induced
resistance driven by the evolutionary pressure acting on various bacteria species. An-
timicrobial resistance (AMR) is now on track to become the leading cause of world death
in the coming decades. In 2019, almost 5 million deaths were associated with AMR, of
which 1.3 million were directly attributable to resistant infections [1]. Humanity is now
in desperate need of new, efficient antibiotics able to break the resistance of pathogenic
bacteria species, preferably with new killing mechanisms to overcome existing bacterial
defence systems. Unfortunately, the great boom in the early development of antibiotic
chemistry was followed by a strong decline in the number of new antibiotics in the pipeline
of medical companies [2]. Scientists are currently looking for new antimicrobial agents,
and the hope may again come from nature.
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AMPs, also known as host defence peptides, are short proteins (5–100 amino acids)
found in a wide variety of life forms. AMPs are structurally diverse; they are positively
charged proteins found in living organisms such as mammals, birds, insects, crustaceans,
fish, plants and microbes [3,4]. AMPs were discovered in 1939 when Rene Dubos isolated an
antimicrobial agent named gramicidin from a soil Bacillus strain, which protected mice from
pneumococcal infection [5]. Afterwards, several AMPs were discovered in both prokaryotic
and eukaryotic kingdoms [6]. To date, more than 3000 AMPs have been officially classified
and registered in the AMP database [7]. It is worth noting that more than 300 AMPs were
found in frog skin [6]. Natural AMPs have potent and broad-spectrum activity against
Gram-positive and Gram-negative bacteria, protozoa, viruses (e.g., HIV, HCV), fungi and
parasites [7–16], displaying bacteriostatic, microbicidal and cytolytic properties [17].

The scientific society is aware that we are imminently entering the post-antibiotic
era. The previous worldwide pandemic events exposed the need for alternative antiviral
curations. We were also witnesses to the frightening spread of the infectious “superbug
fungus” specimen Candida auris with its mortality reaching around 40% [18].

The evolution of pathogen resistance to antimicrobials brings the applicability of this
group of drugs under threat. The mean time usefulness of antibiotics has decreased a
few times since 1995. Two complementary approaches have been proposed to fight or
at least slow down the resistance evolution. The first is aimed at increasing the amount
of new drug development parallelly to decreasing the time needed for drug approval by
the authorities. The second mechanism relies on reducing antimicrobial misuse (i.e., new
diagnostic approaches for more accurate drug prescriptions, and procedures for reducing
pathogen transmission) [19]. As the World Health Organization (WHO) has announced, the
alarming global rise in resistance to conventional antimicrobials represents a potential and
serious risk to public health [20,21]. Moreover, the interest in AMPs has recently increased
during the SARS-CoV-2 syndrome pandemic in the search for new antiviral molecules to
counteract the COVID-19 disease [21,22].

Current scientific reports confirm the particularly important therapeutic function of
the group of peptides belonging to AMPs and their anticancer properties. Cancer diseases
cause high morbidity and mortality in people all over the world. According to the latest
World Health Organization (WHO) reports, the number of people diagnosed with cancer
diseases has doubled in the last decade. In the next two decades, the number of patients
is expected to continue to increase at a similar rate. Therefore, the world of science is
intensifying research on developing new biologically active molecules, which, combined
with conventional therapies, would improve the effectiveness of treating cancer patients.
Due to their unique features (anticancer activity), selected AMPs are able to selectively
affect cancer cells, which makes them an important social research object.

The unique properties of some AMPs, such as their broad spectrum of activity, gener-
ally low toxicity to host cells, as well as reduced induction of resistance in target cells [23],
are an excellent tool for the development of a new class of antibacterial, antiviral, antifun-
gal and even anticancer agents. On the other hand, the growing interest in well-being,
health and physical appearance has increased the demand for discoveries in the field of
cosmeceutical products, i.e., those that combine cosmetics with science. In dermatology
and cosmetology, substances with the properties of AMPs are constantly sought after.

Pharmaceutical companies are making efforts to commercialise AMPs in an attempt
to capitalise on the potential that this class of drugs can represent in the $80 billion global
anti-infective market [24,25]. Currently, several AMPs are in various stages of clinical trials,
and several have been on the market for some time. The number of clinical trials related to
AMPs is very optimistic when it comes to introducing new drugs to global markets [26].
However, there is also a reason for joy for the cosmetic market in connection with the
development of these molecules for possible use in cosmetology. AMPs have been revealed
to possess antioxidant, self-renewal and pro-collagen effects, which are desirable in the
cosmeceutical field [27].
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2. Classification

AMPs can be classified in many different ways, one of them being structural flexibility.
There are four categories based on their secondary structure: linear α-helical peptides,
β-sheet peptides with the presence of two or more disulphide bonds, β-hairpin or loop
peptides with the presence of a single disulphide bond and/or cyclisation of the peptide
chain, and finally, extended structures [6] (Table 1). In the available AMP databases,
approximately 14% of AMPs are helical peptides, 4% are β-type peptides, and 4% are
mixed-type peptides [28].

Table 1. Classes of antimicrobial peptides based on structure [29].

Cat. AMP Structure Source Ref.

α-helical
peptides

Aurerin 1–2 Amidated C-terminus Frogs [30,31]

Melittin Amidated C-terminus Bees [32]

Brevinin 1 - Frogs [33]

Maculatins Amidated C-terminus Frogs [34]

Citropin Amidated C-terminus Frogs [35]

Buforin II - Toad [36]

Cathelicidins

[37]

(LL-37 Amidated C-terminus Human

BMAP-27,28,34 - Bovine

Magainins - Frogs

Cecropin) Amidated C-terminus Insect

β-sheet
peptides

Cathelicidins
(Protegrins
Bactenecin)
Defensins

Cysteine-rich
Disulphide forming loop

Pigs
Bovine

Mammals
[37]

Tachyplesins and
Polyphemusin

Three disulphide bonds
Cysteine/arginine-rich and amidated

C-terminus

Horse Crab [32,38–40]

Horse Crab [41]

Extended
structure

Cathelicidins
(PR-39

Tritrpticin
Indolicidin

Crotalicidin 15–34)

Proline and arginine-rich
Tryptophan and arginine-rich

Tryptophan and amidated C-terminus
Lysine rich

Pigs
Pigs

Bovine
Snakes

Humans

[37]

Histatins Histidine-rich and amidated C-terminus [42]

AMPs can also be classified by their source of origin: bacteria (200), archaea (4), fungi
(13), plants (343), and animals (2159) [43]. Currently, the available publications indicate that
scientists are mainly focused on AMPs isolated from the plant phylum. They have been
isolated from the roots, seeds, flowers, stems and leaves of a wide variety of species. Plant
AMPs are grouped into several families and share general features: thionins, defensins,
lipid transfer proteins, hevein-like proteins, and cyclotides [44].

Thionins were first isolated in 1942 from fractions of wheat and barley as a group
of low-molecular-weight amphipathic vegetable proteins [45,46]. Thionins consist of
45–48 amino acid residues (~5 kDa), contain 6 or 8 cysteines and 3 or 4 disulphide bonds,
and are rich in arginine and lysine. Their structure includes two antiparallel α-helices and
an antiparallel double-stranded β-sheet. These are positively charged peptides at neutral
pH [47]. They form a ring structure topology because of the end-to-end disulphide bond
that connects the N and C ends; therefore, they can be classified as cyclic peptides [48].
However, they are not true cyclic peptides because disulphide-bonded cysteines are not
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located directly at the N- and C-termini. Other cysteines in polypeptides can also form
disulphide bonds [49–51]. Thionins have been identified in many plant species [46] and
are toxic to bacteria, fungi and yeasts [52]. For example, species sensitive to purothionin
isolated from wheat endosperm crude are bacteria such as Pseudomonas solanacearum, Xan-
thomonas phaseoli, Xanthomonas campestris, Erwinia amylovora, Corynebacterium fascians, C.
flaccumfaciens, C. michiganese, C. poinsettiae, C. sepedonicum [53]. The species sensitive to
α-purothionins isolated from wheat endosporum is the fungus Rhizoctonia solani [54]. Vis-
cotoxin A3 and B isolated from the leaves and stems of Viscum album L. are toxic to the
fungi Fusarium solani, Sclerotinia sclerotiorum, Phytophtora infestans. The study reported that
a concentration between 3 to 10 µm induced membrane disruption, H2O2 production and
spore death [55]. Thioin isolated from Nicotiana attenuata PR-13 is toxic to Pseudomonas
syringae pv bacteria, which, according to the 2012 report of the journal Molecular Plant
Pathology, ranks first on the list of the most dangerous bacterial plant pathogens [56].

Defensins are the best known and probably the largest family of all membrane-soluble
plant AMPs [57]. The first plant defensins were isolated from wheat T. aestivum and barley
Hordeum vulgare and contained four disulphide bonds, similar to α-thionins, β-thionins
and γ-thionins. Defensins are positively charged, basic, cysteine-rich peptides with a
mass of about 5 kDa [58]. However, γ-thionins were found to be structurally different
from α-/β-thionins and were classified as plant defensins based on their similarities in
sequence, structure and function to mammalian and insect defensins [59–61]. Defensins
have a variety of biological functions, such as inhibiting microbial growth, inhibiting α-
amylase and trypsin activity, influencing self-compatibility, mediating abiotic stress, and
acting as epigenetic factors [62–67]. Plant defensins are best known for their antimicrobial
properties against a wide spectrum of plant pathogens such as bacteria, yeasts, oomycetes
and necrotrophic pathogens [68–70], anticancer and antiviral properties [71,72], and they
interact with glucosylceramides in yeast and fungal membranes to induce cell death [49,50].
For example, in the in vitro study from 2007, human alpha-defensin 1 (HNP1) at the
concentrations 1.25, 5, 10 and 20 µg/mL reduced viral haemorrhagic septicaemia virus
infectivity to 86, 80, 57 and 19%, respectively [73]. NaD1, an ornamental tobacco defensin,
demonstrated PIP2-mediated anticancer activity at 10 µM in the in vitro studies on the
range of mammalian tumour cell lines [74]. Some human β-defensin 3 derivatives (hBD3),
such as hBD3A (full-length hBD3 with disulphide pairings Cys11-Cys41, Cys18-Cys40, and
Cys23-Cys33), have antimicrobial activity similar to native hBD3 against E. coli, S. aureus,
and C. albicans with LC90 values of approximately 5 µg/mL, 12 µg/mL, and 15 µg/mL [75].

Lipid transfer proteins (LTPs) are cationic peptides with a molecular weight of 7
to about 10 kDa. LTPs are classified as LTP1 (9 kDa) or LTP2 (7 kDa), depending on
their molecular weight. They have eight Cys residues and have a low overall amino
acid sequence similarity (about 30%). Almost all LTPs lack tryptophan residues, with the
exception of a few isoforms in Arabidopsis and rice, which have 1–2 Trp [76]. LTPs can bind
to a variety of lipids, including fatty acids, phospholipids, prostaglandin B2, haemolytic
derivatives and acyl coenzyme A [77–79]. These peptides have been shown to reversibly
bind and transport hydrophobic molecules in an in vitro model [77]. LTPs not only inhibit
the growth of fungi and bacteria but also participate in plant defence systems [80–83].

For example, organisms sensitive to LTPs isolated from wheat (Sumai3) are the fungi
Rhizoctonia solani, Curvularia lunata, Alternaria sp., Bipolaris oryzae, Cylindrocladium scopar-
ium, Botritis cinerea, and Sarocladium oryzae, with the tested concentrations varying from
1.25 µg/µL to 3.75 µg/µL [84]. LTP-s1 and LTP-s2 isolated from spinach leaves are toxic to
Clavibacter michiganensis subsp. Sepedonicus and Pseudomonas solanacearum. These proteins
were found to exhibit an EC-50 in the range of 0.1–1 µM for the bacterial pathogens C.
michiganensis and P. solanacearum [85]. AceAMP1 LTPs isolated from onion seeds have both
antifungal and antibacterial properties [86].
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Hevein-like AMPs are alkaline peptides that were identified for the first time in the
latex of the Hevea brasiliensis rubber tree, presenting strong antifungal activity in vitro. They
are peptides with a molecular weight of approximately 4.7 kDa [87,88]. These peptides
contain a conserved chitin-binding domain with the amino acid sequence SXFGY/SXYGY,
where X can be any amino acid residue [89–91]. The hevein domain consists of an antipar-
allel β-sheet and a short α-helix, and the scaffold is stabilised by 3–5 disulphide bonds [92].
Peptides from this group also have antibacterial activity and have been identified in var-
ious plant species [92–95]. The species susceptible to WjAMP1 isolated from leaves of
Wasabia japonica are the fungi (IC50 between 5.8 to 80 µg/mL) Botrytis cinerea, Fusarium
solani, Magnaporthe grisea, and Alternaria alternata, and the bacteria Escherichia coli, Agrobac-
terium tumefaciens, Pseudomonascichorii, P. plantarii (Burkholderia plantarii), and P. glumae (B.
glumae) [94].

Among all the AMPs, cyclic peptides (cyclotides) exhibit the greatest stability and
resistance to proteolytic cleavage. Although peptides and proteins are biomolecules that
have been investigated for decades, cyclic peptides have gained popularity only in recent
years. Microbial peptides with a cyclised backbone were initially reported by Saether et al.
in 1995 [96], although they had been used in traditional medicine long before that in Africa
to accelerate labour and childbirth [44,96]. Cyclotides are a group of naturally occurring
circular proteins that have been discovered in bacteria, plants and animals [97,98]. These
are cyclic peptides containing 28–37 amino acids [99,100]. Cyclotides possess a cyclic
backbone consisting of six loops, which are formed by six conserved cysteine residues
arranged in a cross-linked and bonded manner [101]. This cysteine linkage is formed
when the first two disulphide bonds (Cys1-Cys4 and Cys2-Cys5) and their fused backbone
form a ring that is penetrated by the third disulphide bond, Cys3-Cys6 [102]. Among
all the AMPs, cyclic peptides exhibit the greatest stability and resistance to proteolytic
cleavage, which makes them potential therapeutic agents [103], including anticancer [104],
anti-HIV [105], insecticide [106,107] and antimicrobial agents [101]. The cyclotide Vitri
isolated from Viola tricolor demonstrated cytotoxicity to human lymphoma and myeloma
cells. Cycloviolacin H4 isolated from Viola hederaceae was able to cause haemolysis in
human erythrocytes [97]. Cycloviolacin O13, O14 and O24 isolated from Viola odorata
showed anti-HIV properties at the concentrations (EC50) of 320, 440 and 308 nM (with
cytotoxic concentration IC50 > 6.4, 4.8, and 6.2 µM, respectively) [108]. Kalata B1 from
Oldenlandia affinis demonstrated insecticidal, molluscicidal, haemolytic, nematocidal, anti-
HIV and antibacterial activity. Kalata B2 from Oldenlandia affinis demonstrated insecticidal,
molluscicidal, nematocidal and antibacterial activity. The incorporation of these cyclotides
into the Helicoverpa punctigera larvae diet caused ~50% mortality and a reduction in the
size and growth rate of the survivors [107–112]. Haemolytic, antibacterial and anti-HIV
properties were also exhibited by circulins A and B isolated from Chassalia parviflora. The
cytoprotective concentrations of circulins against HIV viruses (EC50

′s) ranged from 40 to
260 nM [113], whereas the cyclopeptide MCoTI-II from Mormodica cochinensis is a trypsin
inhibitor (IC50 of 2.12 µM) [114,115]. Although peptides and proteins are biomolecules
that have been investigated for decades, cyclic peptides have gained popularity only in
recent years.

Different AMPs have been identified in avocado fruit and the fruits of Capsicium,
which could be used in the treatment of infections caused by Streptococcus aureus and
Escherichia coli strains [116–118]. Example structures of AMPs are shown in Figure 1.
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Figure 1. Structures of representative AMPs (created with UniProt database). Colours stand for
Structure Model Confidence: Navy blue-Very high (pLDDT > 90), Blue-Confident (90 > pLDDT > 70),
Yellow-Low (70 > pLDDT > 50), Orange-Very low (pLDDT < 50). pLDDT stands for predicted local
distance difference test.

3. Mechanism of Antimicrobial Peptide Action

Peptides can be categorised in multiple ways based on the type of activity (e.g.,
anticancer, killing bacteria, induction of angiogenesis, modulation of gene expression),
mechanism of action, or structure and sequence. In this chapter, various mechanisms of
action will be described and used to group the proteins.

To utilise AMPs in practical applications, it is important to understand their mecha-
nism of action. There have been multiple research studies to understand how they interact
with and impact other organisms. Initial studies showed that the proteins use membrane
targeting. This is a different mechanism than that used by antibiotics [26,39,119,120], and
the cell membrane itself also impacts the interaction with the protein as it depends on
their lipids. Later research studies showed [39] there are also different mechanisms of
action. Besides membrane targeting, there is also non-membrane targeting and immune
modulation. The mechanisms of action are split into two groups. The first one, named
direct killing, includes membrane targeting and non-membrane targeting (Figures 2 and 3);
the second is immune modulation (Figure 4).



Int. J. Mol. Sci. 2023, 24, 9031 7 of 32

Int. J. Mol. Sci. 2023, 24, 9031  7  of  35 
 

 

modulation. The mechanisms of action are split  into  two groups. The first one, named 

direct killing, includes membrane targeting and non-membrane targeting (Figures 2 and 

3); the second is immune modulation (Figure 4). 

 

Figure 2. The direct killing mechanism of AMPs includes membrane targeting and non-membrane 

targeting. Green-bacterial membrane; Orange and Blue-cell organelles. 

 

Figure 3. Direct killing mechanism of AMP action. There are four main types of AMP interactions 

with cell membranes, named barrel-stave model, toroidal-pore model, carpet model and aggregate 

model.   

Figure 2. The direct killing mechanism of AMPs includes membrane targeting and non-membrane
targeting. Green-bacterial membrane; Orange and Blue-cell organelles.

Int. J. Mol. Sci. 2023, 24, 9031  7  of  35 
 

 

modulation. The mechanisms of action are split  into  two groups. The first one, named 

direct killing, includes membrane targeting and non-membrane targeting (Figures 2 and 

3); the second is immune modulation (Figure 4). 

 

Figure 2. The direct killing mechanism of AMPs includes membrane targeting and non-membrane 

targeting. Green-bacterial membrane; Orange and Blue-cell organelles. 

 

Figure 3. Direct killing mechanism of AMP action. There are four main types of AMP interactions 

with cell membranes, named barrel-stave model, toroidal-pore model, carpet model and aggregate 

model.   

Figure 3. Direct killing mechanism of AMP action. There are four main types of AMP interactions with
cell membranes, named barrel-stave model, toroidal-pore model, carpet model and aggregate model.

Int. J. Mol. Sci. 2023, 24, 9031  8  of  35 
 

 

 

Figure 4. Immune modulation AMPs can recruit and activate immune cells. It results in the control 

of inflammation and increased cell killing. 

3.1. Direct Killing 

Individual AMPs interact with bacterial cell membranes, impacting the construction 

of its outer or inner membrane, leading to cell death. This is realised by electrostatic forces 

between the negatively charged bacterial cell surface [121–123] and the positively charged 

AMPs;  therefore,  this  interaction  depends  on  cell  surface  lipids  that  are  negatively 

charged. AMPs accumulate at the surface and self-assemble on the bacterial membrane 

after reaching a certain concentration. There are four main types of AMP interactions with 

the cell membrane, named the barrel-stave model, toroidal-pore model, carpet model and 

aggregate model, graphically presented in Figure 3. 

Bacteria are classified as either Gram-positive or Gram-negative, characterised by sig-

nificant differences in their cell envelopes. The inner or cytoplasmic membranes of both 

bacteria  groups  are  similar,  but  the  outer  cell  envelopes  are  significantly different.  In 

Gram-positive bacteria, there is a layer of cross-linked peptidoglycan decorated with neg-

atively charged teichoic acid surrounding the cytoplasmic membrane, forming a thick ma-

trix that maintains the rigidity of the bacterial cell. Nano-sized pores penetrate into the 

peptidoglycan layers, allowing AMPs to diffuse through [124]. In contrast, the peptidogly-

can  layer  in Gram-negative bacteria  is much  thinner and  less cross-linked.  In addition, 

Gram-negative bacteria have an additional outer membrane outside  the peptidoglycan 

layer. The inner layer consists purely of phosphate lipids, while the outer leaflet is primar-

ily a coat of lipopolysaccharides [125]. LPS molecules are decorated with a high number 

of negatively charged phosphate groups  that are engaged  in salt bridges with divalent 

cations (e.g., Ca2+ and Mg2+), resulting in an electrostatic network [126]. This electrostatic 

region serves as a primary barrier to most hydrophobic antibiotics, resulting in low per-

meability. Therefore, the details of how AMPs penetrate into Gram-positive and Gram-

negative bacteria must vary in their atomistic interactions [127]. In the case of Gram-pos-

itive bacteria, AMPs need to diffuse across the peptidoglycan matrix first and then act on 

the cytoplasmic membrane. In contrast, killing Gram-negative bacteria involves the per-

turbation or disruption of both  the outer and cytoplasmic membranes. The  inability  to 

permeabilise or disrupt the outer membrane results in the loss of antimicrobial activity. 

Daptomycin is able to disrupt the cytoplasmic membrane but not able to permeabilise/dis-

rupt the outer membrane of Gram-negative bacteria. As such, it is highly active against 

Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) but has 

no activity against Gram-negative bacteria [128]. 

Figure 4. Immune modulation AMPs can recruit and activate immune cells. It results in the control
of inflammation and increased cell killing.



Int. J. Mol. Sci. 2023, 24, 9031 8 of 32

3.1. Direct Killing

Individual AMPs interact with bacterial cell membranes, impacting the construction
of its outer or inner membrane, leading to cell death. This is realised by electrostatic
forces between the negatively charged bacterial cell surface [121–123] and the positively
charged AMPs; therefore, this interaction depends on cell surface lipids that are negatively
charged. AMPs accumulate at the surface and self-assemble on the bacterial membrane
after reaching a certain concentration. There are four main types of AMP interactions with
the cell membrane, named the barrel-stave model, toroidal-pore model, carpet model and
aggregate model, graphically presented in Figure 3.

Bacteria are classified as either Gram-positive or Gram-negative, characterised by
significant differences in their cell envelopes. The inner or cytoplasmic membranes of
both bacteria groups are similar, but the outer cell envelopes are significantly different.
In Gram-positive bacteria, there is a layer of cross-linked peptidoglycan decorated with
negatively charged teichoic acid surrounding the cytoplasmic membrane, forming a thick
matrix that maintains the rigidity of the bacterial cell. Nano-sized pores penetrate into the
peptidoglycan layers, allowing AMPs to diffuse through [124]. In contrast, the peptido-
glycan layer in Gram-negative bacteria is much thinner and less cross-linked. In addition,
Gram-negative bacteria have an additional outer membrane outside the peptidoglycan
layer. The inner layer consists purely of phosphate lipids, while the outer leaflet is primarily
a coat of lipopolysaccharides [125]. LPS molecules are decorated with a high number of
negatively charged phosphate groups that are engaged in salt bridges with divalent cations
(e.g., Ca2+ and Mg2+), resulting in an electrostatic network [126]. This electrostatic region
serves as a primary barrier to most hydrophobic antibiotics, resulting in low permeability.
Therefore, the details of how AMPs penetrate into Gram-positive and Gram-negative bac-
teria must vary in their atomistic interactions [127]. In the case of Gram-positive bacteria,
AMPs need to diffuse across the peptidoglycan matrix first and then act on the cytoplas-
mic membrane. In contrast, killing Gram-negative bacteria involves the perturbation or
disruption of both the outer and cytoplasmic membranes. The inability to permeabilise
or disrupt the outer membrane results in the loss of antimicrobial activity. Daptomycin is
able to disrupt the cytoplasmic membrane but not able to permeabilise/disrupt the outer
membrane of Gram-negative bacteria. As such, it is highly active against Gram-positive
bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) but has no activity
against Gram-negative bacteria [128].

Another way of impacting cells is non-membrane targeting. In this case, AMPs
penetrate the cell and interact with the cell interior by inhibiting DNA, RNA and protein
synthesis, impacting protein folding, enzyme activity and cell wall synthesis, leading to
cell death.

3.2. Immune Modulation

AMPs can recruit and activate immune cells (Figure 4). This results in the control
of inflammation and increased cell killing [129–131]. AMPs can also produce a variety of
immune responses: the activation, attraction, and differentiation of white blood cells; the
stimulation of angiogenesis; the reduction of inflammation by lowering the expression of
proinflammatory chemokines; and controlling the expression of chemokines and reactive
oxygen/nitrogen species [129–134]. Moreover, many immune cells also produce AMPs (e.g.,
neutrophils and macrophages), and they can be the first line of defence against invading
microbes [135].

3.3. Mechanism of Action against Cancer Cells

AMPs, due to their cationic properties, bind preferentially to cancer cells, causing the
disruption of their lipid membranes, thus leading to cell death (apoptosis) [136]. AMPs bind
more strongly to the membrane of bacterial cells than to the membrane of normal eukaryotic
cells; however, the surface of cancer cells differs in some features from normal eukaryotic
cells. Cancer cells have much more negatively charged particles on their surface than
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normal cells. In addition, due to the large number of villi, these cells have a larger surface
area, which allows more molecules of antibacterial peptides to bind to the membrane.
Differences in the structure of cell membranes, as well as the large surface of cancer cells
with villi present on the surface, may cause cancer cells to be penetrated with greater
selectivity by AMPs than normal cells [137–139]. Some AMPs can induce apoptosis, or
programmed cell death, in cancer cells by activating various pathways involved in cell
death. This can lead to the elimination of cancer cells without damaging normal cells.
Angiogenesis is the process by which new blood vessels are formed, and it is essential for
the growth and spread of cancer cells. Some AMPs can inhibit angiogenesis by interfering
with the signalling pathways involved in blood vessel formation, thereby limiting the
growth and spread of cancer cells. Other AMPs can modulate the immune response by
activating immune cells such as natural killer cells and macrophages, which can help to
eliminate cancer cells. AMPs can also stimulate the production of cytokines, which are
important for the regulation of the immune response [140]. Figure 5 presents the different
mechanisms of AMP anticancer action.
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4. Possible Applications in Pharmaceutical, Biomedical and Cosmeceutical Fields

AMPs with broad-spectrum antibacterial, antiviral, antifungal and anticancer activity
are expected to become alternative antibiotics through the development of AMP-based
therapies. Currently, several AMPs have been approved for antibacterial treatment by
the Food and Drug Administration (FDA), and other AMPs are under clinical develop-
ment [141]. Despite the promising potential of AMPs as medical therapeutics, there are
many challenges that need to be overcome. The limitations to the intravenous admin-
istration of AMPs are caused by enzymatic degradation in blood plasma due to a short
half-life. Oral application is also limited due to the pre-systemic enzymatic degradation
of the peptides and poor penetration into the intestinal mucosa. In clinical trials, AMPs
are mainly limited to topical applications due to their different enzymatic degradation,
systemic toxicity and rapid hepatic and renal clearance [142,143]. Consequently, the local
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application of AMPs is the most common administration route, including delivery via
topical dermal creams and skin softeners. In order to improve the AMP delivery system,
polymeric materials such as hydrogels [144], chitosan [145], and hyaluronic acid [146] are
used. AMPs may be covalently linked or non-covalently encapsulated in delivery systems.
The covalent attachment of polyethylene glycol in a biomolecule (PEGylation) can reduce
non-specific tissue uptake, cellular toxicity, and increase blood half-life and proteolytic
degradation [147,148]. The conjugation of AMPs to hyperbranched polyglycerol (HPG)
provides a better antimicrobial effect [149]. Lipids and surfactants can also be used as a
conjugate to protect the peptides under extreme alkaline/acidic conditions and elevated
temperatures [150]. Mesoporous silica particles [151], quantum dots [152], gold and silver
nanoparticles [153,154], titanium [155], graphene [156] and carbon nanotubes [157] have
also been used.

The high cost of peptide production also limits the commercial and clinical develop-
ment of AMPs. The cost can be reduced by obtaining recombinant AMPs in prokaryotic or
yeast expression systems with the usage of genetic engineering methods.

4.1. Pharmaceutical Applications

AMPs have several potential pharmaceutical applications due to their ability to kill or
inhibit the growth of pathogens. Some AMPs have been found to be effective against Gram-
negative and Gram-positive bacteria, including multidrug-resistant strains. They can also
prevent the formation of bacterial biofilms, which are a common cause of chronic infections.
Some AMPs have shown promise in treating fungal infections, with special emphasis
on immunocompromised patients, such as those with HIV/AIDS. AMPs may work as
antiviral drugs by disrupting viral entry, inhibiting viral replication, or promoting immune
responses. The studies show that AMPs can work profitably with chemotherapy drugs.
Some of them exhibit anticancer properties by inhibiting the growth and proliferation
of cancer cells. AMPs have been shown to promote wound healing by accelerating the
formation of new blood vessels and the migration of skin cells to the wound site. Moreover,
they can be used as vaccine adjuvants and as natural preservatives [158].

4.1.1. Antibacterial Activity

The skin infection segment held the largest revenue share of 30.3% in 2021 and is
likely to dominate the market during the forecast period. The growth of the skin infection
segment is augmented by the rising prevalence of skin infections such as cellulitis, impetigo,
furuncles, carbuncles, and others, and the wide availability of products for the treatment
of bacterial skin infections. For instance, CUBICIN RF (daptomycin for injection), a type
of lipopeptide product manufactured by Merck & Co., Inc., is used for the treatment of
paediatric patients and adults with complicated skin and skin structure infections caused by
Streptococcus aureus, Streptococcus pyogenes, and Streptococcus agalactia [159]. Daptomycin’s
t1/2 is relatively long (~9 h), which allows once daily dosing in patients. This compound’s
maximum dose ranges from 6 mg/kg up to 8 mg/kg, in which the linear pharmacokinetics
is maintained up to 6 mg/kg.

However, the bloodstream infection segment is anticipated to register the fastest
growth rate during the forecast period. The growth of this segment is augmented by the
rising incidences of bloodstream infections, rising awareness about bloodstream infections,
and the availability of a robust product portfolio for the management of bloodstream
infections. For instance, Polymyxin B vials containing 500,000 units/vial manufactured by
Xellia PHARMACEUTICALS are used for the treatment of bloodstream infections due to
strains such as E. coli, Pseudomonas aeruginosa, and H. influenza [160,161].

Vancomycin and bacitracin are both antibiotics that are common AMPs from natural
sources interfering with Gram-positive bacteria cell wall synthesis [162,163]. Vancomycin
has been in clinical use since the 1950s and is approved for use in many countries worldwide
under various brand names, including Vancocin, Vancomycin Hydrochloride, and others. It
can be administered as an intravenous injection (15 to 20 mg/kg every 8 to 12 h), a capsule
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(125 to 500 mg four times daily), or in the case of skin infections, as a topical formulation
(concentrations in the range of 1–2%) [164–166]. Bacitracin vials manufactured by Xellia
Pharmaceuticals are indicated for the treatment of infants with pneumonia and empyema
(50,000 units or 100,000 per ml of solution per vial). Bacitracin is an example of a polypeptide
product that works by inhibiting bacterial cell wall synthesis. It is often used topically in
ointments and creams [161,167,168]. Dalbavancin, primarily sold by Melinta Therapeutics,
received FDA approval in May 2014. Since then, the drug has been marketed in the US
and Europe. Sold under the brand name Dalvance/Allergan (500 mg/vial), Dalbavacin
is used for treating acute bacterial skin and skin structure infections (dosage between 18
and 22.5 mg/kg with maximum 1500 mg) [169–171]. In 2018, Melinta reported global net
product sales of $45,9 million for Dalvance [172]. It appears to be very effective in many
serious Gram-positive infections. A long half-life and good diffusion in bone tissue suggest
that Dalbavacin could be effective in the treatment of prosthetic joint infections. Even
though AMPs are considered a cure for antibiotic-resistant bacteria, such as Staphylococcus
aureus, some enterococci can gain resistance to this peptide, which is particularly concerning
as they can cause serious infections that are difficult to treat [173]. Fortunately, some
semi-synthetic peptide derivatives can be a solution in this case. Telavancin, sold by
Theravance Biopharma, apart from skin infections, is also approved for the treatment of
hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP; brand
name Vibativ) [174]. Vibativ is indicated for skin infections and pneumonia, which share
the same dosage of 10 mg/kg [175]. Similar to Vancomycin, Dalbavancin and Telavancin
work by inhibiting bacterial cell wall synthesis. Oritavancin, another example of a semi-
synthetic lipoglycopeptide, shares similar properties, but has a unique action mechanism.
It can bind and disrupt bacterial cell membrane integrity, which is a beneficial antimicrobial
property. It is FDA-approved for acute bacterial skin and skin structure infections under
the brand name Orbactiv [176].

In September 2021, AuroMedics Pharma LLC announced that it received approval
from USFDA to manufacture Daptomycin for an injection to treat serious bacterial infec-
tions, including skin and soft tissue infections, bloodstream infections, and endocarditis.
Daptomycin is a lipopeptide antibiotic under the brand name Cubicin, administered intra-
venously (4 mg/kg) [177]. It works by disrupting the bacterial cell membrane. The same
mechanism is shared by gramicidin, which is usually formulated in combination with other
antibiotics. It is an antibiotic agent for the topical treatment of skin infections, with the
drawback that the oral administration of this drug can be toxic. In vitro and in vivo studies
have shown the great potential of this drug as a therapeutic agent in renal cell carcinoma,
the most common type of kidney cancer in adults [178].

AMPs are reserved for use in situations where other antibiotics may not be effective.
However, the use of antimicrobial peptides should be guided by susceptibility testing and
other factors, similar to antibiotics, to minimise the risk the bacteria gaining resistance [21].

4.1.2. Antiviral Activity

Some AMPs have been shown to have antiviral activity against various viruses, includ-
ing both enveloped and non-enveloped viruses [179]. There are nine peptidomimetic drugs
on the market for the treatment of AIDS and at least four in clinical development for the
treatment of HCV infections. Saquinavir, a peptidomimetic protease inhibitor, is a molecule
with a hydroxy ethylene scaffold that mimics the typical peptide bond but is not broken
down by HIV-1 protease. HIV (human immunodeficiency virus) is a target for antiviral
peptides (AVPs) as they can be designed to target specific components of the virus, such
as the fusion process and protease enzyme [179]. Enfuvirtide (T-20) is a synthetic peptide
drug that is the first FDA-approved viral peptide inhibitor [180]. It is used for HIV infection
and can be used to treat infections resistant to antiretroviral drugs HIV-1 derivative. The
mechanism of action of Enfuvirtide is binding to glycoprotein 41 (gp41) in a way that
prevents the conformational change required for fusion. As a result, this prevents the virus
from entering the host cell and replicating. Enfuvirtide is administered by subcutaneous
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injections, which can lead to the frequent occurrence of painful injection site reactions.
Hepatitis C is another viral infection that can be treated with antiviral peptides. Currently,
two drugs are approved for that disease: a semi-synthetic peptide telaprevir and a synthetic
peptide boceprevir [181]. They belong to a class of medications called protease inhibitors
and have the same target. They block the replication of some types of hepatitis C viruses by
targeting the NS3/4A protease enzyme, leading to the reduction of the virus in the blood,
which results in improved liver function. These drugs are typically used in combination
with PEGylated interferon and ribavirin. Since the COVID-19 outbreak, numerous antiviral
peptides and peptidomimetics against SARS-CoV-2 have been reported. Although no
peptide antiviral drugs for COVID-19 have entered clinical trials, some FDA-approved
peptide drugs have been recommended for clinical trials for COVID-19 through virtual
screenings and in silico drug repurposing methods. Researchers have shown that Enfuvir-
tide could inhibit SARS-CoV-2 entry into host cells with great potency and recommended
it for COVID-19 clinical trials. Peptide-like small molecules, amino-acid-like derivatives,
and peptidomimetics such as remdesivir and lopinavir have been utilised in COVID-19
clinical trials and treatment [182].

4.1.3. Anticancer Activity

Due to the resistance of cancer cells to treatment and the toxicity of cytostatics, new
possibilities for anticancer therapies are constantly being sought. This has led the focus on
AMPs, which have the ability to resist cancer growth. Zhao reported the anticancer activity
of the HPRP-A1 peptide isolated from Helicobacter pylori [183]. Further, the combined
effect of iRGD (homing peptide) and HPRP-A1 were examined for their enhancement of
anticancer activity. Furthermore, the results suggested that iRGD helped to improve the
penetration of HPRP-A1 into A549 MCS [184]. L-K6 was reported to be capable of killing
MCF-7 breast cancer cells via nuclear disruption without cell surface disruption [185].
AMPs with the ability to inhibit cancer cell growth are mentioned in Table 2.

Table 2. List of some of the AMPs that can be used in cancer therapeutic studies [158].

AMPs Source Significance Ref.

Poca A, Poca B and CyO4 Pombalia calceolaria Reduced the breast cancer cell up to 80% [185]

Aurein 1.2 Frog Litoria aurea Among 54 cancer cells, 52 are inhibited in NCI
testing method [186]

Bmattacin2 Bombyx mori Disrupted A375 and HCT116 cancer cells [187]

Laterosporulin10 Brevibacillus sp. MCF-7, H1299, HEK293T, HT1080, and HeLa
cancer cells were disrupted [188]

Dermaseptin-PD-1 and
dermaseptin-PD-2 Phyllomedusine leaf frogs Growth of H157, PC-3, and U251 MG cancer cell

was inhibited [189]

Scolopendrasin VII Centipede Reduction in the viability of leukaemia cells [190]

Myristoyl-CM4 Synthetic
Activates caspase 9, caspase 3, and cleavage of
Poly(ADP-ribose) polymerase (PARP) in breast

cancer cells
[191]

K4R2-Nal2-S1 Synthetic Binds with lung cancer cells and results
in apoptosis [192]

VLL-28 Sulfolobus islandicus Inhibits murine and human tumour cells [193]

CopA3 Copris tripartitus Reduction in cell viability of gastric cancer cells [194]

Pardaxin Pardachirus armoratus Improved the activation of caspase-3 [195]

4.1.4. Broad Spectrum of Antimicrobial Activities

Despite promising results from preclinical and clinical studies, some AMPs require
further work before being approved for pharmaceutical use. LL-37 is a naturally occurring
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AMP produced by immune cells, such as neutrophils and epithelial cells. Although it
is not an FDA-approved drug, it has broad-spectrum activity, including in infectious
diseases, inflammatory disorders, and cancer. LL-37 has several undesirable properties,
such as possible bacterial resistance, cytotoxicity, and the inability to retain antimicrobial
activity in the environment [196]. Clinical studies showed that LL-37 could be a potentially
effective treatment option for patients with large ulcers [197]. Defensins are a family of
small, cationic peptides found in various tissues and organs of the human body. They
play a key role in the innate immune system by protecting against invading pathogens.
They work by disrupting cell membranes, leading to cell lysis. In the review from 2019
on diabetic foot ulcers, it was suggested that beta-defensin-2 (hBD2) could be assessed
as a drug for that disease [198]. Omiganan pentahydrochloride, a synthetic analogue of
human defensin, was clinically tested for the treatment of atopic dermatitis, with significant
results in reduction of the Scoring Atopic Dermatitis (SCORAD) index, showing it can be a
safe and effective treatment option [199,200]. Nisin is a peptide produced by the bacteria
Lactococcus lactis. Commonly used as a food preservative, it is now in clinical studies
for bacterial infections. It works by membrane depolarisation, leading to the leakage
of cellular contents and ultimately cell death. Clinical studies showed that nisin can be
effective in the treatment of various bacterial infections, including diabetic foot ulcers
and Helicobacter pylori infection [201–203]. Melittin is a naturally occurring peptide that
is found in Apis mellifera venom. It has been studied for its therapeutic uses, including
as an antimicrobial agent and as a potential cancer therapy [204,205]. Histatin-1 is a
cationic peptide found in human saliva. It works by disrupting the cell membrane of
microorganisms, causing cell lysis. It has been shown to be effective against a variety
of oral pathogens, including Candida albicans, Streptococcus mutans, and Porphyromonas
gingivalis [206,207]. Promising antimicrobial properties have been exhibited by pyocins
derived from Pseudomonas aeruginosa. They have been successfully used in vivo in mice
peritonitis treatment [21].

Obesity is a major health problem worldwide and is associated with numerous health
risks, including type 2 diabetes. According to a report by Market Research Future, the
obesity treatment market size is projected to grow over 31 Billion USD by 2030, showing
a 16.70% compound annual growth rate (2023–2030) [208]. Inhibitors of pancreatic lipase
activity are being investigated as potential treatments for obesity and related metabolic
disorders. Several peptides isolated from soybean have demonstrated properties limiting
the activity of that enzyme and are being considered for clinical trials [21].

Summing up, AMPs have various pharmaceutical applications, such as killing or
inhibiting pathogen growth, preventing bacterial biofilms, treating fungal infections, work-
ing as antiviral drugs, and promoting wound healing. The market is dominated by the
skin infection segment, while the bloodstream infection segment is projected to have the
highest growth rate during the forecast period. Semi-synthetic peptide derivatives have
been developed to address resistance issues; however, susceptibility testing should guide
AMP use to minimise the risk of resistance.

4.2. Biomedical Applications

Modern healthcare uses various medical devices that improve or restore the function
of the human body. This significantly improves the life quality of individuals affected
by injuries or diseases [209] and generates demand for new technologies and special
materials, which over the last decades have resulted in the development and popularisation
of medical devices or biomaterials such as catheters [210], pacemakers [211], hip implants
and prosthesis [212], and contact lenses [213]. All of these devices confer many benefits to
patients but concurrently introduce the risk of microbial colonisation and infections due to
foreign material being introduced to the body [214,215]. Figure 6 illustrates the biomedical
applications of AMPs.



Int. J. Mol. Sci. 2023, 24, 9031 14 of 32Int. J. Mol. Sci. 2023, 24, 9031  15  of  35 
 

 

 

Figure 6. Biomedical applications of AMPs. 

4.2.1. Implantable Devices 

Medical treatments utilising various implants can cause infection by introducing mi-

croorganisms to the human body that are attached to the implantable devices, or the pa-

tients can be infected during hospitalisation [216,217]. Antibiotics are broadly used to pro-

tect patients from infection consequences that can be very serious; however, their overuse 

and  improper use have caused the growth of antibiotic resistance [218,219]. Additional 

protection is provided by various coatings, a thin layer of material on the selected surface 

intended  to  improve  its properties or  create a protective  layer against harmful  factors 

[220], such as a shield against bacteria [221], fouling [222], UV light [223], and corrosive 

substances [224]. 

To  prevent  implantable  devices  from  becoming  infected,  antimicrobial-releasing 

coatings are preferred, as the agent also reaches the peri-implant tissue [225]. Hydrogel-

based AMPs proved to exhibit strong antimicrobial activity against Porphyromonas gingi‐

valis, a major cause of peri-implantitis, with no signs of toxicity [226]. Additionally, a gel-

atine-based hydrogel deposited on Ti surfaces, which allows the controlled release of the 

short cationic AMP HHC36, is another example. AMP release prevented S. aureus, S. epi‐

dermidis, E. coli, and Pseudomonas aeruginosa biofilm formation [227]. The AMP HHC-36 

sustained-release PDLLA-PLGA coating on TiO2 nanotubes maintained an effective drug 

release for 15 days in vitro and showed significant antiproliferative activity against Strep‐

tococcus aureus. In addition, in vivo studies demonstrated that the coating was biocompat-

ible and antibacterial [228]. In another similar approach, GL13K-eluting coatings on TiO2 

nanotubes prevented the growth of Fusobacterium nucleatum and Porphyromonas gingivalis 

[229]. A  PCL-based  dual  coating  proved  the  sustained  antibacterial  functionality  of 

HHC36 for 14 days. The coating was translated onto silicone urinary catheters and showed 

promising antibacterial effectiveness when compared with  the commercial silver-based 

Dover catheter [230]. Another scientific group modified PLA films by gallium implanta-

tion and subsequently functionalised them with hBD-1. Ga and defensin independently 

Figure 6. Biomedical applications of AMPs.

4.2.1. Implantable Devices

Medical treatments utilising various implants can cause infection by introducing
microorganisms to the human body that are attached to the implantable devices, or the
patients can be infected during hospitalisation [216,217]. Antibiotics are broadly used
to protect patients from infection consequences that can be very serious; however, their
overuse and improper use have caused the growth of antibiotic resistance [218,219]. Addi-
tional protection is provided by various coatings, a thin layer of material on the selected
surface intended to improve its properties or create a protective layer against harmful
factors [220], such as a shield against bacteria [221], fouling [222], UV light [223], and
corrosive substances [224].

To prevent implantable devices from becoming infected, antimicrobial-releasing coat-
ings are preferred, as the agent also reaches the peri-implant tissue [225]. Hydrogel-based
AMPs proved to exhibit strong antimicrobial activity against Porphyromonas gingivalis, a
major cause of peri-implantitis, with no signs of toxicity [226]. Additionally, a gelatine-
based hydrogel deposited on Ti surfaces, which allows the controlled release of the short
cationic AMP HHC36, is another example. AMP release prevented S. aureus, S. epidermidis,
E. coli, and Pseudomonas aeruginosa biofilm formation [227]. The AMP HHC-36 sustained-
release PDLLA-PLGA coating on TiO2 nanotubes maintained an effective drug release
for 15 days in vitro and showed significant antiproliferative activity against Streptococcus
aureus. In addition, in vivo studies demonstrated that the coating was biocompatible and
antibacterial [228]. In another similar approach, GL13K-eluting coatings on TiO2 nanotubes
prevented the growth of Fusobacterium nucleatum and Porphyromonas gingivalis [229]. A
PCL-based dual coating proved the sustained antibacterial functionality of HHC36 for
14 days. The coating was translated onto silicone urinary catheters and showed promis-
ing antibacterial effectiveness when compared with the commercial silver-based Dover
catheter [230]. Another scientific group modified PLA films by gallium implantation and
subsequently functionalised them with hBD-1. Ga and defensin independently and syner-
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gistically contributed to the creation of a novel antimicrobial surface, which significantly
decreased the total live bacterial biomass [231]. Melittin was physically stabilised on chi-
tosan, chitosan/Vancomycin and oxacillin antibiotic coatings applied to etched Ti implants.
The antimicrobial characteristics of the coatings and the synergistic effect of Melittin and
antibiotics against MRSA and Vancomycin-resistant S. aureus (VRSA) were evaluated
in two states: floating and adherent to the implant’s surface [232]. For orthopaedic and
dental applications, a bioactive coating (Pac@PLGA MS/HA coated Ti) was deposited on
the Ti surface Pac@PLGA MS/HA-coated Ti exhibited a cytotoxic effect on E. coli and S.
aureus [233].

4.2.2. Biomedical Devices

The coatings can also enhance medical devices with multiple biofunctions such as drug
delivery [234], biosensing [235], antibacterial properties [236], and osseointegration [237].
Devices with coatings can much better fulfil surgical and clinical requirements; there-
fore, the pharmaceutical and biomedical industries are constantly looking for advanced
coatings with different functionalities. Many types of non-adhesive and antimicrobial
coatings based on AMPs have been researched and tested [238,239]. These coatings can
be divided into three groups: antifouling, contact-killing, and incorporating and releas-
ing antimicrobials [240,241]. Chemical techniques are commonly used in contact-killing
surfaces to immobilise AMPs to prevent microbial colonisation [242]. The structural prop-
erties of the peptides that are important for their antimicrobial activity should not be
changed by the immobilisation process. Important parameters for AMP immobilisation
include the orientation of the immobilised peptides and the AMP surface density, and
the extent, flexibility, and spacer type for making the peptide–surface connection [243].
An example of a contact-killing surface is the hydrogel network with the covalently at-
tached stabilised inverso-CysHHC10 peptide [244]. This coating exhibits antimicrobial
activity in vitro against Streptococcus aureus, Streptococcus epidermidis, and E. coli. Addition-
ally, brush-coating molecules may contain functional groups with antimicrobial activity,
for example, through conjugation with the Tet20 [245] and Tet213 [246] AMPs. Another
example is a polyurethane (PU) with a brush coating tethered to E6 AMP to avoid catheter-
associated infection [247]. Chimeric peptide-modified Ti surfaces significantly reduced the
adhesion of Streptococcus aureus, Streptococcus epidermidis, P. aeruginosa, and E. coli strains
compared to bare Ti. Dental implants with immobilised GL13K on the Ti surface enabled
osseointegration [248].

4.2.3. Multifunctional Coatings

The creation of multifunctional coatings by combining the arginylglycylaspartic acid
(RGD) cell adhesion sequence with lactoferrin-derived LF1-11 resulted in cell integration
in vitro and the inhibition of Streptococcus sanguinis colonisation [249]. Another study
reported a self-assembling coating of recombinant spider silk protein combined with Ma-
gainin I, which had the effect of reducing the number of viable bacteria on the coated
surfaces [250]. Furthermore, Magainin II, which was covalently bonded to stainless steel
surfaces, showed antibacterial activity against strains of Streptococcus aureus and E. coli.
The surface modified in this way reduced biofilm formation and the amount of bacteria on
the stainless steel surface [251]. An example of antifouling surfaces is Tet20 and E6 being
coupled to poly(DMA-co-APMA) copolymer brushes attached to polystyrene nanoparticles
(NPs) by Yu et al. [246,252]. These AMP-functionalised coatings acted against P. aeruginosa
and S. aureus, but the coatings were less operative than the sole AMPs in solution. Fur-
thermore, Muszanska et al. created polymeric brushes by dip-coating AMP-functionalised
block copolymer Pluronic F-127 onto a silicone rubber surface. The surfaces prevented
Streptococcus aureus, Streptococcus epidermidis, and Pneumonia aeruginosa colonisation and
killed surface-adhered bacteria [253].

Monteiro et al. conjugated the peptide Chain201D and EG4-SAM control peptide to
carbonylimidazole-activated tetra(ethylene) glycol-terminated self-assembled monolay-
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ers (EG4-SAM) onto gold surfaces. Compared to the control peptide, Chain201D killed
a high proportion of adherent S. aureus and E. coli [254]. Another interesting study is
surface-functionalised PU (PU-DMH) comprising PDMAPS brushes as the lower layer and
HHC36 peptide-conjugated poly(methacrylic acid) (PMAA) brushes as the upper layer.
The PU-DMH surface exhibited bactericidal properties against E. coli and S. aureus bacteria,
preventing the accumulation of bacterial debris on the surfaces. The functionalised surface
possessed persistent antifouling and bactericidal activities, both under static and hydrody-
namic conditions. The microbiological and histological results of animal experiments also
verified its in vivo anti-infection performance [255].

Ti surfaces were coated by Acosta et al. with engineered protein (elastin-like recom-
binamers; ELR) containing D-GLI13K via silanisation [256]. The biofilm formation was
reduced by 90% due to the presence of AMPs on the ELR coatings, and the viability of
Streptococcus gordonii and Porphymonas gingivalis in the adherent population was signifi-
cantly reduced. In a recent study, hydroxyapatite (HA) nanorods co-doped with Fe and Si
were fabricated on a Ti surface. The AMP HHC-36 was chemically attached to nanorods
with and without polymer brushes. The polymer-brush-grafted HHC-36 reduced >99.5%
of Streptococcus aureus and E. coli bacterial strains. This activity was attributed to the collab-
orative effect of AMP and the physical puncturing by HA nanorods. The in vivo studies
performed on HA nanorods with the polymer-brush-grafted HHC-36 showed a reduction
in the inflammatory response and the inhibition of bacterial infection [230].

4.2.4. Water Purification Membranes

The shortage of clean drinking water has been a serious problem worldwide in recent
years; therefore, the emerging application of polymer–bioactive molecule complexes has
become a “hot” topic. Bacteria are present in almost every environment, especially in water,
and antifouling membranes and surfaces have been prepared [257]. In this respect, compos-
ite membranes were synthesised by impregnating Ag NPs in the N-alkylated ter-polymer
of poly(acrylonitrile), poly(n-butyl acrylate), and poly((2-dimethyl aminoethyl) methacry-
late)), followed by cross-linking by the reaction with hydrazine hydrate. The antimicrobial
activity of the composite membranes and a pristine membrane was determined by disc
diffusion experiments on E. coli bacteria. The bacteria were drastically reduced (106 times)
on the Ag-NP-containing membranes compared to the control [258].

4.2.5. Detection Biosensors

Detection biosensors are another area of AMP biomedical applications. Thionins
are also used to develop biosensors for diabetics that detect glucose levels. Salimi and
co-workers confirmed that thionin induced in multi-walled carbon nanotubes selectively
detects glucose [259]. Another example is a lung cancer biomarker probe with a low
detection limit. The biosensor was created using a graphene oxide–thionin–hemin–Au
nanohybrid. In this case, graphene oxide acted as a supporting material in which thionin
and hemin were immobilised, followed by a reduction of gold particles by thionin [260].

4.3. Cosmeceutical Applications

The increased worldwide demand for improving physical appearance, health and
well-being is driving research studies intended to develop new cosmetics. The most
commonly needed substances are for anti-ageing purposes such as the prevention or
reduction of wrinkles and skin smoothing, but also improving skin tone or reducing
whelk effects. To obtain such effects, modern cosmetics have to be capable of blocking ion
channels, providing antioxidants and anti-inflammatory effects, reducing melanin synthesis
or tyrosinase inhibition, inducing cell proliferation/renewal, and many others. According
to the current knowledge, AMPs are able to provide such effects. Additionally, the topical
application of AMPs is the most common administration route and is also mostly desired
for cosmetic applications. This causes peptides to be attractive ingredients in science-based
cosmetics and to play an important role in the cosmetic industry [261,262].
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There are examples of promising trials of AMP applications in skin treatment. An AMP
designated CopA3 was used to prevent the ultraviolet-induced inhibition of type I procol-
lagen synthesis and inhibited the induction of matrix metalloproteinase-1 in human skin
fibroblasts, showing the potential for antiwrinkle cosmetic ingredients [263]. Several studies
showed the capacity of the peptide LL-37 to suppress excessive collagen synthesis, provid-
ing an antifibrogenic effect [264–266]. Other AMPs, such as IDR-1018 [267], SHARP1 [268],
β-defensin-1, -2, -3 [269,270], human neutrophil peptide α-defensins (HNPs) [271], and
DRGN-1 [272] have been successfully used for treating wounds and improving effective
tissue regeneration without scarring.

Some AMPs have anti-inflammatory properties and can modulate the expression of
cytokines, chemokines, and leukocyte activation [273]. Other AMPs such as indolicidin and
its analogues [274], MC1-1 [275], sibaCec [276], SET-M33 [277], temporin-1TI and its ana-
logues [278], hBD-3 [279–281], and LL-37 [282,283] have been shown to inhibit inflammatory
responses. The peptides A3-APO successfully decreased the bacteria burden and reduced
inflammation in acne [284]. The peptides (D4k) ascaphin-8 and (T5k) temporin-DRa were
also effective at inhibiting the growth of Propionibacterium acnes, a pathogen resistant to the
current antibiotics, and can be used to treat acne vulgaris [285]. Another positive effect was
observed in modulating cellular renewal. AMPs have been shown to promote keratinocyte
proliferation, including LL-37, which also promotes cellular migration and regenerative
potential [286,287]. AMPs showing similar effect are IDR-1018 [288], PR-39 [23], human
α-defensins (HNPs-1, -2, and -3) [289], human β-defensins [290–292], DAL-PEG-KSLW,
KSLW [293], epinecidin-1 [294], psoriasin (s100a7) and koebnerisin (S100A15) [295]. Angio-
genesis is an important aspect of skin appearance and health. Disorders of angiogenesis
may cause rosacea, redness and vascular insufficiency [296].

Peptides such as AG-30/5C [297], LL-37 [286,298], PR-39 [299]; CRAMP [300], IDR-
1018 [301], as well as α- and β-defensins [286] have the potential to counteract the age-
induced decrease in angiogenesis in the skin and other tissues [290]. Peptide LfB17-34 can
be used for skin whitening as it strongly increases melanin synthesis, which is associated
with the elevated expression of the melanogenic enzymes tyrosinase and Trp1 [302].

Contributing factors to the ageing of the skin are reactive oxygen species. The in-
tracellular formation of free radicals is influenced by ultraviolet light, ionising radiation,
pollutants and diet [303]. Some peptides isolated from different fishes and mollusc species
act as potential antioxidants [263,304–309]. Antioxidant activity was confirmed for sev-
eral AMPs: temporin-TP1, brevinin-1TP1, brevinin-1TP2, brevinin-1TP3, brevinin-1LF1,
palustrin-2GN1 [310].

The latest research studies of Unilever corporation patented in 2022 resulted in a novel
and innovative approach. The external application of hydroxy stearic acid induced the
secretion of AMPs from keratinocytes in the human body that act against bacteria infecting
the skin, such as Streptococcus aureus and Pseudomonas aeruginosa [311].

5. Methods of AMP Production

Currently, the most commonly used method of obtaining AMPs, apart from extraction,
is chemical synthesis. In clinical trials and commercial markets, large quantities of AMPs
are needed to fulfil basic scientific study requirements. Isolation from natural sources
and chemical synthesis are not cost-effective. In addition, the synthesis of longer peptides
with more than 50 amino acids is not favoured [312]. For the large-scale and cost-effective
production of large peptides and proteins, biological systems such as bacteria and yeast are
required [313–320]. Biological systems do not need expensive pharmaceutical ingredients or
toxic chemical reagents and solvents. Escherichia coli and yeast are two major systems used
to produce recombinant antimicrobial peptides, accounting for over 95% of all reported
cases [321,322]. Many antimicrobial peptides have been produced in yeast with good
yields, but several others have been expressed in negligible amounts or obtained in inactive
forms [323,324]. A bacterial expression system is more often used for obtaining recombinant
antimicrobial peptides than a yeast expression system [322].
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However, there are still some issues remaining, such as the toxicity of the expressed
AMPs for host cells, which can be overcome by using plants as expression platforms [325–327].
Transgenic plants can be used for the oral delivery of AMP-based therapeutics [328,329]. In
2019, Da Sol Kim et al. [39] introduced a new expression vector for AMP production, in
which recombinant AMP can be obtained in bacteria and plants. The vector is designed to
work in prokaryotic systems and can be used to transform chloroplasts for large-scale AMP
production. A plant expression system may offer several other advantages over microbial
expression systems, including no risk of endotoxin contamination and the oral delivery
of bioencapsulated therapeutics using edible plants [328–331]. The number of transgene
copies in chloroplasts can be multiplied up to 10,000 per single plant cell [332,333], which
leads to high expression of the transgene. Based on their research, the authors described a
new expression platform for the efficient production of AMPs, which has the potential to
function in both bacteria and plant chloroplasts.

Summarising, over many years, scientists have developed methods of obtaining AMPs
not only through their direct isolation from organisms, but also chemical methods for the
synthesis of these peptides, and finally more efficient methods of obtaining recombinant
AMPs by genetic engineering.

6. Market

The global antimicrobial peptide market size was valued at USD 5 billion in 2021 and
is expected to reach USD 7.85 billion in 2029. Despite multiple challenges associated with
practical application of AMPs, there are also multiple advantages. The rising frequency of
infectious diseases and the rising demand for effective and safe medicines are driving the
expansion of the antimicrobial peptide market. The potential application to the treatment
of hepatitis C, pneumonia, bacterial infections, HIV, and cancer is likely to increase the
public acceptability of the treatments. As for today, antimicrobial peptide treatments are
a promising newcomer in the field of immune modulation and antifungal drugs, and are
gaining popularity as therapeutic agents for a variety of ailments, including skin infections.
Therefore, due to the increased awareness of medications and therapies incorporating
AMPs, the global market for AMPs is expected to rise significantly.

AMPs are now undergoing clinical trials, but the stability and half-life of these peptides
in vivo are still not well-identified. These issues are limiting the global growth of the market;
however, with a growing pool of scientists and talented technocrats interested in the arena
of innovative therapeutics containing antimicrobial peptides for rare diseases, institutional
research is substantially invested.

The hospital pharmacy segment held the highest revenue share of 45.4% in 2021,
whereas the retail pharmacy segment is expected to register the fastest growth rate. Rising
prescriptions of peptide antibiotics owing to various kinds of bacterial skin infections and
ophthalmic infections is a major factor expected to drive the retail pharmacy segment
growth. However, the growth of the hospital pharmacy segment is augmented by the
rising prevalence of bloodstream infections, hospital acquired infections, and prolonged
hospital stays.

The market for peptide antibiotics is expected to witness growth opportunities owing
to the rising incidence of central-line-associated bloodstream infections. According to
the Australian Institute of Health and Welfare, during 2019–2020, 700 Australian public
hospitals reported 1428 cases of Staphylococcus aureus bloodstream infections. Amongst
them, most of the infections were methicillin-sensitive Staphylococcus aureus infections. All
types of bloodstream infections are serious infections and can cause prolonged hospital
stays. Thus, the surge in the prevalence of bloodstream infections is likely to support
market growth.

The rising incidence of antimicrobial resistance is also expected to provide lucrative
growth opportunities for the peptide antibiotic market. For instance, according to the
Centers for Disease Control and Prevention (CDC) report on antibiotic resistance threats
in the US in 2019, 2.8 million antimicrobial resistance cases are recorded in the United
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States every year with about 35,000 deaths every year. Moreover, the CDC is implementing
funding activities through their Antimicrobial Resistance Initiative, which supports over
50 state health departments and various local health departments. The CDC has also
collaborated with state and local health departments, federal agencies, and the private
sector to mitigate the antimicrobial resistance threat.

From 2016 to 2020, the CDC has invested in over 330 novel antibiotic resistance projects
across 30 countries to combat antimicrobial resistance. Ongoing product approvals and
strategic initiatives undertaken by key players such as partnerships, collaborations, product
launches, and expansions are expected to cater to market growth.

Moreover, in July 2022, Boehringer Ingelheim, Evotec SE, and bioMérieux announced
that they have created a joint venture for making the next generation of antimicrobials to
fight against antimicrobial resistance. Furthermore, the availability of a robust product
portfolio of peptide antibiotics is also anticipated to positively impact the growth of the
market for peptide antibiotics [334–336].

7. Conclusions

Antimicrobial peptides have many promising properties for pharmaceutical, biomedical
and cosmeceutical use. There have been multiple research studies to understand how they
interact and impact other organisms that are required to utilise AMPs in practical applications.

The increasing antimicrobial resistance to antibiotics has created a need for new
antimicrobial agents and AMPs to provide a potential solution due to their broad spectrum
of activity against various microorganisms. AMPs can be used as new therapeutics, and
there is a growing interest in the identification and design of new AMPs that are more
potent, selective, and cost-effective.

Supporting conventional antibiotics by AMPs may enhance the effectiveness of an-
timicrobial treatment and reduce the problem of increasing resistance, making combination
therapies a promising avenue for future research.

AMPs can also be used as an alternative to conventional antibiotics in animal feed
to prevent and treat bacterial infections. This could help reduce the use of antibiotics in
agriculture, which has contributed to the development of antibiotic-resistant bacteria.

Some AMPs, such as LL-37 or defensins, can work by direct killing, which involves
disrupting the microbial cell membrane, leading to cell lysis and death. AMPs can also
work by modulating the immune response. For example, LL-37, in addition to its direct
killing activity, can also modulate the immune response by attracting immune cells to the
site of infection and promoting the release of inflammatory cytokines.

AMPs, due to their cationic properties, bind preferentially to cancer cells, causing the
disruption of the lipid membranes. Activating various intracellular signalling pathways
leads to apoptosis and cell death. These properties make AMPs a very attractive target
for clinical development. There are many FDA-approved AMPs that operate in ways that
are often irreplaceable, e.g., in the case of antibiotic-resistant bacteria infection, such as
Staphylococcus aureus. AMPs can be used in biomedical coatings, providing protection to
the medical devices and enhancing their functionalities, such as drug delivery, implants,
biosensing or osseointegration.

Cosmetology is also a promising area of AMP research. The current knowledge
indicates that AMPs can provide the necessary effects to meet the needs of modern cosmet-
ics, such as blocking ion channels, providing antioxidants, and anti-inflammatory effects,
among other things. Therefore, it is likely that the cosmetic industry will continue to focus
on the development of new products based on AMPs.

AMPs can be used as ingredients in skincare products such as cleansers, moisturisers,
and serums. Research has shown that some AMPs have the ability to kill acne-causing
bacteria and may also have anti-inflammatory properties, making them promising for the
treatment of acne and other skin conditions. AMPs have also been investigated for their
potential use in hair care products. Some AMPs have been shown to promote hair growth
and improve the appearance of damaged hair. Some AMPs have been shown to have
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antioxidant properties and may be effective in protecting the skin from damage caused by
UV radiation.

The global antimicrobial peptide market is poised to experience significant growth
in the coming years due to the rising demand for effective and safe medicines, increased
prevalence of infectious diseases, and expanding research activities.

Despite the challenges associated with the practical application of AMPs, including
stability and half-life issues, the market is anticipated to benefit from the growing pool
of scientists and talented technocrats interested in the arena of innovative therapeutics
containing antimicrobial peptides for rare diseases.
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