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Summary

Prognostic models are useful tools for assessing a patient’s risk of experiencing adverse health 

events. In practice, these models must be validated before implementation to ensure that they 

are clinically useful. The concordance index (C-Index) is a popular statistic that is used for 

model validation, and it is often applied to models with binary or survival outcome variables. In 

this paper, we summarize existing criticism of the C-Index and show that many limitations are 

accentuated when applied to survival outcomes, and to continuous outcomes more generally. We 

present several examples that show the challenges in achieving high concordance with survival 

outcomes, and we argue that the C-Index is often not clinically meaningful in this setting. We 

derive a relationship between the concordance probability and the coefficient of determination 

under an ordinary least squares model with normally-distributed predictors, which highlights the 

limitations of the C-Index for continuous outcomes. Finally, we recommend existing alternatives 

that more closely align with common uses of survival models.
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1 | INTRODUCTION

In medical practice and health research, it is often of interest to identify patients who have 

a high risk for adverse health outcomes and to distinguish these patients from lower-risk 

individuals. Predictive models can be applied to assess a patient’s risk of experiencing the 

outcome of interest. When patients are followed over time, prognostic survival models are 

especially useful for quantifying the risk of adverse events, and a high-performing model is 
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expected to reliably discriminate patients with imminent events from patients who will avoid 

these events for longer periods of time.

The Concordance Index (C-Index) has become a popular statistic for evaluating a model’s 

ability to discriminate risk within a population 12. Originally developed for the assessment of 

binary classifiers such as binary logistic regression models, the C-Index has been extended 

to the survival analysis setting, with Harrell or Uno’s C-Index definitions being common 

choices for the validation of survival models1,2,3. In the binary outcome setting, the C-Index 

is equivalent to the Area Under the Receiver Operating Characteristic Curve (AUC). C-Index 

values range from zero to one, with a value of 0.5 corresponding to the performance of 

a random classifier. Several textbooks for physicians and applied statisticians arbitrarily 

suggest that only models with a C-Index above 0.7 adequately discriminate between risk 

profiles 4,5,6. These guidelines for interpreting the C-Index have become highly influential, 

as many reviewers rely heavily on the C-Index to scrutinize proposed models7.

While the C-Index continues to be used in practice, many limitations of the statistic have 

been noted. For example, several authors have questioned the utility of the C-Index in 

building and validating prognostic models of disease status 7,8,9. Most of this criticism has 

been presented in the context of binary classification, and few authors have discussed these 

and other limitations of the C-Index in the context of models with non-binary outcomes.

2 | C-INDEX BACKGROUND AND PREVIOUS CRITICISM

As described by Harrell et al. (1996)1, the C-Index is based on a scenario in which 

the orderings of the predicted risk scores are compared to the orderings of the observed 

outcomes within pairs of subjects from a sample. For binary outcomes, concordance occurs 

when a subject who experiences the event of interest is assigned a higher predicted risk 

probability than a subject who does not experience the event. For survival outcomes, 

concordance occurs when a subject who experiences the event earlier in the study period 

is assigned a higher predicted risk score than a subject who experiences the event later or 

who never experiences the event in the study period. For a given model and corresponding 

method of risk prediction, the C-Index is an estimate of the concordance probability, which 

is defined as the probability that two randomly selected subjects will have correctly ordered 

risk predictions1,2:

C‐Index = P (Concordance) = Number of Concordant Pairs+0.5(Number of Indeterminate Pairs)
Number of Comparable Pairs .

It is often claimed that a high concordance probability is indicative of a model that performs 

well at discriminating between risk profiles1,2. In Section 3, we discuss the selection of 

comparable pairs in more depth and uncover certain implications of the various C-Index 

definitions.

The C-Index has been criticized from a statistical and clinical perspective7,8,9,10. Many 

authors have shown that the C-Index is insensitive to the addition of new predictors 

in a model, even if the new predictors are statistically and clinically significant7. Thus, 

the C-Index is generally not useful in evaluating new risk factors or in model building. 
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Also, because the C-Index depends only on the ranks of the predicted values, models 

with inaccurate predictions can have C-Indices that are much larger than those from a 

competing model with more accurate predictions9. Cook (2007) notes that in populations 

with mostly low-risk subjects, the C-Index computation involves many comparisons of 

two low-risk patients with similar risk probabilities, and physicians may not be interested 

in these comparisons7. Multiple authors have also suggested that there are limitations in 

the C-Index interpretation. For example, Halligan et al. (2011) argue that the concepts of 

sensitivity and specificity can be very meaningful to physicians, but the C-Index, which 

combines sensitivity and specificity across all models, has an interpretation that is much less 

useful 10.

3 | CONSEQUENCES OF COMPARABLE PAIRS

3.1 | Comparable Pairs Overview

In all definitions of the C-Index (for models with either binary or survival outcomes), only 

certain pairs of subjects are selected to assess concordance between the outcome variable 

and the model predictions1,2. The differences in how these pairs are selected between the 

binary and survival versions of the C-Index have important consequences. We show that 

the definition of comparable pairs for a continuous or nearly-continuous response, such as 

in the survival setting, sets up a much more difficult discrimination problem that is often 

not clinically meaningful in assessing model performance. Therefore, we argue that certain 

limitations of the C-Index are accentuated for survival outcomes.

3.2 | Comparable Pairs for Binary Outcomes

For binary outcome data, the C-Index only assesses concordance between patients in the 

sample who have different outcomes. For example, if disease status is the outcome of 

interest, the predicted probabilities for patients with the disease are only compared to 

those for patients without the disease. Comparisons are not made within the diseased or 

non-diseased groups. Let n be the size of the study sample and define indices i = 1, …, n and 

j = 1, …, n. Then, the C-index for binary outcomes is1

C‐Index = P πi > πj ∣ Y i = 1, Y j = 0
= i ≠ j I π̂i > π̂j, Y i = 1, Y j = 0 + 0.5I π̂i = π̂j, Y i = 1, Y j = 0

i ≠ j I Y i = 1, Y j = 0 , (1)

where Y  is the binary outcome variable, π̂ is the predicted probability of the outcome, and 

I ⋅  is the indicator function. One feature of the C-Index with binary outcomes is that pairs 

with very different underlying risk probabilities are more likely to be comparable. As an 

example, consider a pair of patients (Patient A and Patient B) that have nearly the same 

underlying risk probability for disease ( πA ≈ πB = 0.8 ). The probability that these patients 

have the same observed outcome in a sample is

P Y A = Y B = P Y A = 1, Y B = 1 + P Y A = 0, Y B = 0 = 0.8 0.8 + 0.2 0.2 = 0.68 .
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Thus, the probability that patients A and B form a comparable pair in the sample is 

P Y A ≠ Y B = 1 − P Y A = Y B = 0.32. Now, consider a different pair of patients (C,D) in the 

random sample, where πC = 0.8 and πD = 0.2. In this setting,

P Y C = Y D = 0.8 0.2 + 0.2 0.8 = 0.32,

so that the probability that patients C and D form a comparable pair is 0.68. Thus, patients 

C and D are included among the comparable pairs with a probability more than twice that 

for patients A and B. More generally, if πi + πj is fixed, then the probability that the pair is 

comparable increases with πi − πj . As we shall see, the selection against pairs with similar 

risks does not carry over to the continuous case.

3.3 | Comparable Pairs for Time-to-Event Outcomes

For time-to-event outcomes that are potentially right-censored, two patients are said to 

be comparable if they have different failure times and the earlier failure time is actually 

observed (uncensored)1,2,11. Without loss of generality, we consider the Cox proportional 

hazards model, or any model where the risk scores are generated from a linear combination 

of the predictor vector, Zi. The C-Index for time-to-event outcomes is

C‐Index = P̂ (Zi
⊤β > Zj

⊤β ∣ T i
* < T j

*)

= i ≠ j {I(Zi
⊤β > Zj

⊤β, T i < T j, δi = 1) + 0.5I(Zi
⊤β = Zj

⊤β, T i < T j, δi = 1)}
i ≠ j I T i < T j, δi = 1 ,

(2)

where Zi
⊤β̂ is the predicted risk score, T i is the observed survival time, T i

* is the underlying 

survival time, and δi is the event status (1=event, 0=censored). Defining Di as the underlying 

censoring variable, T i = min(T i
*, Di) and δi = I(T i

* < Di).

In the continuous case, the probability that two patients will have exactly the same 

underlying survival time is zero, regardless of how similar the true risk profiles are. In 

practice, the data are always subject to grouping, but unless the grouping is very coarse, the 

chance of equal observations is much smaller than in the binary case. As a result, it is very 

likely for subjects with similar or identical underlying risk profiles to form comparable pairs 

when evaluating a survival model.

4 | CHALLENGES WITH TIES, CENSORING, AND TIME DEPENDENCE

4.1 | Ties in the Predicted Risk Scores

As discussed above, Harrell’s definition of the C-Index for time-to-event outcomes 

frequently involves comparisons of patients with very similar risk profiles. For survival 

models with categorical or discrete predictors, the predicted risk scores can be identical 

within pairs of subjects. Therefore, it is important to define an appropriate method for 

handling tied risk scores. Yan & Greene (2008) show that scoring 0.5 for ties, as suggested 

in Equation (2), can decrease the C-Index, especially when there are many ties in the risk 

score distribution12. Thus, comparable pairs with either similar or identical risk scores can 

have deflating effects on the C-Index value.
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For binary outcomes, a comparable pair that has a tie in the predicted risk probabilities 

must include one subject with the event and one subject without the event. However, in 

the continuous outcome setting, a comparable pair that has a tie in the risk scores could 

have small to very large differences in the outcome variable. A model that assigns the same 

risk score to patients with extremely different survival experiences is not performing well, 

but the C-Index does not detect this inadequacy. On the other hand, a model that assigns 

the same risk score to patients with very similar survival experiences may be appropriately 

capturing the similarities in underlying risk. While these two scenarios have very different 

interpretations, they are treated as the same in the C-Index calculation, since each of these 

pairs contributes a score of 0.5 in Equation (2).

4.2 | Censoring

Survival data also bring the unique challenge of handling right-censoring in the time-

to-event outcome variable. The limiting value of Harrell’s C-Index depends on the 

censoring distribution, which arguably results in misleading estimates of the concordance 

probability3,11. Using inverse probability weighting, Uno et al. (2011) developed a modified 

version of the C-Index, the limiting value of which does not depend on the censoring 

distribution3. Uno’s C-Index provides an alternative for handling right-censored data, but 

it still suffers from many of the same limitations presented in this paper. This is mainly 

because, like Harrell’s C-Index, it is based on pairwise comparisons of patients with 

potentially similar risks, and the definition of comparable pairs for Uno’s C-Index is nearly 

identical to that in Equation (2)3.

Gönen and Heller (2005) proposed an alternative concordance measure for proportional 

hazards models that is not influenced by the right-censoring distribution13. This measure is 

estimated by

2
n n − 1 i ≠ j

I(Zj
⊤β < Zi

⊤β)
1 + exp(Zj

⊤β̂ − Zi
⊤β)

.

In the above expression, if two patients have very similar risks such that Zj
⊤β̂ − Zi

⊤β̂ is 

very close to zero, then the corresponding summand for these patients is approximately 

1/ 1 + exp 0 = 0.5, which is the minimum value. Thus, by similar arguments as in Section 

4.1. pairs of patients with very similar predicted risks can substantially decrease this 

concordance measure, even if these pairs are not of clinical interest, or are accurately 

reflecting true similarities in underlying risk. As a result, Gönen and Heller’s concordance 

measure shares the same pitfalls as the C-Index, and it can be low for models that are still 

very useful for discriminating clinically-meaningful risk differences, or for other purposes 

as described in Section 6.2. This is especially true in samples with little heterogeneity in 

the underlying risk levels. Furthermore, this measure heavily depends on the proportional 

hazards model assumption and cannot be applied to survival models outside of this class.

4.3 | Time Dependence

Most C-Index estimators are based on the assumption that the risk scores do not change over 

time, and for models with timevarying covariates or coefficients, Harrell’s C-Index and its 
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close variants (e.g. Uno’s C-Index) cannot be directly applied. To overcome this limitation, 

Heagerty and Zheng (2005) proposed a time-dependent C-Index estimator that treats the 

time-to-event outcome as a sequence of binary observations. For the “incident-dynamic” 

version of this estimator, and at event time t, a binary outcome variable is defined for all 

subjects at risk (i.e. with T i ≥ t) such that Y i = I T i = t, δi = 1 . Then, using the risk score 

values at time t (for all subjects at risk), a time-specific C-Index estimator is calculated 

based on Equation (1). An overall C-Index estimator for a given time interval is then derived 

by taking a weighted average of the time-specific C-Index estimators14.

While Heagerty and Zheng’s time-dependent C-Index estimator is flexible enough to 

evaluate a broader class of survival models, it has the same fundamental limitations as the 

conventional C-Index estimators. This is because the time-to-event outcome is dichotomized 

at each time point, which potentially generates many comparable pairs that are difficult to 

discriminate and are not clinically meaningful. For example, if a patient experiences the 

event of interest on day t of the study, and another patient, with similar underlying risk, 

experiences the event shortly afterwards on day t + 1, then these two patients would be 

deemed comparable according to the time-dependent C-Index definition. In addition, it has 

been shown that the time-dependent C-Index is a consistent estimator for the population 

concordance probability14, as defined in Section 2. Thus, it has the same target parameter 

as the conventional C-Index estimators and shares many of the properties described in this 

paper.

5 | CONCORDANCE UNDER THE NORMAL LINEAR REGRESSION MODEL

5.1 | R2 and Concordance Probability

We derive a relationship between the population concordance probability and the population 

R2 parameter for Ordinary Least Squares (OLS), assuming the predictors are normally 

distributed. Suppose that the continuous outcome variable Y i, i = 1, …, n is generated from 

a multiple linear regression model with the predictor vector Zi and its corresponding 

coefficient vector β:

Y i = Zi
⊤β + εi, (3)

where εi ∼ N 0, σ2 . Zi is assumed to follow a multivariate normal distribution. Define αc as 

the population concordance probability under the model in Equation (3):

αc = P Zi
⊤β < Zj

⊤β ∣ Y i < Y j ,

and define the following consistent estimator for αc:

αc = i ≠ j I(Zi
⊤β < Zj

⊤β, Y i < Y j)
i ≠ j I(Y i < Y j)

.
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Furthermore, let R2 denote the sample coefficient of determination for the OLS model in 

Equation (3), such that R̂2 p
R2. Under these assumptions, we show that

αc =
2
π sin−1 R2 + 1

2 . (4)

First, denote τKendall as Kendall’s tau correlation parameter for the association between Y i

and Zi
⊤β. Then, by Pencina and D’Agostino (2004)11

αc = τKendall + 1
2 . (5)

Assuming a bivariate normal distribution, Rupinski and Dunlap (1996) reference the 

following relationship between τKendall and Pearson’s correlation parameter, ρ15:

τKendall = 2
πsin−1(ρ) . (6)

Since the predictors are normally distributed, Y i and Zi
⊤β jointly follow a bivariate normal 

distribution. Also, assuming Y i and Zi
⊤β are positively correlated

ρ = R2 . (7)

The relationship in Equation (4) follows from Equations (5), (6), (7) under the OLS model 

with normally-distributed predictors.

We demonstrate the above relationship through simulation. On each iteration of the 

simulation, we generate a single predictor Zi, i = 1, …, 100 from a standard normal 

distribution. Then, we condition on Zi and generate Y i from Equation (3) with β0 = 0 and 

β1 = 1. We compute αc and R2 for each simulated dataset, and obtain the average values 

across 1000 iterations. R2 is a biased estimator of R2, but with the sample size of n = 100
in our simulations, this bias is negligible and the empirical average is very close to the 

true parameter value16. We repeat the process for values of σ2 ranging from 1 to 400. 

As expected, the empirical relationship between the average αc and R2 values matches the 

theoretical relationship between the ac and R2 parameters in Equation (4) (Figure 1).

As shown in Figure 1, the population concordance probability is a monotonic function of 

the R2 parameter for the OLS model with normally-distributed predictors, and it achieves 

its maximum and minimum values at the maximum and minimum values of the R2

parameter. Thus, in large samples, the estimated concordance probability shares certain 

properties with R2 under the setting with normally-distributed predictors. For example, ac

depends on the variances of the error term and the predictors, just like R2. In addition, 

a perfectly-specified OLS model (with normally-distributed predictors) that is practically 

useful can have an arbitrarily low R2 value or estimated concordance probability17,18. High 
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concordance probability values such as 0.8 or 0.9 correspond to extremely high R2 values 

such as 0.75 or 0.85, which can be difficult to attain in many applications in the social and 

health sciences.

One limitation of R2, which several authors have noted, is that the value of R2 strongly 

depends on how the predictors Zi are sampled17,18. A higher R2 value may be obtained 

by designing the study such that the Zi are more dispersed, even if the assumed model 

remains unchanged. Thus, the R2 is not only a function of the model specification, but 

also the amount of variability in the sample predictor values. This limitation also applies 

to the C-Index. Even for well-developed models that are perfectly specified and include 

many clinically-important predictors, the estimated C-Index will be low if there is little 

heterogeneity in the patient characteristics of the sample.

6 | C-INDEX MISINTERPRETATION

6.1 | Example: Survival Within Two Age Groups

The C-Index is based on a discrimination scenario that may not align with the true purpose 

of the model, especially in the time-to-event context. In this section, we show a simple 

example of a very useful model that can only achieve a modest C-Index value. Consider a 

population that consists of individuals in their 10th-year and 90th-year of age. It is valid to 

assume that the 90-year-olds are at a much greater risk for death, and the distribution of the 

underlying time-to-death variable within this population may look highly clustered (Figure 

2). If one were to take a sample from the population described in Figure 2 and develop 

a survival model with age as the only predictor, the model would be able to discriminate 

nearly perfectly the mortality risk between the 10-year-olds and 90-year-olds. However, the 

model would include no relevant information for discriminating risk within each age group, 

so it would predict the same risk score for subjects of the same age. If the sample (with 

size n) has an equal number of 10-year-olds and 90-year-olds and there is no censoring, the 

C-Index for this model is approximately

Number of Comparable Pairs−0.5(Number of Ties)
Number of Comparable Pairs =

n
2 − 0.5 2 n/2

2
n
2

= 3n2/4 − n/2
n2 − n

≈ 0.75.

A naive interpretation of this result is that the model is only moderately useful for predicting 

risk because the C-Index is only moderately high. However, the model is able to perfectly 

discriminate between subjects who have an immediate risk for death and those who will live 

for many more years, making it very useful in practice. While this is an extreme example, 

it highlights what the C-Index actually measures and the consequences of misinterpreting 

the C-Index as a measure of overall model usefulness. Furthermore, as the age distribution 

becomes more imbalanced, the C-Index defined by Equation (2) decreases to 0.5 because 

fewer comparisons can be made between the groups (Table 1). This result demonstrates that 

the C-Index heavily depends on the underlying risk differences of the comparable pairs that 

are available in the sample.
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Consider now the same example as in the previous section, but assume that only a binary 

response variable is recorded, indicating whether the patient is still alive 20 years after the 

start of the study, and that age is only recorded as 10 or 90. A binary-outcome regression 

model is almost-perfectly fit to the data with age as the only predictor. Based on Figure 

2, the C-Index for the binary-outcome model is close to one, which is the highest possible 

value and much higher than the C-Index for the survival model in the previous section. 

Even as the age distribution becomes more imbalanced, the C-Index for the binary-outcome 

regression model remains equal to one. While the survival model is equally capable of 

discriminating between patients who will live 20 years from those who will not, it is 

penalized for not being able to discriminate between the risk levels of two patients having 

essentially the same age. In the binary version of the C-Index, there is never a comparison 

that involves two patients with the same age.

6.2 | Some Uses of Survival Models

As discussed in previous sections, the C-Index describes a model’s ability to correctly 

distinguish the risk between any two subjects from the population of interest. It has 

been argued by previous authors that this is an unrealistic clinical scenario, meaning that 

physicians rarely use a predictive model to distinguish between pairs of patients8. In fact, 

there are many other uses of a survival model that are valid and potentially more clinically 

relevant such as

1. Evaluation of the strength, significance, and predictive ability of risk factors for 

adverse outcomes.

2. Accurate estimation of survival probabilities (i.e. calibration).

3. Risk grouping based on clinically-meaningful differences in underlying risk.

The C-Index, however, does not measure a model’s ability to perform any of these tasks. 

Therefore, evaluations that rely heavily on the C-Index often fail to describe the model’s 

performance with respect to the intended use in practice. If (1) is the main use of interest, the 

sizes of the hazard ratios and p-values are more meaningful than the C-Index for assessing 

the clinical and statistical significance of risk factors. To assess the prognostic value 

and clinical usefulness of a predictive model, cross-validated goodness-of-fit, net benefit 

measures, and decision curve analyses are more informative19,20,21. For (2), calibration 

statistics such as the calibration slope provide more informative model assessments than 

the C-Index4. For (3), discriminant analyses and the corresponding assessments are most 

appropriate22. In general, we recommend against the use of arbitrary hard thresholds or 

rules of thumb to decide whether a model’s performance is adequate, as this practice 

oversimplifies the model assessment process and can lead to the disposal of many useful 

models. Instead, we suggest that analysts carefully identify the intended use of the survival 

model, select an evaluation metric that matches this use, and interpret the value of the 

appropriate evaluation metric while considering the limitations of the available sample data.

In the field of reproductive medicine, for example, it has been argued that most patients 

with very high or low probabilities of becoming pregnant are often unobservable in 

samples drawn from fertility programs23. Therefore, evaluations of survival models for 
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time-to-pregnancy, based on the C-Index, often involve many comparisons of patients with 

near-average underlying risks. Consistent with the arguments in this paper, it has been 

reported that the C-Index is generally very low for fertility survival models, but if these 

models are well-calibrated and can adequately aid in the treatment decisions of subfertile 

patients (related to items (1) and (2) above), they are still considered very clinically useful23.

The C-Index is most useful when the predicted risk levels are intended to be compared 

across patients. For example, when assigning livers to transplant candidates, the risk scores 

of patients (the MELD scores) on the waiting list are compared to determine who has the 

highest priority for receiving the transplant24. In this context, it is relevant to consider how 

well the survival model can correctly order patients in terms of risk. Therefore, the C-Index 

matches the clinical use of the model in this case, although here again, the value is heavily 

influenced by comparisons of patients with nearly identical underlying risk. Researchers and 

reviewers should recognize that this is just one specific context, and the C-Index cannot be 

interpreted as an overall metric for model adequacy in every application.

7 | A REAL DATA EXAMPLE: GERMAN BREAST CANCER STUDY GROUP

We now demonstrate the pitfalls of the C-Index through an analysis of breast cancer survival 

data. In a 1984–1989 study conducted by the German Breast Cancer Study Group (GBSG), 

patients were followed to assess recurrence-free survival, and several clinical risk factors 

were measured at the start of the study25. We fit two different Cox proportional hazards 

models for recurrence-free survival, using data from 686 node-positive patients26,27. The 

first model (Model A) includes the number of positive lymph nodes and the progesterone 

receptor concentration as predictors; the second model (Model B) includes both of the 

predictors from Model A, plus an additional categorical predictor for the tumor grade (I, II, 

or III).

It is well-established that tumor grade is a very strong predictor of recurrence-free survival 

in cancer patients28,29. Figure 3 shows the estimated survival curves (from Model B) for 

a patient with an average number of positive lymph nodes and progesterone receptor 

concentration, stratified by tumor grade. We observe clinically-meaningful differences in 

the estimated survival probabilities across tumor grades, and the estimated median survival 

time for a patient with a grade III tumor is at least three years earlier than one with a 

grade I tumor. In addition, the estimated hazard ratios are very large and there is strong 

evidence of a statistically significant association between tumor grade and the hazard of 

cancer recurrence or death (Table 2).

Despite the strong impact of the tumor grade variable on the survival estimates and clinical 

interpretations of patients’ risks, the C-Indices for Models A and B are 0.679 and 0.682, 

respectively, giving the appearance that this variable has almost no prognostic value in terms 

of risk discrimination. In Table 2, we decompose the total number of comparable pairs based 

on whether the patients have different tumor grades, and we calculate the concordance rates 

within these subgroups of pairs as follows (written assuming no ties in the risk scores for 

simplicity):
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CRkℓ

= i ≠ j I(Zi
⊤β̂ > Zj

⊤β̂, T i < T j, δi = 1) I Gi = k, Gj = ℓ + I Gi = ℓ , Gj = k
i ≠ j I T i < T j, δi = 1 I Gi = k, Gj = ℓ + I Gi = ℓ , Gj = k , (8)

where CRkℓ is the estimated concordance rate among comparable pairs with tumor grades k
and ℓ k = 1, …, 3 and ℓ = 1, …, 3), and Gi is the tumor grade variable. The overall C-Index 

is a weighted average of CR11, CR22, CR33, CR12, CR13, and CR23, where the weights are the 

denominators from Equation (8). We find that for certain comparable pairs of patients with 

different tumor grades (III vs. I and II vs. I), the concordance rate is much higher than the 

overall C-Index, and this is accentuated when Model B is used over Model A. This provides 

further evidence that patients with tumor grades II or III have elevated risks of recurrence or 

death, compared to patients with tumor grade I, and the inclusion of the tumor grade variable 

in the model is useful for identifying these higher-risk patients. However, as in the age 

group example from Section 6.1, the vast majority of the comparable pairs in the C-Index 

calculation involve patients with the same tumor grade, or two high-risk grades (i.e. grades 

III vs. II), so the C-Index is dominated by comparisons of patients with similar underlying 

risks and it fails to recognize the prognostic value of the model. As argued in Sections 3.2 

and 6.1, many of these patients with the same tumor grade and similar underlying risks 

would not be considered comparable if the outcome were measured as a binary indicator. 

For the survival model, which has very few ties in the time-to-event outcome variable, these 

types of pairs are frequently considered comparable, which deflates the overall C-Index.

8 | DISCUSSION

Through a direct comparison of the binary and survival versions of the C-Index, we have 

demonstrated the unique challenges in attaining high C-Index values for survival models. 

The differences in the concordance definitions for binary and survival outcomes have 

important implications in practice. In the survival case, the C-Index is negatively impacted 

by the existence of patients deemed comparable but with similar risks. Statisticians, 

physicians, and peer reviewers should consider the difficult comparisons involved in C-Index 

calculation for survival models when evaluating discrimination ability. It is also important 

to clearly identify the target population and determine whether it is actually of interest to 

discriminate risk levels across all patients within this population, regardless of how similar 

they are. Careful interpretation of the C-Index and its relationship with the actual use of the 

model is crucial for appropriate evaluation.

One potential modification of the C-Index, which could provide more meaningful 

information to clinicians, is to weight the comparable pairs by some measure of difference 

in underlying risk. Thus, the comparisons that are more clinically relevant are given more 

weight in the model evaluation. However, we note that it is challenging to nonparametrically 

estimate differences in underlying risk with censored time-to-event data. We also emphasize 

that many limitations of the C-Index would not be resolved by this modification. For 

example, weighted C-Indices still measure model performance with respect to pairwise 

comparisons of patients’ risks, which often does not match the intended uses of survival 

models for clinical applications.
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The analytic relationship between the concordance probability and R2 under the OLS setting 

provides a mapping from concordance probability values to a more familiar scale. The 

limitations of the R2 measure are well-documented, and researchers across many scientific 

fields expect to observe low R2 values even for useful models17,18. The relationship suggests 

that modest C-Index values correspond to R2 values which are difficult to achieve in some 

applications. As with R2, understanding the limitations of the C-Index may help researchers 

adjust expectations and more accurately assess a model’s usefulness.

In this paper, we have described example models that are very useful in practice but have 

low C-Index values. Researchers may benefit from clearly defining the desired properties of 

a model, and examining statistics that reflect the model’s performance with respect to these 

goals7. We have described several common uses of survival models that are not captured by 

the C-Index, and we have suggested existing alternatives for assessing model performance 

in each application. Further work is needed to develop evaluation statistics that closely align 

with the varied clinical uses of survival models.

Financial disclosure

Research reported in this publication was supported by the National Institute of Diabetes and Digestive and Kidney 
Diseases of the National Institutes of Health under award numbers R01DK070869 and R01DK129539. The content 
is solely the responsibility of the authors and does not necessarily represent the official views of the National 
Institutes of Health.

Data availability statement

The German Breast Cancer Study Group data that support this paper are publicly 

available through the survival package in R (https://cran.r-project.org/web/packages/

survival/index.html)26. The R codes are available with this paper at the Statistics in 

Medicine website on Wiley Online Library.

References

1. Harrell F, Lee K, Mark D. Multivariate prognostic models: Issues in developing models, evaluating 
assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15: 361–387. doi: 
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 [PubMed: 8668867] 

2. Harrell F, Califf R, Pryor D, Lee K, Rosati R. Evaluating the yield of medical tests. JAMA 1982; 
247: 2543–2546. doi: 10.1001/jama.1982.03320430047030 [PubMed: 7069920] 

3. Uno H, Cai T, Pencina M, D’Agostino R, Wei L. On the C-statistics for evaluating overall adequacy 
of risk prediction procedures with censored survival data. Stat Med 2011; 30: 1105–1117. doi: 
10.1002/sim.4154 [PubMed: 21484848] 

4. Steyerberg E Clinical Prediction Models: A Practical Approach to Development, Validation, and 
Updating. New York, NY: Springer. 2009

5. DeMaris A, Selman S. Converting Data into Evidence: A Statistics Primer for the Medical 
Practitioner. New York, NY: Springer. 2013.

6. Jin V, Wang J, Tang B, eds. Integration of Multisource Heterogeneous Omics Information in Cancer. 
Lausanne: Frontiers Media SA. 2020.

7. Use Cook N. and misuse of the receiver operator curve in risk prediction. Circulation 2007; 115: 
928–935. doi: 10.1161/CIRCULATIONAHA.106.672402 [PubMed: 17309939] 

8. Vickers A Prediction models: Revolutionary in principle, but do they do more good than harm? J 
Clin Oncol 2011; 29: 2951–2952. doi: 10.1200/JCO.2011.36.1329 [PubMed: 21690474] 

Hartman et al. Page 12

Stat Med. Author manuscript; available in PMC 2024 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html


9. Vickers A, Cronin A. Traditional statistical methods for evaluating prediction models are 
uninformative as to clinical value: Towards a decision analytic framework. Semin Oncol 2010; 
37: 31–38. doi: 10.1053/j.seminoncol.2009.12.004 [PubMed: 20172362] 

10. Halligan S, Altman D, Mallett S. Disadvantages of using the area under the receiver operating 
characteristic curve to assess imaging tests: A discussion and proposal for an alternative approach. 
Eur Radiol 2015; 25: 932–939. doi: 10.1007/s00330-014-3487-0 [PubMed: 25599932] 

11. Pencina M, D’Agostino R. Overall C as a measure of discrimination in survival analysis: Model 
specific population value and confidence interval estimation. Stat Med 2004; 23: 2109–2123. doi: 
10.1002/sim.1802 [PubMed: 15211606] 

12. Yan G, Greene T. Investigating the effects of ties on measures of concordance. Stat Med 2008; 27: 
4190–4206. doi: 10.1002/sim.3257 [PubMed: 18384187] 

13. Gönen M, Heller G. Concordance probability and discriminatory power in proportional hazards 
regression. Biometrika 2005; 92: 965–970. doi: 10.1093/biomet/92.4.965

14. Heagerty P, Zheng Y. Survival model predictive accuracy and ROC curves. Biometrics 2005; 61: 
92–105. doi: 10.1111/j.0006-341X.2005.030814.x [PubMed: 15737082] 

15. Rupinski M, Dunlap W. Approximating Pearson product-moment correlations from Kendall’s tau 
and Spearman’s rho. Educ Psychol Meas 1996; 56: 419–429. doi: 10.1177/0013164496056003004

16. Mean Cramer J. and variance of R2 in small and moderate samples. J Econom 1987; 35: 253–266. 
doi: 10.1016/0304-4076(87)90027-3

17. Sapra R Using R2 with caution. Curr Med Res Pract 2014; 4: 130–134. doi: 10.1016/
j.cmrp.2014.06.002

18. McGuirk A, Driscoll P. The hot air in R2 and consistent measures of explained variation. Am J 
Agric Econ 1995; 77: 319–328. doi: 10.2307/1243542

19. van Houwelingen H, Bruinsma T, Hart A, Van’t Veer L, Wessels L. Cross-validated Cox regression 
on microarray gene expression data. Stat Med 2006; 25: 3201–3216. doi: 10.1002/sim.2353 
[PubMed: 16143967] 

20. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards 
model via coordinate descent. J Stat Softw 2011; 39: 1–13. doi: 10.18637/jss.v039.i05

21. Vickers A, Cronin A, Elkin E, Gönen M. Extensions to decision curve analysis, a novel method 
for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis 
Mak 2008; 8. doi: 10.1186/1472-6947-8-53

22. Ke W, Ye Y, Huang S. Discriminant function for prognostic indexes and probability of death in 
chronic severe hepatitis B. J Gastroenterol 2003; 38: 861–864. doi: 10.1007/s00535-003-1162-3 
[PubMed: 14564632] 

23. Coppus S, van der Veen F, Opmeer B, Mol B, Bossuyt P. Evaluating prediction models 
in reproductive medicine. Hum Reprod 2009; 24: 1774–1778. doi: 10.1093/humrep/dep109 
[PubMed: 19395365] 

24. Organ Procurement and Transplantation Network. Policies and Bylaws https://
optn.transplant.hrsa.gov/policies-bylaws/policies/. Accessed December 12, 2022.

25. Schumacher M, Bastert G, Bojar H, et al. Randomized 2×2 trial evaluating hormonal treatment 
and the duration of chemotherapy in node-positive breast cancer patients. J Clin Oncol 1994; 12: 
2086–2093. doi: 10.1200/JCO.1994.12.10.2086 [PubMed: 7931478] 

26. Therneau T A Package for Survival Analysis in R. 2022. R package version 3.3–1.

27. Royston P, Altman D. External validation of a Cox prognostic model: Principles and methods. 
BMC Med Res Methodol 2013; 13. doi: 10.1186/1471-2288-13-33

28. Rosenberg J, Chia Y, Plevritis S. The effect of age, race, tumor size, tumor grade, and disease 
stage on invasive ductal breast cancer survival in the U.S. SEER database. Breast Cancer Res Treat 
2005: 47–54. doi: 10.1007/s10549-004-1470-1

29. Bloom H, Field J. Impact of tumor grade and host resistance on survival of women with 
breast cancer. Cancer 1971; 28: 1580–1589. doi: 10.1002/1097-0142(197112)28:6&lt;1580::AID-
CNCR2820280637&gt;3.0.CO;2-T [PubMed: 4399612] 

30. Kendall M Rank Correlation Methods. Liverpool: Charles Birchall and Sons, Ltd. 3rd ed. 1962.

Hartman et al. Page 13

Stat Med. Author manuscript; available in PMC 2024 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://optn.transplant.hrsa.gov/policies-bylaws/policies/
https://optn.transplant.hrsa.gov/policies-bylaws/policies/


FIGURE 1. 
Theoretical and empirical relationship between the average estimated concordance 

probability and the average R2, from an Ordinary Least Squares model with normally-

distributed predictors. The empirical relationship is based on a simulation with 1000 

iterations and a sample size of n = 100. The derived theoretical relationship between 

the concordance probability and R2 population parameters closely matches the observed 

empirical relationship, as expected.
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FIGURE 2. 
A hypothetical distribution of time-to-death outcomes within a population of 10-year-olds 

and 90-year-olds. The distribution is highly-clustered, and the differences in underlying 

mortality risks are large across the age groups and small within each age group. The C-Index 

calculation for a survival model with age as a predictor would involve many comparisons of 

patients with the same age and very similar underlying risks.
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FIGURE 3. 
Recurrence-free survival curves by tumor grade, estimated by a Cox proportional hazards 

model with number of positive lymph nodes, progesterone receptor concentration, and tumor 

grade as predictors. Results are shown for a patient with an average number of positive 

lymph nodes and progesterone receptor concentration. The model is fit using data from 686 

breast cancer patients from the German Breast Cancer Study Group.
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TABLE 1

C-Index values for different age group distributions, among a hypothetical population of patients in their 10th 

and 90th years of age (i.e. the proportion of patients that belong to the 90-year-old group). It is assumed that 

age is the only predictor, which nearly-perfectly discriminates mortality risk, and the sample size is set to 

n = 100. As the 90-year-old proportion increases, fewer comparisons are made across the two age groups in the 

C-Index calculation, and the C-Index decreases. The maximum possible C-Index value is one, and a C-Index 

of 0.5 corresponds to a model with random orderings of risk scores.

90-Year-Old Proportion C-Index

0.50 0.75

0.60 0.74

0.70 0.71

0.80 0.66

0.90 0.59

1.00 0.50
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TABLE 2

Hazard ratios, p-values, counts of comparable pairs, and concordance rates for comparisons of different tumor 

grades, using data from the German Breast Cancer Study Group. The comparable pairs and concordance rates 

for the tumor grade comparisons are computed by restricting the traditional definition of comparable pairs to 

only include patients with a specific combination of tumor grades (Equation 8). The risk scores used to 

calculate the concordance rate are calculated from either of the following Cox proportional hazards models: 

Model A (which includes the number of positive lymph nodes and progesterone receptor concentration as 

predictors) and Model B (which includes the predictors from Model A plus a categorical tumor grade 

variable). The overall C-Indices for the models are weighted averages of the concordance rates in the fifth and 

sixth columns, where the weights are the number of comparable pairs in the fourth column. The values of 

these overall C-Indices for Models A and B are 0.679 and 0.682, respectively.

Tumor Grade Comparison Hazard Ratio (HR) P-Value Number of Comparable Pairs Concordance Rate

Model A Model B

III vs. I 2.32 0.002 6,499 0.77 0.82

II vs. I 1.92 0.009 16,122 0.69 0.74

III vs. II 1.21 0.159 44,011 0.69 0.67

Same Grade - - 66,451 0.66 0.66
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