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Machine learning survival models 
trained on clinical data to identify 
high risk patients with hormone 
responsive HER2 negative breast 
cancer
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For endocrine-positive Her2 negative breast cancer patients at an early stage, the benefit of adding 
chemotherapy to adjuvant endocrine therapy is not still confirmed. Several genomic tests are 
available on the market but are very expensive. Therefore, there is the urgent need to explore novel 
reliable and less expensive prognostic tools in this setting. In this paper, we shown a machine learning 
survival model to estimate Invasive Disease-Free Events trained on clinical and histological data 
commonly collected in clinical practice. We collected clinical and cytohistological outcomes of 145 
patients referred to Istituto Tumori “Giovanni Paolo II”. Three machine learning survival models are 
compared with the Cox proportional hazards regression according to time-dependent performance 
metrics evaluated in cross-validation. The c-index at 10 years obtained by random survival forest, 
gradient boosting, and component-wise gradient boosting is stabled with or without feature selection 
at approximately 0.68 in average respect to 0.57 obtained to Cox model. Moreover, machine learning 
survival models have accurately discriminated low- and high-risk patients, and so a large group which 
can be spared additional chemotherapy to hormone therapy. The preliminary results obtained by 
including only clinical determinants are encouraging. The integrated use of data already collected in 
clinical practice for routine diagnostic investigations, if properly analyzed, can reduce time and costs 
of the genomic tests.

Although there are detailed guidelines on the use of adjuvant chemotherapy, not all patients with endocrine-
positive Her2 negative breast cancer at an early stage have real benefit from adding chemotherapy to adjuvant 
endocrine therapy. These patients are at risk for being undertreated or overtreated with endocrine therapy and 
chemotherapy, and tests are required to save an important number of patients from the potentially harmful 
side effects of chemotherapy; in particular, several studies have showed that a non-negligible proportion of 
BC patients, especially those with a hormone receptor-positive and lymph node-negative disease, could only 
be effectively treated with hormone therapy alone1,2. The use of adjuvant chemotherapy for estrogen receptor 
(ER)—positive, HER2-negative BC patients has been investigated by an impressive number of studies aimed 
at measuring its efficiency in a predictive manner3. Such studies range from genomic tests4,5 to sophisticated 
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artificial intelligence models6, with the purpose of describing the benefit gained by each patient undergoing 
a specific therapy. Recent years have witnessed the availability of several molecular tests which have received 
long-standing recommendations in clinical guidelines7. In particular, the use of gene signatures has provided 
a standardized reproducible and quantitative tool able to define the risk of distant recurrent for ER-positive, 
HER2-negative early BC. Nevertheless, the adoption in the clinical practice of these decisional support tools 
requires a careful analysis of their cost-effectiveness, because genomics tests have an important cost and not all 
centers are provided with laboratories performing this type of analyses. This issue is currently driving the studies 
aimed the achievement of the same information by means of less expensive procedure.

In general, new interdisciplinary approaches are emerging in survival analysis, which aim to analyze data 
commonly collected in the clinical practice and drive the therapeutic choices. Indeed, in clinical practice, medi-
cal oncologists are increasingly using prediction tools available online, such as PREDICT, Adjuvant!, and Can-
cerMath to guide systemic adjuvant treatment8. The online tools provide personalized 10-year overall survival 
estimates for the adjuvant treatment setting by basing their predictions on patient data (e.g. age) and tumour 
characteristics (e.g. size, nodal status, ER-status and grade), but they perform well at the population level, but 
exhibit a high degree of discordance in the intermediate and poor prognosis groups9,10. Furthermore, some 
models have been proposed for the estimation of disease-free survival with classic approaches11,12, but works 
aimed at predicting high-risk patients who might actually benefit from additional chemotherapy to hormone 
therapy is missing.

A wide variety of techniques is currently available, ranging from classical non-parametric Kaplan–Meier 
descriptive curves to extensions of the semi-parametric inferential Cox model. A limit of classical algorithms is 
the difficulty to model high dimensionality. Recently, machine learning techniques applied to survival tasks allow 
to overcome this issue13–17. Indeed, the classical Cox regression is a parametric model based on a probabilistic 
estimation whose prediction performances depend on parameters associated with each feature. Therefore, the 
difficulty in identifying an accurate probabilistic model increases in parallel with the increase in the included 
number of features considered. On the contrary, machine learning survival model, such as random forest and 
gradient boosting survival models, are non-parametric methods whose performances depend on the size of the 
training set. In practice, the latter models do not impose any hypothesis on the probabilistic distribution, thus 
allowing to properly model nonlinearities and interaction effects in a data driven approach18. If, on the one hand, 
these limitations are pursued to achieve the explainability of black-box machine learning survival models19–21, 
on the other their overcoming guarantees higher performances18.

In this work, we propose a model for estimating disease-free survival with respect to invasive events for 
patients with endocrine-positive and HER2 negative BC, which are potentially candidates for genomic testing, 
if only hormone therapy is carry out. Our preliminary study is configured to identify low- and high-risk patients 
and assess the chance of achieving comparable performances with genomic test but exploiting much cheaper and 
already available clinical data. Three machine learning survival models are compared with the Cox proportional 
hazards regression according to time-dependent classification performance metrics22. Once the best machine 
learning survival model was chosen, we evaluated the correlation risk score obtained from our model with that 
of a genetic test performed on a sample of independent patients.

Results
Enrolled patients and features.  Our dataset is composed by clinical and cytohistological outcomes of 
145 patients our extracted from our database of approximately 900 patients registered for a first BC diagnosis in 
the period 1997–2019 and referred to Istituto Tumori “Giovanni Paolo II” in Bari (Italy). The inclusion criteria 
for collecting such database were: absence of primary chemotherapy for BC, ab initio non-metastatic patient. 
Then, according to the genomic test eligibility criteria defined by the decree of the Ministry of Health of May 
202123, i.e. early stage tumor, patients not at high or low risk of recurrence with hormone responsive and HER2 
negative BC, 145 patients wase extracted. In line with the aim of our work, we considered the only patients who 
did not undergo that chemotherapy. In fact, for patients who have undergone chemotherapy, the absence of a 
second event could be due to a patient-specific positive prognostic profile and not necessarily to an effect of the 
therapeutic treatment. In other words, there may be patients who would not have relapsed even if they had not 
undergone additional chemotherapy.

In this work, we specifically focus our attention on breast cancer-related invasive disease events (IDEs), which 
include local recurrence, the appearance of distant visceral and soft tissue metastases, contralateral invasive breast 
cancer or a second primary tumor24.

Collected features were the age at diagnosis, tumor size (diameter: T1a, T1b, T1c, T2, T3, T4), histological 
subtype (ductal, lobular, other), type of surgery (quadrantectomy/mastectomy), estrogen receptor expression 
(ER, %), progesterone receptor expression (PgR, %), cellular marker for proliferation (Ki67, %), histological 
grade (grading, Elston–Ellis scale: G1, G2, G3), human epidermal growth factor receptor-2 score (HER2/neu: 0+, 
1+, 2+), the number of metastatic and eradicated lymph nodes, lymph nodes dissection (no/yes), sentinel lymph 
node (no, negative, positive), lymph nodes stage (N: 0, 1, 2, 3), in situ component (absent, G1, G2, G3, present 
but not typed), lymphovascular invasion (absent, focal, extensive, present but not typed), multiplicity (no/yes) 
and previous tumors (no/yes). Moreover, 97.41% of the collected patients did not undergo radiotherapy, we 
therefore did not consider it significant to include this information in the analyses.

The data set is described in Table 1. The set of predictive features is composed by N = 18 prognostic factors, 
typically considered by clinicians during the first tumor diagnosis and related surgery. The missing data recovery 
has been implemented by means of the Python package musingly (v. 0.2.0).

A separate dataset, composed by 27 patients endowed with EndoPredict® (EP) scores and undergoing surgery 
during 2021 in our institute, is exploited for further evaluations of our survival estimation. EP is a gene expression 
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test for patients with ER-positive and HER2-negative early-stage BC, both node-negative and node-positive (N0, 
N1, micrometastasis). It is a second-generation test that combines a molecular score of 12 genes with tumor size 
and lymph node status5. This genomic test has entered the clinical practice of the Istituto Tumori ’Giovanni Paolo 
II’ in Bari since 2021 and it is used by the Breast Care team when the clinical case is highly doubtful.

Time dependent classification.  Random survival forest feature importance is resumed in Fig. 1. Their 
calculation is nested in the 20 rounds of fivefold cross-validations to avoid any influence imposed by a single 
evaluation with a fixed training set. To take into account the included statistical variation, each feature weight is 
described by its average and standard deviation. We select those features characterized by a weight greater than 
0.01, thus yielding: Ki67, PgR, age, ER, eradicated lymph nodes and diameter.

The ability of machine learning survival algorithms to model data high dimensionality with respect to the 
classical CPH regression18 is shown by comparing the time behavior of the considered metrics (see Appendix B) 
when all features are included (N = 18) or just the six selected ones. In Fig. 2, the upper panels are related with the 
first case, while the lower panels to the latter one. At 5 and 10 years, time period usually considered for follow-up 
in clinical practice, the performances of the CPH model are on average lower than those of machine learning 
models by at least 10 percentage points, when all the features are considered. However, when just a subset of 
features is considered, consisting in the most important ones, the average difference in performance is halved, 
signaling a better condition for the CPH model, while the performance of machine learning survival models 
tends to remain unchanged with respect to the number of features involved. In order to define a parsimonious 
model, i.e. to use just the right number of predictors needed to explain the model well, the following analyses 
will be carried out on the results obtained by considering the selected subset of features.

The sensitivity and specificity balanced performance (see Fig. 6 in Appendix C) corresponding to the 5 years 
time frame are equal to 0.62–0.65 for the three machine learning survival models, while the much lower one 

Table 1.   Observed patients’ statistics according to considered features.

Features Counts (%) Features Counts (%)

Overall 145 (100)

Lymph nodes stage Type of surgery

 N0 114 (78.6)  Quadrantectomy 108 (74.5)

 N1 26 (17.9)  Mastectomy 37 (25.5)

 N2 2 (1.4) In situ component

 N3 1 (0.7)  Absent 101 (69.7)

 NA 2 (1.4)  G1 7 (4.8)

Lymph node dissection  G2 8 (5.5)

 No 34 (23.5)  G3 4 (2.8)

 Yes 104 (71.7)  Present, not typed 25 (17.2)

 NA 7 (4.8) HER2/neu

Sentinel lymph node  0+ 70 (48.3)

 No 97 (66.9)  1+ 56 (38.6)

 Negative 34 (23.5)  2+ 15 (10.3)

 Positive 8 (5.5)  NA 4 (2.8)

 NA 6 (4.1) Multiplicity

Grading  No 118 (81.4)

 G1 20 (13.8)  Yes 27 (18.6)

 G2 104 (71.7) Diameter

 G3 17 (11.7)  T1b 26 (17.9)

 NA 4 (2.8)  T1c 68 (46.9)

Lymphovascular Invasion  T2 42 (29.0)

 Absent 98 (67.6)  T3 1 (0.7)

 Focal 33 (22.8)  T4 3 (2.1)

 Extensive 4 (2.8)  NA 5 (3.5)

 Present, not typed 10 (6.9) Histologic type

Previous tumors  Ductal 107 (73.8)

 No 140 (96.6)  Lobular 20 (13.8)

 Yes 5 (3.5)  Other 18 (12.4)

Median [ q0, q1, q3, q4] Median [ q0, q1, q3, q4]

ER 80 [9, 70, 90, 100] Age at diagnosis 59 [32, 49, 67, 86]

PgR 60 [0, 20, 90, 98] Metastatic lymph nodes 0 [0, 0, 0, 10]

Ki67 12 [1, 5, 20, 70] Eradicated lymph nodes 16 [0, 2, 23, 40]
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of CPH shows approximately 0.55 for the same balanced metrics pair. If we consider 10 years after the first BC, 
the CPH model still shows the lowest performance, while the machine learning survival models RSF and GB 
are characterized by a balanced aforementioned metric pair equal to 0.63–0.65, while CGB emerges as the best 
performing classifier with 0.67 for the balanced sensitivity and specificity pair.

Once the 10 years time frame is kept fixed, we establish a threshold for each model according to the median 
of the ones selected by the Youden index optimization (see Fig. 6 in Appendix B). The average score of each 

Figure 1.   Random survival forest features importance averaged over 20 rounds of fivefold cross-validation. 
Error bars correspond to standard deviation and the red dashed line represents the imposed threshold for the 
mean feature weight.

Figure 2.   Description of the time behavior of the performance metrics, area under the ROC curve (AUC) and 
concordance index (c-index). Top panels are referred to the exploitation of the whole features set, while the 
bottom ones exploit just selected features. Solid lines join the mean points evaluated every 10 months, while 
shaded regions correspond to standard deviations.
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patient over the 20 rounds is then adopted to assign each case to a high or low risk category. These strata are 
further characterized by means of the Kaplan–Meier curves shown in Fig. 3. We reported in the descriptive 
table of survival estimation models in the supplementary materials (see Fig. 6). The p values confirm that CGB 
implements the best discrimination between high or low risk patients, while CPH is much less efficient than the 
machine learning survival models.

Correlation with EndoPredict® scores.  The similarity measure of our risk estimation with the one pre-
dicted by EP is evaluated over an independent test consisting of 27 patients. The last step of our preliminary 
study consists in the calculation of the Pearson correlation coefficients between the hazards (see Appendix A) 
estimated by our best performing CGB survival curves at 10 years after the first BC diagnosis and the risk scores 
provided to our institution by the EP software exploiting genetic data.

A scores statistics for the separate dataset is obtained by testing the sample set of 27 patients on 20 rounds 
fivefold cross-validation for the model trained on 145 patients, such that a variation in the training is obtained 
to gain a wider statistic. The hazard value corresponding to 10 years after the first breast cancer diagnosis is then 
deduced, whose overall correlation statistics is shown in Fig. 4. The violin plot in the left panel is characterized 
by a sufficient stability around the median value, imposing the slope of the trend line in the bubble plot of the 
right panel.

The performance of EP declared by the authors in terms of c-index is equal to 0.753 for the prediction of 
distant recurrences within 10 years5. As emerged from our results, CGB shows the highest correlations, equal 
in average to 0.42, with respect to the remaining survival models, instead resulting in average uncorrelated. We 
underline that such correlations are time independent by definition for CGB, GB and CPH, because the corre-
sponding hazard functions assume time independent parameters, such that features and time are independent 
variables.

Discussion
The high recurrence rate characterizing BC patients has prompted to the adoption of post-operative treatments, 
including adjuvant chemotherapy. At the same time, the risk of overtreatment in this patient population has 
supported the development of tools able to perform a proper risk–benefit assessment and to guide the “deci-
sion-making” process1,2,7. The role of molecular data has become increasingly important in guiding therapeutic 
decisions in this setting. Nevertheless, there is the urgent need to explore novel reliable and less expensive 
prognostic tools. Particular attention deserver hormone-responsive, HER2 negative BC patients for which the 
prescription of an adjunctive chemotherapy hormone therapy is often highly doubtful. Recently, the genomic 
tests play a key rule into assess the benefit provided by the addition of chemotherapy, but are very expensive 
and their cost-effectiveness needs to be neglected. In this paper, we proposed a machine learning approach to 
estimate disease free survival.

Figure 3.   Representation of Kaplan–Meier survival probability for the patients stratification in high and low 
risk implemented by each model corresponding to 10 years after the first BC diagnosis.
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To date, a plethora of predictive models have been developed to estimate disease-free survival with respect to 
recurrence breast cancer by solving a classification task12,24,25 or focusing on survival12,26. However, it is known 
that, despite not in common cases, anticancer drugs can cause second tumors, correlated with chemotherapy27. 
Therefore, recently, in the adjuvant clinical trial setting for breast cancer, experts proposed to adopt only one 
term, that is Invasive Disease-Free Survival, to refer to composite events, such as local and distant recurrence, 
contralateral invasive breast cancers, second primary tumors and death28. Recent works on survival model for 
invasive events prediction and its variants have been freshly proposed29,30 and were based on the exploitation 
of patients’ characteristics related to demographics, diagnosis, pathology and therapy. Among these, machine 
learning algorithms represent a novel, promising tool.

The usefulness of survival analysis inspired by machine learning algorithms is currently assessed by inter-
disciplinary studies, because of its improved ability to take into account high-dimensional data with respect 
to classical methods18. Such new approaches include a much higher complexity which require otherwise an 
accurate feature selection4.

Our preliminary study aims to evaluate the potential of machine learning models trained on commonly clini-
cal features for predicting of IDEs for patients with endocrine-positive and HER2 negative BC. This tool, which 
has been built starting from information frequently collected in clinical practice, could replace the genomic 
profiling tests, notoriously more expensive in terms of application times and costs, when their application is not 
available4,5. In this preliminary work, we have compared three machine learning survival models with the clas-
sical approach, i.e. Cox proportional hazards regression, to predict IDES endocrine-positive and HER2 negative 
BC and, thus, identify low- and high-risk patients.

The c-index obtained within the same time frame by CGB, GB and RSF is stable with or without feature 
selection at approximately 0.67–0.68 in average. Considering that EP test declares a c-index equal to 0.7535, the 
obtained preliminary results including only clinical determinants are encouraging. We subsequently verified 
on an independent subset of patients who performed EP tests, whether the decision suggested by the model we 
trained was in agreement with the result of the EP test. Even if the latter takes into account genetic information 
not included in our survival models, we observe a sufficient similarity of the risk estimation for an invasive disease 
event corresponding to 10 years after the first BC, as measured by Pearson correlation. Indeed, the proposed 
model showed a significant agreement with the result of the EP test meaning that clinical features, if properly 
elaborated, could express part of the information expressed by the genomic test. However, the main advantage 
is the much cheaper and already available data exploited in our scheme, providing a sufficient information as 
measured by the correlation similarity.

If we consider the time period comprised between 5 and 10 years, a stable behavior of the mean performances 
emerges for the machine learning survival models. Moreover, they shown significantly higher risk estimation 
performance than the classical Cox model.

In addition, the machine learning survival models have shown a significant ability to predict the IDEs in both 
early and late periods (5 and 10 years, respectively), to accurately discriminate patients at low or high risk, and 
to detect a large risk patient group with positive outcome after 10 years with only 5 years of endocrine therapy.

To the best of our knowledge, studies aimed at developing a predictive model of IDFS for patients with endo-
crine-positive and HER2 negative BC are lacking. Therefore, we believe that a comparison between our results 
with those obtained with more generic state-of-the-art models that estimate overall survival or ides but trained 
on heterogenous populations, can be mistaking. What we consider interesting instead is the comparability of 

Figure 4.   Representation of Pearson correlation statistics. In the left panel the distribution of correlations 
between the hazards yielded by the best performing CGB survival curves at 10 years and EP scores; In the right 
panel a bubble plot of scores and hazards in a rescaled version with respect to their maximum values, where 
each bubble ray measures the standard deviation over the 20 rounds, while the dashed red line slope is equal to 
the median value in the left panel.
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the forecast results of the survival disease carried out with genomic tests, as previously discussed. Another gene 
signature assay called Pam50 (Prosigna®) adopting 50 genes and engineered for distant recurrences declares a 
c-index related with the 3 years time frame equal to 0.7231, a value which is comparable with our performances.

Although the general performance does not yet allow a clinical application of the model, the experimen-
tal results encourage future developments aimed at introducing features of a different nature. Therefore, our 
hypothesis is that it is possible to define a machine learning model trained on data commonly collected in clini-
cal practice that could accurately surrogate the genomic test, finally, reducing the cost of healthcare without 
compromising patient care, and significantly impacting clinical governance.

Further developments will be focused on the inclusion of radiomic features32,33 as well as some radiologic 
indices extracted from clinical reports. Indeed, the inclusion of imaging data is investigated in radiogenomics to 
reduce costs of genetic tests, thus proving an information resource that has to be comprised in a high-dimensional 
setting.

The usage of structured electronic health records is limited to relatively small datasets, while recent investi-
gations are exploiting natural language processing to take free-text clinic notes as input34,35. Moreover, for the 
models adopted in survival analysis, much general hypotheses have been formulated to take into account the time 
dependence of regression coefficients, thus giving up the assumed independence of features in factorized hazard 
functions36–39, which is partly observed just for RSF among the implemented machine learning survival models.

Materials and methods
Survival analysis for risk estimation.  In this work, we propose the application of machine learning 
survival models to evaluate the risk of an invasive disease event for each patient. Such models are formulated in 
Appendix A, implemented by using the Python package scikit-survival (v. 0.17.1) and listed as follows:

1.	 Random survival forest (RSF);
2.	 Gradient boosting (GB);
3.	 Component-wise gradient boosting (CGB).

A comparison of these machine learning methodologies with the well-known Cox proportional hazards 
(CPH) are performed.

The selection of most important features is executed by means of the Python package eli5 (v. 0.11), which 
provides a way to compute feature importance by measuring how concordance index (c-index) decreases when 
a feature is not available. In the survival framework, the remotion of the relationship of a certain feature with 
the survival time is executed by random shuffling of its values: the weight of each feature is quantified by the 
drop on average of the c-index40. The performance metrics are estimated in a time dependent approach22 and 
they are obtained by adopting both the whole set of features and just those characterized by a sufficient weight 
in the aforementioned importance evaluation. To understand the variation in time of some metrics exploited 
to assess the inferential power of a survival model, we have to rephrase it as a classifier yielding a time varying 
score equal to the complement to one of the survival probability

with i = 1, . . . ,M labelling each patient in the sample, with M equal to the total number of patients. The observed 
event time is

where Ti denotes the time of invasive disease onset and Ci the censoring time. In this way a time dependent dis-
ease status Di(t) takes value 0 until t < Ti , while it shifts to 1 afterwards22. The censored patients, not showing any 
event, are removed when t > Ci , as shown in Table 2 starting from 20 months to avoid too unbalanced data sets.

The precise formulation of the adopted metrics consisting in the time dependent version of the area under the 
receiver operating characteristic (ROC) curve (AUC) and c-index is presented in Appendix B. These quantities 
are able to describe time by time how the survival models capture the patient’s status behavior with respect to 
the used features. The optimization of the available parameters was implemented on ReCaS datacenter41. Later 
on, the analysis considered just the fixed time frame corresponding to 5 and 10 years after the first BC diagnosis. 
The research of an optimal threshold balancing sensitivity and specificity is based on the Youden index4, whose 
maximization drives the solution achievement. To measure the efficiency of our scheme in estimating patients 
risks, the comparison with EP scores associated with a separate set of 27 patients is implemented. Such patients 
are endowed with the feature subset selected in the described procedure.

(1)Fi(t) = 1− Si(t),

(2)Zi = min{Ti ,Ci},

Table 2.   Summary of the sample labels variation in the time period comprised between 20 and 160 months.

Invasive disease events 7 12 17 20 27 29 30 30 33 35 38 39 41 43 44

Control cases 136 130 125 121 112 109 107 103 91 82 75 64 47 31 20

Months 20 31 40 51 60 70 80 90 100 110 120 130 140 150 160
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Institutional review board statement.  Institutional Review Board Statement: The study received 
approval from the Scientific Board of Istituto Tumori “Giovanni Paolo II”—Bari, Italy and was carried out in 
accordance with the Declaration of Helsinki’s standards. The authors affiliated to the Istituto Tumori “Giovanni 
Paolo II” RCCS, Bari are responsible for the views expressed in this article, which do not necessarily represent 
the ones of the Institute.

Informed consent statement.  Written informed consent for this study was waived by the Scientific 
Board of Istituto Tumori “Giovanni Paolo II”—Bari, Italy due to retrospective study.

Data availability
The raw data supporting the conclusions of this article will be made available by the corresponding author, 
without undue reservation.
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