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In Brief
Current medical care focuses on
treating people after they
become patients rather than to
preventing illness, leading to
high costs in treating chronic and
late-stage diseases. Additionally,
a “one-size-fits all” approach to
healthcare does not take into
account individual differences in
genetics, environment, or
lifestyle factors, decreasing the
number of people benefiting
from interventions. Rapid
advances in multi-omics enabled
deep phenotyping, which
profiles the interaction of multiple
levels of biology over time,
empowers precision health
approaches and is poised to
transform future healthcare.
Highlights
• Rapid advances in omics and computation are enabling multi-omics deep profiling.• Multi-omics can capture the complex molecular interplay.• Multi-omics is revealing insights for personalized health management.• Multi-omics is poised to revolutionize the future healthcare.
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The world has witnessed a steady rise in both non-
infectious and infectious chronic diseases, prompting a
cross-disciplinary approach to understand and treating
disease. Current medical care focuses on treating people
after they become patients rather than preventing illness,
leading to high costs in treating chronic and late-stage
diseases. Additionally, a “one-size-fits all” approach to
health care does not take into account individual differ-
ences in genetics, environment, or lifestyle factors,
decreasing the number of people benefiting from in-
terventions. Rapid advances in omics technologies and
progress in computational capabilities have led to the
development of multi-omics deep phenotyping, which
profiles the interaction of multiple levels of biology over
time and empowers precision health approaches. This
review highlights current and emerging multi-omics mo-
dalities for precision health and discusses applications in
the following areas: genetic variation, cardio-metabolic
diseases, cancer, infectious diseases, organ trans-
plantation, pregnancy, and longevity/aging. We will briefly
discuss the potential of multi-omics approaches in dis-
entangling host-microbe and host-environmental in-
teractions. We will touch on emerging areas of electronic
health record and clinical imaging integration with muti-
omics for precision health. Finally, we will briefly discuss
the challenges in the clinical implementation of multi-
omics and its future prospects.

The whole is greater than the sum of its parts.
Aristotle

Current medical care primarily focuses on treating patients
after the development of illness rather than preventing it,
leading to high costs in treating chronic and late-stage dis-
eases. Additionally, common “one-size-fits all” approaches do
not take into account individual differences in genetics, envi-
ronment, or lifestyle factors. This limits the number of people
benefiting from known and new interventions. Omics tech-
niques are comprehensive assessments of different classes of
biological molecules, such as RNA or metabolites, that have
revolutionized modern medicine by advancing our under-
standing of molecular complexity in health and disease (1).
Individual omics approaches, such as genetic sequencing of
cancers, are increasingly used in clinical settings and have
greatly facilitated disease diagnosis and the identification of
biomarkers to track disease or recommend effective treatments
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(2–5). However, individual omics data for only one type of
biology is largely correlative in nature and cannot capture the
complexity of molecular events and their interactions. For
example, genome-wide association studies (GWAS) have
identified thousands of risk loci for several diseases, yet the
causal gene is often not identified, limiting the clinical utility of
such findings (6). Combining transcriptomics and proteomics or
other omics can provide functional information that cannot be
captured by genomics alone, enabling a new understanding of
the molecular complexity underlying disease.
Advances in different omics technologies, such as prote-

omics and metabolomics, and computing capabilities, have
recently enabled novel integration of different omics data,
called multi-omics, to capture the complex molecular interplay
of health and disease by combining the power of individual
data types (7). Since complex diseases often develop gradu-
ally over time and show incredible heterogeneity between in-
dividuals, longitudinal sampling and integrative multi-omics
analysis enable deep phenotyping of individuals across the
health-to-disease trajectory to unlock precision health ap-
proaches for earlier and/or more effective intervention. Preci-
sion health aims to predict, prevent, and cure disease more
precisely by taking into account each individual’s genetics,
environment, and lifestyle factors in contrast to the “one-size-
fits all” and reactive approach of traditional medicine. Addi-
tionally, by enabling more effective treatment for each patient
based on their precise subtyping, this approach could also
improve healthcare efficiency and quality. Here, we provide a
brief overview of emerging omics technologies and their multi-
omics applications in precision health areas including cardio-
metabolic diseases, cancer, pregnancy, and longevity.
Throughout, we discuss the advantages of multi-omics, where
one omics technology can complement the shortcomings of
another to provide a holistic view of molecular complexity.
Finally, we briefly review emerging omics frontiers, discuss
challenges in the clinical implementation of multi-omics, and
highlight future prospects.
OMICS (R)EVOLUTION

Modern biology and medicine are being propelled by
ongoing advancements in DNA sequencing, mass
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Multi-Omics Profiling for Health
spectrometry, wearable technologies, and big data compu-
tational approaches (Fig. 1). Each of these techniques has
been progressing rapidly in the past 20 years:

Genomics

Genomics is the most mature of all the omics technologies
and refers to the study of whole genome sequences and DNA
sequence variants therein, including single nucleotide varia-
tions, insertion-deletions, structural variations, and copy
number alterations. Genomics analysis has seen dramatic
progress since the discovery of “Sanger sequencing” of DNA
in 1977 (8). With the advent of next-generation sequencing
FIG. 1. Timeline of major technological developments and mileston
highlighted in bold. 2-DE, 2-Dimensional Electrophoresis; ATAC, Assay
Expression; DNMT1, DNA Methyl Transferase one; ESI, Electrospray Io
HAT, Histone Acetyl Transferase; HDAC, Histone Deacetylase; Hi-C,
Performance Liquid Chromatography; IMAC, Immobilized Metal Affinit
Quantitation; LC, Liquid Chromatography; MALDI, Matrix-Assisted Laser
MPSS, Massively Parallel Signature Sequencing; MS, Mass spectrome
action; SAGE, Serial Analysis of Gene Expression; Sc-RNA, Single cell R
T2T, Telomere-To-Telomere.
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(NGS) technologies in the past couple of decades, genomes
can now be analyzed faster, cheaper, and in a high-
throughput manner. Genome sequencing costs have plum-
meted steadily from billions of dollars to sequence the initial
human genome in 2000 to just $100 per genome in 2022
(Ultima Genomics). While it took 13 years to sequence the first
human genome, patients’ genomes can now be sequenced in
as few as 5 h with long-read sequencing techniques, speeding
up genetic diagnosis and treatment (9). A prime example of
NGS approaches to genomics is high-throughput and
massive paired-end mapping, which was used to reveal that
genomic structural variation among humans is much larger
es in different Omics analysis. Technologies developed in the lab are
for Transposase-Accessible Chromatin; CAGE, Cap Analysis Gene

nization; EST, Expressed Sequence Tags; GC, Gas Chromatography;
High-throughput Chromosome Conformation Capture; HPLC, High-
y Chromatography; iTRAQ, Isobaric Tags for Relative and Absolute
Desorption/Ionization; MeDIP, Methylated DNA Immunoprecipitation;
try; NGS, Next Generation Sequencing; PCR, Polymerase Chain Re-
NA; SILAC, Stable Isotope Labeling with Amino acids in Cell culture;
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than initially hypothesized, paving the way for improved un-
derstanding of phenotypic variation and genetic disease (10).
Genome analyses have already had a major impact on med-
icine with applications in the diagnosis of diseases, response
to treatment, and prognosis (11), such as the identification of
treatment interactions and the development of cancer drugs
such as erlotinib targeted to specific genetic mutations.

Epigenomics

Epigenomics refers to the complete cataloging of chemical
modifications of DNA and the histones it is wound around. The
field of epigenomics began with the discovery of DNA
methylation (12) and histone modifications in the 1960s (13)
and was accelerated by NGS technologies. Different NGS
techniques such as DNA methylation through techniques,
including bisulfite sequencing (14), reduced representation
bisulfite sequencing (15), methyl-seq (16), methylated DNA
immunoprecipitation (17), and enzymatic methyl sequencing
(18) have enabled precise mapping of genome-wide methyl-
ation patterns and other epigenetic markers that affect gene
regulation. The histones around which DNA is wound are
composed of dimers made up of four basic proteins, H2A,
H2B, H3, and H4, which undergo myriad post-translational
modification, including acetylation, methylation, phosphory-
lation, and sumoylation, that affect how certain genes are
turned on or off. Early technologies to analyze histone modi-
fications used immunoprecipitation with antibodies against
specific histone modification sites on DNA but were limited by
expense and throughput. The development of ChIP-chip,
where genomic DNA sites enriched in specific modifications
were identified by DNA hybridization to a microarray (ChIP-
chip) (19–23), improved epigenomics studies. This approach,
however, was noisy and expensive to apply genome-wide.
The advent of NGS further enabled high-resolution genome-
wide mapping (ChIP-seq) of chromatin modifications and the
location of the bound regions (24–26). Epigenomics, being an
integrator of genome and environment, has also found wider
application in disease diagnosis, prognosis, and therapy (27).

Transcriptomics

Transcriptomics measures the complete set of RNA tran-
scripts and their quantity in a cell or a population of cells as a
read-out of cell state (28). Progress in transcriptomics has
paralleled rapid developments in NGS and analysis technol-
ogies (28). Initial transcriptomics approaches used both
hybridization-based (Microarray) and sequencing-based ap-
proaches for the quantification of transcripts. However,
microarray technologies could only detect genes and exons
previously incorporated into the array and could not detect
novel transcripts. Additionally, low-expressed genes were not
detectable (sensitivity), and microarrays failed to differentiate
between genes with sequence homology (specificity) (29, 30).
In contrast, sequence-based approaches, such as serial
analysis of gene expression or massively parallel signature
sequencing, were limited in their ability to detect all transcript
isoforms and were expensive (31, 32). Several studies in 2008
reported high-throughput sequencing of the whole tran-
scriptome, known as RNA sequencing (RNA-Seq), which
revealed new parts of the genome that are transcribed while
also enabling more accurate RNA quantitation, detection of
transcripts with low expression, and identification of new
genes, exons, and transcript isoforms at the same time (33,
34). Continued progress in transcriptomics has also revolu-
tionized modern medicine with applications in disease diag-
nosis and prognosis, enabling the definition of how different
genes interact in unique cell types over time (35).
Proteomics

Proteomics, the quantification of all protein identity and
abundance in a sample, has similarly seen major advances in
technologies and instrumentation, enabling faster, more effi-
cient, sensitive, and accurate detection of proteins (36). Mass
spectrometry (MS)-based proteomics began with the devel-
opment of soft ionization techniques such as electrospray
ionization (ESI) (37) and matrix-assisted laser desorption
ionization (MALDI) (38) in volatilizing and ionizing proteins and
peptides in the 1990s but was limited in how many proteins
could be identified. The first high-throughput analysis of pro-
teins was achieved using protein array methodologies based
on prefabricated chips with specified protein detection.
Despite being sensitive, this approach could not capture the
entire proteome (39). From this followed multidimensional
protein identification technology, which used two-dimensional
liquid chromatography to separate proteins before tandem-
MS analysis (40). After this followed shotgun proteomics
with better sensitivity, dynamic range, molecular weight, and
hydrophobicity (41). The early 21st century has witnessed
significant improvements in both liquid chromatography (LC)
and MS parameters, especially the higher scanning frequency
and mass accuracy, enabling an era of LC-MS/MS-based
“next generation proteomics”. More recent labeling strate-
gies, such as tandem mass tag (42) and isobaric tagging for
relative and absolute quantitation (43), offer improved multi-
plexing and sensitivity to significantly reduce LC-MS analysis
times and increase throughput. With rapid, robust, and high-
throughput analysis, including options for multiplexing large
numbers of samples, the costs of proteome analysis per
sample have dropped from $3250 in 2006 to just $375 in 2021
(44). MS-based proteomics has already shown promise by
successfully revealing complex and predictive biomarker sig-
natures leading to improved clinical decision-making as well
as enabling the prediction of patient trajectories via machine
learning (45). Furthermore, recent advances in data-
independent acquisition methods such as the sequential
windowed acquisition of all theoretical fragment ion spectra-
MS are expected to transform clinical diagnostics and prog-
nosis through scalable and affordable proteomics (46, 47).
Mol Cell Proteomics (2023) 22(6) 100561 3



Multi-Omics Profiling for Health
Metabolomics

Metabolomics refers to the study of small molecules in the
body <1500 Da in mass and has similarly seen a dramatic
improvement in technologies and instrumentation in the past
several decades. Major metabolomics approaches include
targeted metabolomics, untargeted metabolomics, fluxomics,
and metabolite imaging. Targeted metabolomics aims to
identify and quantify a small subset of metabolites (50–500)
and is ideal for biomarker detection. Untargeted metab-
olomics attempts to characterize all possible number of me-
tabolites (>10,000). Fluxomics is a branch of targeted
metabolomics that monitors the movement of isotopic labels
through metabolic intermediates and measures metabolite
reaction rates. Metabolite imaging is an emerging field of
metabolomics that involves the detection and visualization of
metabolites in tissues (48). Being the substrate on which ge-
netics, environment, microbiota, and exposome interact,
metabolomics studies have propelled biomedical research
with applications in biomarker discovery, disease diagnosis,
and prognosis (4). Lipidomics in particular has seen significant
progress with MS-based technological advances. Analysis of
intact cellular lipids was greatly accelerated with the advances
in ionization technologies, which were in large part fueled by
the development of ESI and MALDI in the late 1980s (37, 38).
Advances in MS methods have improved both resolution and
mass accuracy while multiplexing has enabled exponential
growth in lipidomics throughput and utility since the 1990s,
offering exciting new possibilities to understand health and
disease (49).

Wearables

Wearable devices (wearables) refer to any miniaturized
electronic device with sensors that can be donned on the
body or integrated into clothing or other body-worn acces-
sories (50). Wearable technologies are revolutionizing
biomedicine through mobile and digital health by enabling
continuous, longitudinal monitoring of vital physiological pa-
rameters including heart rate, sleep, pulse oximetry, blood
pressure, steps, and temperature (51). Along with multi-omics,
wearable data can track transitions from health and disease at
an exquisite resolution and is considered an important tool for
precision health (50, 51). Recent studies have demonstrated
the potential of wearables in detecting inflammation, predict-
ing cardiometabolic health, and passively predicting atrial
fibrillation (52–56). In fact, measurements from consumer
smart watches could reliably predict clinical measurements of
inflammation, infection, and even insulin sensitivity status.
Continuous glucose monitoring could longitudinally track
glucose dynamics and uncover highly personal glucotypes to
provide nutritional guidance (57). More recently, smart watch-
based physiological monitoring was shown to successfully
detect symptomatic and pre-symptomatic COVID-19 in-
fections (58–60). This shows promise in expanding the use of
4 Mol Cell Proteomics (2023) 22(6) 100561
wearables in clinical applications for detecting both acute
health events and for monitoring and managing chronic
diseases.
APPLICATIONS IN PRECISION HEALTH

Broadly, multi-omics integrative approaches have been
critical in (1) predicting disease risk, (2) disease subtyping
(e.g., glucotypes, ageotypes) and classification, (3) biomarker
discovery, (4) deriving biological insights, and (5) stratifying
patients for therapy (e.g., mild, moderate, and severe COVID-
19) among others (Fig. 2). Multi-omics integrative approaches
have enabled deep phenotyping of individuals in health and
disease, leading to many clinically actionable discoveries
(61–63). A prime example of this is a longitudinal integrative
personal omics profiling (iPOP) study performed on a 54-year-
old individual at 20 time points over a 14-month period. This
study characterized the transition from a healthy to an insulin-
resistant state following a viral infection and uncovered
extensive, dynamic changes in diverse molecular components
and biological pathways during this transition, prompting
lifestyle changes in the individual and quantifying their impact
(64). Further biological pathway expression analysis inte-
grating metabolomics and proteomics data in more patients
was found to predict and monitor disease (65). Since then, the
iPOP study has been expanded to >116 individuals for health
discoveries and molecular understanding of response to
perturbations including weight gain/loss, exercise, and
vaccination.
In a similar vein, the Pioneer 100 Wellness Project (P100)

initiated by the Institute of Systems Biology studied 108 in-
dividuals over the course of 9 months to create a personal,
dense, and dynamic data cloud for each individual. Further
analysis of inter-omics correlations led to the identification of
putative biomarkers for cardiometabolic disease (55). The
Pioneer 100 study has been expanded to 100,000 participants
in 100K Wellness Project examining blood, saliva, and stool as
well as other physiological and psychological measurements
to capture the initiation and progression of many common
diseases. A longitudinal integrated multi-omics, physiological
and behavioral analysis performed on a pair of monozygotic
(identical) twin astronauts (One twin on board International
space station and the other on Earth) for the first time revealed
the impact of long-duration space flight on human body. The
molecular insights revealed pathways and mechanisms that
are vulnerable to spaceflight and could serve as a guide for
targeted countermeasures/monitoring during future missions
(66). Longitudinal saliva multi-omics was used to monitor im-
mune response to vaccination is emerging as a non-invasive
diagnostic approach (67). Together these initial studies
showcase the immense potential of multi-omics approaches
for assessing health status, discovering clinically actionable
insights into illness, and guiding personalized medical treat-
ment to ultimately provide better health management.



FIG. 2. Longitudinal multi-omics and wearable data enabled deep phenotyping for precision health. Omics and non-omics data across
times (T1-Tn) could be integrated using machine learning and deep learning approaches to predict disease risk, subtyping, biomarker discovery,
molecular insights, and response to treatment among others. Figure was created using Biorender (https://biorender.com/).

Multi-Omics Profiling for Health
GENETIC VARIATION TO DISEASE

The completion of the Human Genome Project marked the
beginning of a new era in biomedical research (68). This was
followed by large-scale GWAS for identifying thousands of
genetic variations associated with diseases or complex traits.
However, the functional relationship of these variations to
patient phenotype or the translation of GWAS results to clin-
ical applications has been lacking. Since most GWAS loci fall
within non-coding regions, assigning functions to these vari-
ants has been challenging (69–71). In this regard, multi-omics
integration of whole-genome sequencing (WGS) or whole-
exome sequencing (WES) data with transcriptome informa-
tion has been critical in identifying genes and pathways that
may have a role in a particular disease. Importantly, prote-
omics has revealed the effect of genetic variants in conditions
otherwise undetectable by RNA analysis (72). For example,
through integrative analysis of ribosome profiling, RNA
sequencing, and MS of lymphoblastoid cell lines from 95
ethnically diverse individuals, we discovered distinct mecha-
nisms of gene expression variation among humans and found
that genetic variants can cause changes in protein levels
through effects on translation (73).
While WGS and WES can characterize ~10,000 variants per

genome, computational algorithms for accurately predicting
and prioritizing functional pathogenic variants have been
challenging. Towards this end, Mohammadi et al. (74) recently
developed a new method, ANEVA-DOT test, to compare the
expression activity of maternal and paternal alleles to identify
heterozygous DNA variants with a strong effect on gene
expression in rare genetic diseases and other complex con-
ditions. Multi-omics approaches can be utilized for the con-
struction of gene-regulatory networks to prioritize disease-risk
genes and for the prediction of drug efficacy (75). Visscher and
Yang have developed a method called omics-data-based
complex trait analysis to identify associations between
omics data, such as DNA methylation, and complex traits
while also accounting for confounding factors (76). Marioni
et al. carried out both GWAS and epigenome-wide association
studies on 92 plasma proteins with known neurological links
from 750 healthy older adults and identified both genetic and
epigenetic factors associated with the protein biomarkers (77).
Similarly, a multi-omics approach integrating functional ge-
nomics with GWAS summary statistics identified 650 amyo-
trophic lateral sclerosis-associated genes that represent a
fivefold increase in recovered heritability, extensive conser-
vation, and transcriptome network changes associated with
disease development. Rare variant analyses have demon-
strated the functional significance of candidate genes in
healthy and diseased motor neurons and brain tissues. These
studies demonstrate the power of multi-omics in dissecting
the genetic basis of complex diseases that were not possible
with single omics approaches, opening new avenues for
precision interventions (78).

CARDIO-METABOLIC DISEASE

Complex diseases including cardiovascular, metabolic dis-
orders, and cancer evolve over time and show incredible
heterogeneity among individuals. Thus, longitudinal
Mol Cell Proteomics (2023) 22(6) 100561 5
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multi-omics integrative analysis can identify temporal molec-
ular shifts indicative of physiological transitions between
healthy to disease states (Fig. 2). A prime example of this is a
longitudinal multi-omics study of weight perturbation that
demonstrated activation of strong inflammatory and hyper-
trophic signatures in the blood associated with weight gain.
Although weight loss reversed some changes, several signa-
tures persisted, indicative of long-term physiological changes
due to weight gain. Additionally, omics signatures revealed an
association with insulin resistance that could serve as a novel
diagnostic. Interestingly, specific biomolecules were highly
individualized and stable in response to perturbations,
potentially representing “personalized biomarkers” (79). In a
similar vein, the prediabetes to clinical type 2 diabetes mellitus
(T2DM) transition was captured by performing multi-omics on
prediabetic individuals for over 4 years. This rich longitudinal
data set revealed many insights into precision health: first,
healthy profiles were distinct among individuals while dis-
playing diverse patterns of intra-and/or inter-personal vari-
ability. Second, extensive host and microbial changes were
found during respiratory viral infections while immunization
was found to trigger potentially protective responses that are
distinct from responses to respiratory viral infections. More-
over, during respiratory viral infections, insulin-resistant (IR)
participants’ immune signatures responded differently than
insulin-sensitive (IS) participants. Third, global co-association
analyses among the thousands of profiled molecules
revealed specific host-microbe interactions that differed be-
tween IR and IS individuals. Lastly, this study identified early
personal molecular signatures in one individual that preceded
the onset of T2DM, including the inflammation markers
interleukin-1 receptor agonist and high-sensitivity C-reactive
protein paired with dysregulated xenobiotic-induced immune
signaling. Overall, this study revealed insights into myriad
pathways and responses that differ between glucose-
dysregulated and healthy individuals during health and dis-
ease (80).
A recent study used deep longitudinal multi-omics profiling

including emerging technologies like immunome, microbiome,
and wearable monitoring of a cohort enriched for risk factors
for T2DM for up to 8 years and discovered more than 67
clinically actionable health discoveries while also identifying
multiple molecular pathways associated with metabolic, car-
diovascular, and oncologic pathophysiology. Additionally,
omics measurements could reliably predict insulin resistance,
illustrating their potential to replace burdensome clinical tests
(81). Similarly, multi-omics has also been applied to under-
stand the molecular basis of hypertrophic cardiomyopathy
(HCM). Comprehensive molecular analysis using tran-
scriptome, metabolome, and lipidome profiling of myocardial
samples from HCM and normal controls revealed perturbed
metabolic signaling and mitochondrial dysfunction as com-
mon pathogenic mechanisms underlying HCM, highlighting
potential new drug targets for attenuation of HCM (82).
6 Mol Cell Proteomics (2023) 22(6) 100561
CANCER

Cancer etiology is multifactorial and highly heterogenous in
nature, requiring multi-modal approaches to dissect its un-
derlying mechanisms and develop new therapies. In this di-
rection, Liu et al. (83) utilized multi-omics analysis of genomic
CNVs, DNA methylation, and gene expression in 256 hepa-
tocellular carcinoma samples and identified five subgroups
with distinct molecular signatures and a distinct survival rate.
Kamoun et al. (84) performed multi-omics integrative analysis
on oligodendroglial tumors to identify three subgroups of 1p/
19q co-deleted gliomas. Single omics measurements have
been used in melanoma prognosis prediction. Unfortunately,
these approaches cannot comprehensively describe the bio-
logical processes underlying prognosis and the prognostic
models developed were less accurate for clinical imple-
mentation. To this end, Jiang et al. (85) performed an inte-
grative analysis of clinical variables, genomic CNVs, DNA
methylation, and gene expression data from The Cancer
Genome Atlas and found that integrated analysis led to
models with improved prediction, with a mean C-statistic of
0.724. Although chromatin alterations are reported in several
cancers, their relevance for cancer gene expression pheno-
types remains unclear. Recently, multi-omics profiling of
chromatin accessibility, RNA, and protein abundance of hu-
man thyroid cancer primary tumors, metastases, and patient-
match normal tissue identified gene body enhancers predic-
tive of correlated RNA and protein expression. This study
demonstrates the utility of multi-omics in identifying potential
targets and better understanding cancer treatments (86). In a
similar vein, Zhang et al. (87) performed genome sequencing
and proteomics analysis on high-grade ovarian serous carci-
nomas to unravel the influence of different gene copy-number
variations on the proteome, post-translational modification
levels, and clinical outcomes, providing a mechanistic link
between copy-number variations and potential progression
events in ovarian cancer. These studies demonstrate the po-
wer of multi-omics in understanding mechanisms of cancer
and subtyping for precision therapies. Recent reviews provide
an excellent and in-depth overview of multi-omics applica-
tions in cancer (88–90).
INFECTIOUS DISEASES

Multi-omics have enabled deep characterization of antibody
responses to infections and vaccines. Bulk and single-cell
multi-omics were instrumental in dissecting cellular re-
sponses to SARS-CoV-2 viral infection and subsequent vac-
cine responses during the COVID pandemic. While most
investigations involved focused on analyzing one information
layer at a time (e.g., fluorescence-activated cell sorting) to
understand the dynamics of circulating immune cells in
COVID-19, Bernardes et al. performed longitudinal multi-
omics on peripheral blood mononuclear cells (PBMCs) from
patients with COVID-19 infection throughout the disease
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course for a comprehensive understanding of longitudinal
cellular features. Interferon-activated circulating megakaryo-
cytes and increased erythropoiesis coincided with critical
illness while megakaryocytes- and erythroid-cell-derived co-
expression modules were predictive of fatal disease out-
comes. This multi-omics approach demonstrated the broad
cellular effects of SARS-CoV-2 infection at the epigenetic and
transcriptional level beyond just phenotypic analysis of im-
mune cells providing insights to develop biomarkers and
precision treatments for patients with COVID-19 (91). A recent
study using an integrated single-cell multi-omics profiling of
human lungs discovered and validated over 1000 risk genes
underlying severe COVID-19 across 19 cell types. Genetic risk
for severe COVID-19, covering both common and rare vari-
ants, was particularly enriched in natural killer cells. Further,
RefMap, a machine learning algorithm, enabled sensitive
prediction of severe disease in non-elderly patients based on
GWAS and single-cell omics. Individualized predictions were
accurate independent of age and sex and were consistent
across multiple populations and cohorts. When combined
with machine learning, this single-cell multi-omics approach
provided novel insights into the molecular mechanisms of
severe disease, leading to new therapeutic targets and sen-
sitive detection of at-risk individuals (92). Similarly, Sacco
et al. applied longitudinal multi-omics (analysis of soluble
biomarkers, proteomics, single-cell gene expression, and im-
mune repertoire analysis) to identify immunopathological sig-
natures between pediatric COVID-19 and multisystem
inflammatory syndrome in children (MIS-C). Pediatric COVID-
19 was characterized by robust type I interferon (IFN) re-
sponses, whereas increased levels of circulating spike protein,
matrisome activation, and prominent type II IFN-dependent or
NF-kB-dependent signatures were detected in MIS-C. This
approach thus better defines the pathophysiology of these
disorders and helps design precision therapies (93).
Multi-omics has also been used to characterize the mo-

lecular shifts between mild and moderate COVID-19. By
characterizing circulating immune cell classes and plasma
multi-omics profiles form two longitudinal blood draws, Su
et al. demonstrated elevated inflammatory signaling accom-
panied by loss of specific classes of metabolites and
metabolic processes during a shift from mild to moderate
COVID-19 disease. This integrated approach revealed that
moderate disease may provide the most effective setting for
therapeutic intervention (94). Multi-omics approaches are also
accelerating vaccine development by helping construct global
maps of the complex immune responses that occur during
vaccination to identify cellular and molecular correlates of
vaccine efficacy (For a comprehensive overview of multi-
omics approaches for precision medicine in infectious dis-
eases, See Refs (95, 96)). MS-based proteomics, with its fast
turn-around and high throughput, has been instrumental in
revealing classifiers of COVID-19 infection. Recently, Messner
et al. developed a low-cost platform (less than 10€ for
consumables per sample) for ultra-high-throughput serum and
plasma proteomics. In a cohort-based epidemiological study,
the platform could identify 27 potential markers that revealed
the severity grade of COVID-19. The platform demonstrates
the power of MS-based large-scale proteomics in clinical
decision support in situations needing rapid responses such
as the COVID-19 pandemic (97).
ORGAN TRANSPLANTATION

Organ transplantation remains the ultimate treatment option
for patients with end-stage disease with organ failure, yet
mortality rates are high due to frequent rejection. This is due to
a limited understanding of complex post-transplant immune
adaptation mechanisms. A better understanding of donor–
recipient matching and longitudinal multi-omics tracking af-
ter transplant is needed to improve rejection rates and design
personalized therapies. Towards this end, Watzenboeck et al.
combined profiling of the alveolar microbiome, cellular
composition, metabolome, and lipidome in bronchoalveolar
lavage samples from organ recipients and donors to identify
recipient-specific and environmental factors that shape the
long-term lung microbiome. The abundance of certain bac-
terial strains correlated with underlying lung diseases even
after transplantation. By applying machine learning models to
this data, they could accurately predict changes in forced
expiratory volume during the first second (FEV1, a major
characteristic of lung allograft dysfunction) from multi-omics
data, whereby lung microbiome composition showed a high
predictive power (98).
Wigger et al. conducted a comprehensive multi-omics

analysis of pancreatic islets obtained from metabolically pro-
filed pancreatectomized living human donors stratified along
the glycemic continuum (from normoglycemia to T2DM) and
found remarkable heterogeneity in the transcriptomic and
proteomic profiles in patients with diabetes compared to non-
diabetic controls. Differential regulation of islet gene expres-
sion is already observed in prediabetic individuals with
impaired glucose tolerance, suggesting a progressive, but
disharmonic, remodeling of mature beta cells and thus chal-
lenging the current model of a linear trajectory toward pre-
cursor or transdifferentiation stages in T2DM development.
Furthermore, through the integration of islet transcriptomics
with preoperative plasma lipidomics, this study also defined
the relative importance of gene coexpression modules and
lipids that are positively or negatively associated with HbA1c
levels, pointing to potential prognostic biomarkers. This
approach helps define subtypes of T2DM, and biomarkers
thereof, thus enabling precision approaches for the treatment
of T2DM (99).
PREGNANCY

Multi-omics approaches have also been instrumental in
unraveling biological signatures and transitions predictive of
Mol Cell Proteomics (2023) 22(6) 100561 7
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pregnancy-related complications, including pre-term birth
(PTB) and preeclampsia. Multi-omics modeling integrating
transcriptomic, immunological, microbiomic, metabolomic,
and proteomic measurements during the course of full-term
pregnancy was used to measure the ability of each dataset
to predict gestational age. Among the individual dataset,
plasma proteomics had the strongest predictive power.
Additionally, combining all datasets increased the predictive
power and revealed novel interactions among different bio-
logical modalities (100). Longitudinal multi-omics (metab-
olome, proteome, and immunome) profiling captured a distinct
molecular shift from pregnancy maintenance to pre-labor
biology occurring 2 to 4 weeks before delivery. A surge in
steroid hormone metabolites and interleukin-1 receptor type 4
preceded labor onset and coincided with a switch from im-
mune activation to the regulation of inflammatory responses.
This approach could help in developing blood-based methods
predicting the day of labor, anchored in mechanisms shared in
pre-term and full-term pregnancies (101). Multi-omics analysis
combined with machine learning modeling was also used to
identify early biological measurements associated with pre-
term birth in five biorepository cohorts in low- and middle-
income countries (102). These studies reveal the power of
combining multi-omics and machine learning for developing
valuable predictive tests and intervention candidates for pre-
venting PTB.
LONGEVITY/AGING

Longitudinal multi-omics profiling was also used to reveal
myriad molecular changes during aging, identifying both
known and new markers, as well as distinct molecular pat-
terns of aging in insulin-resistant as compared to insulin-
sensitive individuals. Molecular pathways that changed
over time in each individual suggested different aging pat-
terns (ageotype) that may ultimately be useful in monitoring
and intervening in the aging process (45). In a similar vein, Nie
et al. utilized multi-omics data, including clinical tests, im-
mune repertoire, targeted metabolomics, gut microbiome,
physical fitness tests, and facial skin examination to estimate
the biological ages of different organs to identify diversity in
aging. This study revealed different aging patterns across the
study population, suggesting precision interventions may be
necessary to decrease the impact of aging (103). In another
study, multi-omics profiling was used to understand vari-
ability in reprogramming old or young fibroblasts to induced
pluripotent stem cells (iPSC) akin to ageotypes. This
approach revealed that fibroblast cultures from older mice
contained “activated fibroblasts” that secrete inflammatory
cytokines and that the proportion of activated fibroblasts in
each cell culture correlated with the reprogramming effi-
ciency. This could help in developing personalized strategies
to improve iPSC cell generation and wound healing in elderly
individuals (104). These studies highlight the promise of
8 Mol Cell Proteomics (2023) 22(6) 100561
multi-omics integrative approaches in developing personal-
ized aging interventions.
EMERGING FRONTIERS IN PRECISION HEALTH

Host–Microbiome Interactions

The microbiome, often considered our second genome,
shapes health and plays a crucial role in a plethora of dis-
eases. Characterization of diverse microbes in healthy in-
dividuals found extensive variation in both body site habitat
and between different individuals, giving rise to the concept of
a “personal microbiome” (105). Microbial interactions with
their human hosts change across health and disease and thus
serve as a modifiable factor to manage health (106). A recent
host-microbial multi-omics study demonstrated taxonomic
and functional differences between insulin-resistant and
insulin-sensitive individuals in various measurements, both at
baseline and in response to stresses such as weight loss and
respiratory viral infections (80). Along similar lines, Heintz-
Buschart et al. (107) performed microbial multi-omics on four
families with type 1 diabetes and observed intra- and inter-
individual variation demonstrating a pronounced effect of
family membership on the structural and functional composi-
tion of the gut microbiome. Lloyd-Price et al. performed an
integrated host-microbial multi-omics longitudinal profiling
study that provided a comprehensive view of functional dys-
biosis in the gut microbiome during inflammatory bowel syn-
drome activity. They demonstrated that a characteristic
increase in facultative anaerobes at the expense of obligate
anaerobes, as well as molecular disruptions in microbial
transcription, metabolite pools, and levels of antibodies in
host serum, was correlated with the development of bowel
inflammation. Periods of disease activity were also marked by
increases in temporal variability in the microbiome with char-
acteristic taxonomic, functional, and biochemical shifts.
Finally, the integrative analysis identified microbial, biochem-
ical, and host factors central to this dysregulation (108).
Similarly, through longitudinal sampling and integrative host–
microbial multi-omics, a recent study identified inflammatory
bowel syndrome subtype-specific and symptom-related vari-
ations in microbial composition and function. Furthermore,
purine metabolism was identified as a key host–microbial
metabolic pathway as a therapeutic target for inflammatory
bowel syndrome (109). Thasis et al. utilized host methylome,
transcriptome, metabolome, and gut microbial metagenome
and imaging data to quantify the global reprogramming of host
biology by microbiota. They showed a tight link between the
host and microbial circadian activities and further found that
disruption of microbial rhythmicity abrogates normal host
oscillations in the intestine and liver, influencing host diurnal
fluctuations (110). Apart from host-microbial omics analysis,
extra-cellular vesicles (EVs) secreted by host and microbial
cells are emerging as critical players in cell-to-cell communi-
cation under various conditions. EVs are lipid bilayerd
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structures containing transmembrane proteins, cytosolic
proteins membrane-associated proteins, and nucleic acids.
Upon release by cells, EVs can interact with adjacent or
distant cells and modulate their function through signaling via
surface contact or by transferring cargo (111). A comprehen-
sive omics profiling of EVs thus could serve as biomarkers for
a range of clinical conditions including COVID-19 (112), can-
cers (113), and so on. These studies demonstrate the power of
integrated longitudinal host–microbial multi-omics analyses in
revealing the complex interactions that shape host physiology
and may be amenable to precision interventions for preventing
diseases.

Host–Environmental Interactions

Genetic loci identified from GWAS have been able to explain
only a small proportion of complex disease heritability/etiol-
ogy, leading to “missing heritability” concept (114). Non-
genetic factors including lifestyle, diet, and environmental
exposures (exposome) are suggested to explain the “missing
heritability” of complex diseases (115). Lifestyle factors,
especially physical exercise, favorably impact overall health
and protect against complex diseases including obesity, dia-
betes, and other cardiometabolic diseases (116–119). How-
ever, the molecular mechanisms underpinning exercise-
induced benefits have not been clearly defined. Along this
direction, a longitudinal multi-omics profiling study of plasma
and PBMCs from 36 well-characterized volunteers, before and
after a controlled bout of symptom-limited exercise, detected
distinct molecular changes and an orchestrated choreography
of biological processes involving energy metabolism, oxida-
tive stress, inflammation, tissue repair, and growth factor
response as well as regulatory pathways governing magnitude
and duration of those responses. Interestingly, these pro-
cesses were dampened, and some were even reversed, in
insulin-resistant participants. Machine learning models based
on multi-omics data from this study were able to predict po-
tential blood-based biomarkers of peak oxygen consumption
during exercise (120). Recently, Li et al. (121) discovered an
exercise-induced metabolite, N-lactoyl-phenylalanine (Lac-
Phe), as a suppressor of feeding and obesity in mouse,
humans, and racehorse models of exercise and provided new
insights into molecular responses to physical activity. To tap
the immense potential of multi-omics, datasets with larger
samples and more tissue- and disease-specific repositories
are essential. In this direction, a larger consortium involving
pre-clinical and clinical studies is also examining systemic
response to acute and chronic exercise using multi-tissue
multi-omics. This will serve as a public database to enhance
our understanding of the health benefits of exercise and could
provide insights into how exercise mitigates disease (122).
Diet, another lifestyle factor, has a profound impact on host

physiology and exerts a “personalized effect” (123). Integrative
multi-omics, wearable data, and machine learning approaches
are revealing molecular insights into individuals’ responses to
diet, enabling improved precision nutrition approaches. For
example, Zeevi et al. (124) created a machine learning algo-
rithm that included blood parameters, dietary habits, anthro-
pometrics, physical activity, and gut microbiome data that
could accurately predict personalized postprandial glycemic
response to real-life meals. Recently, Berry et al. assessed
postprandial metabolic responses in ~1002 twins and unre-
lated healthy adults and found a large interindividual variability
in blood triglycerides, glucose, and insulin. Machine learning
models implementing meal composition, habitual diet, meal
context, anthropometry, genetics, microbiome, clinical, and
biochemical parameters could accurately predict postprandial
triglyceride and glucose responses (125). A recent study used
continuous glucose monitoring (CGM) to longitudinally track
glucose dynamics in response to standardized meals and
uncovered highly personal glucotypes unique to participants
(57). In a similar vein, personalized responses to dietary fiber
(arabinoxylan & inulin) supplementation were also discovered
using host multi-omics, microbiome, and clinical parameters
(126). These studies show the utility of integrative multi-omics,
microbiome, and machine learning approaches to dissect in-
dividual responses to diet.
The exposome is another non-genetic modifier of health

that includes both biological (e.g., pollen, viral particles) and
chemical components (e.g., pollutants, disinfectants, and in-
secticides). This diverse repertoire of components can exert
distinct biological responses through methylation, gene
expression changes, microbial shifts, and inflammatory cyto-
kine secretion (127). The external exposome can influence
internal omics responses, including metabolomics, linking
functional environmental changes to chronic disease (128).
However, the impact of diverse environmental exposures on
individuals’ health is not clearly understood and thus needs
large-scale efforts comparable to human genome sequencing
(129). To this end, a recent study longitudinally profiled the
personal exposome of 15 adult individuals for up to 890 days
using a portable exposometer. Combined with deep
sequencing and mass spectrometry profiling, over 2500 mi-
crobial species and 2796 putative chemical features were
identified in these collected personal airborne exposures and
showed highly dynamic changes in exposome composition in
response to varying environments and lifestyles (130). Simi-
larly, a recent study from Human Early Life Exposure (HELIX)
project investigated the biological effects of early life exposure
in a multicenter cohort of 1301 mother–child pairs and asso-
ciated individual exposomes consisting of 100 chemical,
physical, and lifestyle exposures assessed in pregnancy and
childhood followed by multi-omics profiling in childhood. They
identified 1170 associations, 249 in pregnancy and 921 in
childhood, which revealed potential biological responses and
sources of exposure. The methylome best captured the
persistent influence of pregnancy exposures, including
maternal smoking, while childhood exposures were associ-
ated with features from all omics layers, revealing novel
Mol Cell Proteomics (2023) 22(6) 100561 9
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signatures for indoor air quality, essential trace elements,
endocrine disruptors, and weather conditions (131). To better
understand how the exposome shapes an individual’s
phenotype, a recent study used deep longitudinal personal
exposome and internal multi-omics profiling and annotated
thousands of chemical and biological components in the
personal exposome cloud, finding a significant correlation
with thousands of internal biomolecules which were cross-
validated using corresponding clinical data. These results
showed that agrochemicals and fungi dominated the highly
diverse and dynamic personal exposome, while the bio-
molecules and pathways related to the individual’s immune
system, kidney, and liver were most highly associated with
their personal external exposome. This data-driven longitudi-
nal monitoring study showed the depth of dynamic in-
teractions between the personal exposomes and internal
multi-omics, underlining the need for further study and tool
development (132).
WEARABLE AND ELECTRONIC HEALTH RECORD DATA INTEGRATION

Electronic health records (EHR) can complement multi-
omics and wearables with longitudinal clinical data, including
diagnostic codes, procedure codes, lab results, physical
measurements, clinical notes, and medical images. In this
direction, a recent study leveraged a machine learning
framework to integrate genomes, EHR data, and lifestyle
factors to accurately predict the occurrence of abdominal
aortic aneurysm (133). Despite its clinical utility, EHR data are
usually sparse with records from discrete clinical visits. Thus,
wearable-based continuous physiological monitoring and
integration with other multi-omics data within EHR will be
critical to speed up clinical decisions and potentially reduce
medical costs. For instance, initiatives by the NIH such as the
“All of US” project are building health databases collecting
EHR, questionnaires, physical measurements, digital health
technologies, and the collection and analysis of biospecimens
of a million diverse individuals that will characterize the inter-
section of biology, lifestyle, and environment in health (134).
LARGE-SCALE EFFORTS ADVANCING MULTI-OMICS ENABLED
PRECISION HEALTH

Multi-omics–enabled precision health is propelled by
continued technical advances in human genomics, prote-
omics, lipidomics, and metabolomics. For instance, long-read
sequencing has enabled the completion of the human genome
with telomere-to-telomere sequencing (T2T Consortium) and
will provide a gold standard reference for mapping genetic
variation to the genome and detecting pathogenic variants
(135). Similarly, the human proteome project launched by The
Human Proteome Organization (HUPO) in 2010 has made
enormous progress in enhancing accurate annotation of
genome-encoded proteins and reached a 90.4% complete
high-stringency human proteome blueprint in 2021 (136). As a
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part of HUPO, we quantified the relative protein levels from
over 12,000 genes across 32 normal human tissues, identified
tissue-specific and tissue-enriched proteins, and compared
them to transcriptome data. Discordance of RNA and protein
levels revealed potential sites of protein synthesis and action
of secreted proteins. Most importantly, our study demon-
strated that protein tissue-enrichment information can explain
phenotypes of genetic diseases that cannot be obtained by
transcript information alone. Furthermore, we demonstrated
how understanding protein level patterns can provide insights
into gene regulation, the secretome, metabolism, and human
diseases (137). Similarly, the human metabolome database
(HMDB) created by the Human Metabolome Project has
curated detailed information on small molecule metabolites
found in the human body, serving as an up-to-date reference
database for metabolomics studies (138).
Multi-omics repositories are providing a rich data resource

to understand health and disease at the population level
(Table 1). For example, two large-scale epigenetics studies,
the Encyclopedia of DNA Elements (ENCODE) project and
Roadmap Epigenomics, have mapped regions of transcrip-
tion, transcription factor association, histone modification,
DNA methylation, and chromatin structure to delineate all
functional elements encoded in the human genome (139), and
develop (140) critical reference epigenomic maps of human
tissues, respectively. Similarly, to understand the functional
consequences of genetic variation and its impact on complex
human diseases, the Genotype-Tissue Expression (GTEx)
project was initiated in 2010 (141). The Enhancing GTEx
(eGTEx) project was later introduced to complement gene
expression phenotypes determined in the GTEx project by
extending data depth and introducing new methods (142). The
Cancer Genome Atlas, which includes genomic, epigenomic,
transcriptomic, proteomic, and clinical data for 32 cancers, is
another landmark multi-omics study that has revolutionized
precision oncology (143).

ADVANCES AND OUTLOOK OF COMPUTATIONAL METHODS IN MULTI-
OMICS DATA INTEGRATION

Heterogeneous and high dimensional nature of multi-omics
data requires robust integrative approaches to avoid infor-
mation burden from an individual data type. Several machine
learning methods, including unsupervised (matrix factoriza-
tion, Bayesian, network-based, and kernel-based) and su-
pervised approaches (multi-staged, multidimensional) have
been successfully applied for fast and efficient integrative
analysis of multi-omics data and are commonly used in
research settings as described in the previous sections (Fig. 2)
(144–146). Supervised approaches relay on labeled data (train
data) to learn the underlying patterns and discern similar
patterns in the independent data set (test data). Supervised
approaches include random forests, hidden Markov models,
decision trees, support vector machines, elastic nets, and
neural networks among others. Supervised approaches are



TABLE 1
Multi-omics repositories for precision medicine research

Consortium
Year of
launch

Status Sample size Omics assays Reference

The FANTOM
Consortium

2000 Healthy Variable CAGE, RNA-Seq, RADICL-
Seq

https://fantom.gsc.riken.jp/

ENCODE 2003 Healthy, Cancer Variable RNA-Seq, Chip-Seq,
DNase-Seq, eCLIP-Seq,
ChIA-PET, Hi-C, CAGE,
ScRNA-Seq, ATAC-Seq

https://www.encodeproject.
org/

Roadmap
Epigenomics

2007 Healthy Variable RNA-Seq, ChIP-Seq,
DNase-Seq, methylation

http://www.
roadmapepigenomics.org/

1000 Genomes
Project

2007 Healthy 1000 WGS, Targeted Exome
sequencing

https://www.
internationalgenome.org/

UK Biobank 2007 Various 500,000 Genotyping, WES, WGS https://www.ukbiobank.ac.
uk/

GTEx and eGTEx 2010 Healthy 948 WGS, WES, RNA-Seq, https://www.gtexportal.org/
home/

eQTLGen consortium 2018 Various 31,684 Whole genome,
Transcriptomics

https://www.eqtlgen.org/

MoTrPAC 2019 Healthy Variable RNA-seq, ATAC-seq,
Methyl-cap, RRBS, WGS,
Proteomics, Lipidomics and
Metabolomics

https://www.motrpac.org/

All of Us 2020 Healthy 1 million Surveys, wearables,
physical measurements,
EHR

https://www.
researchallofus.org/

COSMIC 2004 Cancer Variable Genomics, Epigenomics,
Transcriptomics

https://cancer.sanger.ac.uk/
cosmic

TCGA 2006 Cancer 20,000 Genomics, Epigenomics,
Transcriptomics

https://portal.gdc.cancer.
gov/

CPTAC 2011 Cancer Variable Copy number variation,
whole genome and whole
exome sequencing, DNA
methylation, RNA-seq,
miRNAs, global proteome,
phosphoproteome,
acetylome and
ubiquitinome, and immune
subtyping

https://cptac-data-portal.
georgetown.edu/
cptacPublic/

TARGET 2016 Pediatric cancers Variable Clinical, genomic,
transcriptomic, and
epigenomic data

https://ocg.cancer.gov/
programs/target

ADNI 2004 Alzheimer’s disease
patients, mild
cognitive impairment
subjects, and elderly
controls

Variable Clinical, genetic, magnetic
resonance imaging, and
positron emission
tomography imaging

https://adni.loni.usc.edu/

CommonMind 2012 Schizophrenia,
bipolar disorder, and
unaffected controls

1000 RNA and DNA sequencing,
genotyping, epigenetics

https://www.nimhgenetics.
org/resources/
commonmind

PsychENCODE 2015 Neuropsychiatric
disease

Variable WGS, Transcriptomics https://psychencode.
synapse.org/

AMP-PD 2018 Alzheimer’s disease,
type 2 diabetes,
rheumatoid arthritis,
systemic lupus
erythematosus and
Parkinson’s disease

Variable Transcriptomics,
epigenomics, whole
genome sequencing,
metabolomics, and
proteomics

https://amp-pd.org/about

ATAC, Assay for Transposase-Accessible Chromatin; CAGE, Cap Analysis of Gene Expression; ChIA-PET, Chromatin Interaction Analysis by
Paired-End Tag; Chip, Chromatin immunoprecipitation; eCLIP, enhanced Crosslinking and Immunoprecipitation; EHR, Electronic Health Record;
Hi-C, High-throughput chromosome conformation capture; RADICL, RNA and DNA Interacting Complexes Ligated; RRBS, Reduced-
Representation Bisulfite sequencing; ScRNA, Single-cell RNA; WGS, Whole Genome Sequencing.
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ideal for the prediction of continuous tasks such as survival or
pain scores and the classification of discrete outcomes such
as disease/healthy status. Unsupervised approaches discern
patterns in the data without the need for labeled data and in an
unbiased manner. Unsupervised approaches include principal
component analysis (PCA), hierarchical clustering, self-
organizing maps, and k-means clustering among others. Un-
supervised approaches are well suited for the discovery of
disease subtypes, biomarkers, and early diagnosis of disease.
A comprehensive list of tools for multi-omics data integration
can be found at https://github.com/mikelove/awesome-multi-
omics. Moving forward, multi-omics data will be increasingly
utilized for precision medicine framework, where incorporation
of deep learning, artificial intelligence, and cloud-computing
systems will play a crucial role in integrative analysis, inter-
pretation, and visualization of multi-omics, imaging, clinical,
wearable, and epidemiological data. Additionally, this has the
potential to provide clinicians with automated, real-time, and
interpretable platforms in assisting disease diagnosis, treat-
ment strategy, and prognosis.
CHALLENGES AND FUTURE PROSPECTS

Individual omics like WGS and WES have already entered
clinics for routine genetic screening, understanding response
to treatments, and discovering disease biomarkers (2–5).
However, the clinical implementation of multi-omics for pre-
cision health has been challenging for several practical rea-
sons. Firstly, omics data acquisition and analysis require
specialized equipment, trained personnel, and large financial
commitments. Secondly, while cost and turnaround times are
rapidly declining, there are parallel challenges in data storage
and analysis. Multi-omics data is often heterogenous and
poses myriad challenges associated with “Big data,” that is,
volume, variety, velocity, and veracity. Datasets with thou-
sands of variables come with the “curse of dimensionality”
where the variance between samples becomes large and
sparse, rendering clustering analysis uninformative and posing
further challenges in interpreting integrated data (147). In
addition, missing values, lack of samples, data complexity,
class imbalance, dataset shifts, batch effects, and unavail-
ability of some data types can pose significant challenges. In
this, there is a lack of standardization for sample collection
and omics data analysis. Third, the heterogenous nature of
datasets requires rigorous statistical tools to integrate and
interpret the results. As data complexity grows with the in-
clusion of wearables and EHR data, approaches for deep
learning, data mining, and artificial intelligence will be neces-
sary to integrate and interpret them. Fourth, multi-modal data
complexity and scale (multi-omics data sets can easily exceed
tera byte (TB) scale) require robust data management systems
to ensure adequate data handling capacity, privacy, and se-
curity. Health management platforms like Personal Health
Dashboard (PHD), which utilizes state-of-the-art security and
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scalable technologies to provide an end-to-end solution for
big biomedical data analytics both at an individual and cohort
level, were developed to meet these challenges. PHD can also
be used for collecting and visualizing diverse data types
(wearable, clinical, omics) as demonstrated recently in the
investigation of insulin resistance and the detection of
pre-symptomatic COVID-19 (59, 60, 148). Similar data man-
agement infrastructure tools have been proposed for the
integration of imaging data and omics data (149, 150). Fifth, so
far multi-omics analysis has been typically restricted to few
hundreds of participants rising questions on the scalability. To
this end, recent studies have demonstrated the promise of
expanding it to large populations (>4000) (151). In addition to
these limitations, there is also a general resistance to change
among health-care systems and policy makers, who need
robust evidence for adopting multi-omics widely. In addition,
training among clinicians for interpreting multi-omics results is
currently lacking, as is training for scientists to flexibly work
across different ‘omes.
In addition to the practical considerations listed earlier,

there are equally important ethical considerations surround-
ing discrimination, consent for testing, data privacy, security,
data aggregation, and data re-use. As individualized medical
big data becomes commonly utilized in health care settings
for personalized medicine, clarity on data ownership, man-
agement, distribution, and access needs carefully consid-
ered. For example, while data leading to diagnoses are of
interest to providers and payers, patients have a right to their
privacy. Access to personal medical big data revealing
debilitating or expensive disease conditions might prompt
employers and insurers to discriminate a person. Thus, legal
frameworks are needed to protect privacy as well as
providing minimum information necessary for other stake
holders (152). Additionally, cloud-based data management
platforms hosting personal data must have rigorous regula-
tory compliance (For e.g., HIPAA, GDPR) to prevent inad-
vertent/malicious access to data. Some of the commercially
available cloud-based platforms such as AWS, Google cloud
and MS genomics (www.microsoft.com/en-us/genomics/)
have approved and necessary tools for multi-omics data
management (153).
Despite these hurdles, with an ongoing decrease in omics

analysis costs, availability of robust computational tools for
data analysis and management, and integration of data
informatics in health-care systems, and adequate training of
clinicians, it is projected that by 2030, multi-omics–based
precision medicine will increasingly transform clinical medi-
cine with the routine use of multi-omics, microbiome analysis,
real-time monitoring of environmental exposures, wearable
based continuous monitoring of physical activity, sleep, and
metabolic parameters for better management of health (154).
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75. Võsa, U., Claringbould, A., Westra, H. J., Bonder, M. J., Deelen, P., Zeng,
B., et al. (2021) Large-scale cis- and trans-eQTL analyses identify
thousands of genetic loci and polygenic scores that regulate blood gene
expression. Nat. Genet. 53, 1300–1310

76. Zhang, F., Chen, W., Zhu, Z., Zhang, Q., Nabais, M. F., Qi, T., et al. (2019)
OSCA: a tool for omic-data-based complex trait analysis. Genome Biol.
20, 107

77. Hillary, R. F., McCartney, D. L., Harris, S. E., Stevenson, A. J., Seeboth, A.,
Zhang, Q., et al. (2019) Genome and epigenome wide studies of
neurological protein biomarkers in the Lothian Birth Cohort 1936. Nat.
Commun. 10, 3160

78. Zhang, S., Cooper-Knock, J., Weimer, A. K., Shi, M., Moll, T., Marshall, J.
N. G., et al. (2022) Genome-wide identification of the genetic basis of
amyotrophic lateral sclerosis. Neuron 110, 992–1008.e11

79. Piening, B. D., Zhou, W., Contrepois, K., Röst, H., Gu Urban, G. J., Mishra,
T., et al. (2018) Integrative personal omics profiles during periods of
weight gain and loss. Cell Syst. 6, 157–170.e8

http://refhub.elsevier.com/S1535-9476(23)00071-3/sref34
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref34
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref34
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref35
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref35
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref35
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref35
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref36
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref36
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref36
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref36
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref37
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref37
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref37
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref38
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref38
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref38
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref39
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref39
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref39
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref40
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref40
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref40
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref41
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref41
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref41
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref42
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref42
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref42
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref42
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref43
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref43
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref43
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref43
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref44
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref44
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref44
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref45
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref45
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref45
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref46
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref46
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref46
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref46
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref47
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref47
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref47
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref48
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref48
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref49
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref49
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref49
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref50
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref50
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref50
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref51
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref51
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref52
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref52
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref52
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref52
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref53
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref53
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref53
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref53
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref54
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref54
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref54
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref55
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref55
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref55
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref56
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref56
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref56
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref57
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref57
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref57
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref58
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref58
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref58
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref59
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref59
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref59
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref60
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref60
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref60
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref61
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref61
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref61
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref62
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref62
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref63
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref63
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref64
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref64
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref64
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref65
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref65
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref65
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref66
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref66
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref66
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref67
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref67
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref67
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref68
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref68
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref69
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref69
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref69
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref70
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref70
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref71
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref71
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref71
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref72
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref72
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref72
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref73
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref73
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref73
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref73
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref74
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref74
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref74
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref75
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref75
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref75
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref75
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref75
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref76
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref76
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref76
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref77
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref77
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref77
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref77
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref78
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref78
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref78
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref79
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref79
http://refhub.elsevier.com/S1535-9476(23)00071-3/sref79


Multi-Omics Profiling for Health
80. Zhou, W., Sailani, M. R., Contrepois, K., Zhou, Y., Ahadi, S., Leopold, S. R.,
et al. (2019) Longitudinal multi-omics of host-microbe dynamics in
prediabetes. Nature 569, 663–671

81. Schussler-Fiorenza Rose, S. M., Contrepois, K., Moneghetti, K. J., Zhou,
W., Mishra, T., Mataraso, S., et al. (2019) A longitudinal big data
approach for precision health. Nat. Med. 25, 792–804

82. Ranjbarvaziri, S., Kooiker, K. B., Ellenberger, M., Fajardo, G., Zhao, M.,
Vander Roest, A. S., et al. (2021) Altered cardiac energetics and mito-
chondrial dysfunction in hypertrophic cardiomyopathy. Circulation 144,
1714–1731

83. Liu, G., Dong, C., and Liu, L. (2016) Integrated multiple “-omics” data
reveal subtypes of hepatocellular carcinoma. PLoS One 11, e0165457

84. Kamoun, A., Idbaih, A., Dehais, C., Elarouci, N., Carpentier, C., Letouzé, E.,
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