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A B S T R A C T   

Selenoprotein glutathione peroxidases (GPX), like ubiquitously expressed GPX1 and the ferroptosis modulator 
GPX4, enact antioxidant activities by reducing hydroperoxides using glutathione. Overexpression of these en-
zymes is common in cancer and can be associated with the development of resistance to chemotherapy. GPX1 
and GPX4 inhibitors have thus shown promise as anti-cancer agents, and targeting other GPX isoforms may prove 
equally beneficial. Existing inhibitors are often promiscuous, or modulate GPXs only indirectly, so novel direct 
inhibitors identified through screening against GPX1 and GPX4 could be valuable. Here, we developed optimized 
glutathione reductase (GR)-coupled GPX assays for the biochemical high-throughput screen (HTS) of almost 
12,000 compounds with proposed mechanisms of action. Initial hits were triaged using a GR counter-screen, 
assessed for isoform specificity against an additional GPX isoform, GPX2, and were assessed for general 
selenocysteine-targeting activity using a thioredoxin reductase (TXNRD1) assay. Importantly, 70% of the GPX1 
inhibitors identified in the primary screen, including several cephalosporin antibiotics, were found to also inhibit 
TXNRD1, while auranofin, previously known as a TXNRD1 inhibitor, also inhibited GPX1 (but not GPX4). 
Additionally, every GPX1 inhibitor identified (including omapatrilat, tenatoprazole, cefoxitin and ceftibuten) 
showed similar inhibitory activity against GPX2. Some compounds inhibiting GPX4 but not GPX1 or GPX2, also 
inhibited TXNRD1 (26%). Compounds only inhibiting GPX4 included pranlukast sodium hydrate, lusu-
trombopag, brilanestrant, simeprevir, grazoprevir (MK-5172), paritaprevir, navitoclax, venetoclax and 
VU0661013. Two compounds (metamizole sodium and isoniazid sodium methanesulfate) inhibited all three 
GPXs but not TXNRD1, while 2,3-dimercaptopropanesulfonate, PI4KIII beta inhibitor 3, SCE-2174 and cefotetan 
sodium inhibited all tested selenoproteins (but not GR). The detected overlaps in chemical space suggest that the 
counter screens introduced here should be imperative for identification of specific GPX inhibitors. With this 
approach, we could indeed identify novel GPX1/GPX2- or GPX4-specific inhibitors, thus presenting a validated 
pipeline for future identification of specific selenoprotein-targeting agents. Our study also identified GPX1/ 
GPX2, GPX4 and/or TXNRD1 as targets for several previously developed pharmacologically active compounds.   

1. Introduction 

Many cancer cell types have higher basal levels of reactive oxygen 
species (ROS) production, and altered expression of antioxidant en-
zymes, when compared to normal cells. At moderate levels, ROS, like 
hydrogen peroxide and the hydroxyl radical, can cause substantial 
cellular damage by reacting with DNA, lipid membranes, and proteins, 

leading to tumorigenesis [1,2]. At high levels, however, different hy-
droperoxide species can contribute to several cell death pathways, and 
many anticancer therapeutics function by targeting and perpetuating 
imbalance in these redox systems [3–6]. Selenoproteins, such as the 
glutathione peroxidase (GPX) family, protect cells from increased levels 
of hydroperoxides and oxidative stress, although individual GPXs can 
have diverse roles in different cellular contexts [7]. GPXs couple the 
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reduction of hydrogen peroxide and other organic hydroperoxides with 
the oxidization of glutathione (GSH) to glutathione disulfide (GSSG) 
(Fig. 1A) [8–10]. Many cancer types show an upregulation of GPXs to 
compensate for increased hydroperoxide levels, or as a function of 
altered signaling, and these important enzymes have been described as 
modulators of metastases [7,11–13]. The three primary isoforms, GPX1, 
GPX2, and GPX4, differ in expression and substrate specificity. The most 
abundant isoform, GPX1, is a homotetramer and can reduce a range of 
hydroperoxides [8,14]. GPX2 has high homology with GPX1 and can 
reduce similar substrates, albeit with a significantly reduced turnover, 
but is expressed primarily in epithelial cells [8]. GPX4 is monomeric and 
unique in its ability to reduce lipid hydroperoxides [8,9]. GPX4 has 
recently been identified as an important regulator of a non-apoptotic 
form of iron-dependent cell death, ferroptosis, which is of interest as a 
novel anticancer pathway [15,16]. Inhibition of GPX activity, using 
small molecules or cellular knock-down models, can trigger repressed 
tumor growth and cell death [17,18]. Additionally, GPX1, GPX2, and 
GPX4 expression is upregulated in cancer cells resistant to many che-
motherapeutics, and many treatment-resistant cells have been found to 
accumulate lipid peroxides, showing an increased dependence on the 
antioxidant activity of GPX4 [19–24]. The relationship between GPX1 
and resistance remains less clear and appears to have some 

tissue-dependence; with increased activity promoting resistance in 
Non-Small Cell Lung Cancer (NSCLC) and breast carcinoma while lower 
GPX1 expression drives gemcitabine resistance in pancreatic ductal 
adenocarcinoma (PDAC) [25–27]. GPX2 overexpression has been 
characterized in several cancers such as colorectal adenomas and car-
cinomas, as well as promoting progression of lung adenocarcinomas 
[28–30]. Though, the effects of the upregulation of GPXs are not entirely 
clear; in some cases (and with some genetic variants) this is associated 
with improved prognosis, tumor suppression, and even increased 
sensitivity to chemotherapeutics, while several cancer types instead 
exhibit decreases in GPX expression [30–33]. 

Because of the role of glutathione peroxidases in controlling hydro-
peroxide levels, counteracting oxidative stress, and regulating cell death 
pathways, inhibitors of GPXs have promising potential as therapeutics 
for several malignancies. Specific inhibitors will be essential to fully 
characterize the effects of GPX inhibition, and to validate the relevance 
of isoform specific targeting as anti-cancer treatments. However, due to 
the technical difficulties in producing active selenocysteine (Sec)-con-
taining recombinant GPXs due to highly intricate selenocysteine trans-
lation machineries, large screening efforts have not been attempted and 
very few specific drug-like inhibitors have been identified [34–36]. 

To date, very few GPX1-specific inhibitors have been described. A 

Fig. 1. Assay diagrams. A) GPX activity schematic; 
B) Schematic diagram of fluorescence-based high- 
throughput screening assay used to evaluate GPX 
activity. GPX enzymatic reaction when reducing CHP 
is coupled to GR with the detection of NADPH fluo-
rescence. C) Schematic diagram of GR inhibition 
assay used as a counter-screen to identify small 
molecules that show inhibition in the primary 
screening assay via indirect inhibition of the coupling 
enzyme; D) Schematic diagram of TXNRD1 activity 
assay reducing selenite to selenide in an NADPH- 
dependent reaction, used as counter-screen to iden-
tify small molecules with broader Sec-targeting ac-
tivity; E) Schematic diagram of orthogonal endpoint 
GPX inhibition assay. Following a reaction window, 
monobromobimane is added and reacts with the 
thiols in remaining GSH to quantify GPX activity.   
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novel class of tri- and tetracyclic pentathiepins have been recently 
shown to inhibit GPX1 and not induce ferroptosis, though direct mea-
surement of GPX4 modulation was not performed [36]. Pan-GPX in-
hibitors, however, fall into two categories: GSH competitors, and 
selenol-interacting agents. Agents that inhibit cellular GSH synthesis, 
such as erastin and L-buthionine sulfoxamine (BSO), or selenoprotein 
translation machinery inhibitors, such as statins, are indirect inhibitors 
of GPX activity [37–39]. Mercaptosuccinic acid (MSA) and some 
thiol-containing peptides can bind to and inhibit the activity of GPXs, 
and methylmercury, as well as some lead-containing compounds, can 
react irreversibly with the Sec residue of GPX [40]. Inhibition of sele-
noproteins by metals is thought to contribute to the metal-related 
toxicity of these agents. Additionally, the FDA approved arthritis treat-
ment auranofin (AF, Ridaura®) is known to inhibit the selenoproteins 
thioredoxin reductase (TXNRD1) and GPX1 with emerging potential as 
an anti-cancer agent [6,41,42]. Biochemical inhibition by auranofin has 
not been observed with GPX4, a monomeric isoform, but recent studies 
have shown decreased GPX4 expression in mutant p53 non-small cell 
lung cancer following auranofin treatment [41,43]. 

The integral role of GPX4 in reducing lipid hydroperoxides, and as a 
regulator of ferroptosis, has instigated interest in the development of 
GPX4-specific inhibitors. A high-throughput oncogenic-RAS synthetic 
lethal screen identified (1S,3R)-RSL3 (referred to as RSL3 in this paper) 
as a mutant-RAS selective compound that induces the accumulation of 
lipid hydroperoxides characteristic of ferroptosis [44]. This form of cell 
death is preventable with iron chelators, such as DFO, or antioxidant 
ferroptosis inhibiting compounds, such as ferrostatin-1 [15].Two addi-
tional small molecules, ML162, and ML210, were identified in the same 
screen, and all three molecules were subsequently determined to induce 
ferroptosis with a mechanism consistent with binding of GPX4 in a lysate 
pull-down assay [16]. Additional studies have described in more detail 
the covalent binding of these ferroptosis inducing (FIN) compounds to 
GPX4 and leading to subsequent degradation of the enzyme in cells [35, 
45]. However, direct biochemical inhibition of Sec-containing GPX4 by 
RSL3 has not been demonstrated, and it was proposed that cellular 
inactivation requires an adaptor protein, 14-3-3ε [46]. ML210, simi-
larly, has been shown to require a cellular context to enact GPX4 inhi-
bition [47]. Furthermore, we have recently described the potent 
biochemical and cellular inhibition of TXNRD1, but not of pure GPX4, 
by RSL3 or ML162 [42]. Thus, the existing small molecule inhibitors of 
GPXs are not ideal for further development as GPX-targeting compounds 
and additional discovery programs are needed to properly probe either 
GPX1 or GPX4. 

Using novel methods to express and purify recombinant Sec- 
containing GPXs we have produced large amounts of purified enzy-
matically active GPX1 and GPX4 [48–50], and have here developed and 
miniaturized assays for these enzymes amenable to high-throughput 
small molecule screening. We have used these assays to screen almost 
12,000 small molecules in mechanistically annotated libraries to iden-
tify compounds with low micromolar inhibitory activity against GPX1 
and/or GPX4. These libraries include approved drugs (USA, Europe, 
Japan, Australia, and Canada), investigational drugs, novel agents 
entering the clinic, and other pharmacologically active probe com-
pounds. Using a new panel of activity screens, counter-screens, and 
orthogonal assays to determine mode of inhibition, we have thus iden-
tified GPX-targeting compounds, and optimized a pipeline to enable 
future discovery of additional potent and specific inhibitors of GPXs. 

2. Methods 

2.1. Chemicals, reagents, and libraries 

Tris(hydroxymethyl)aminomethane (Tris-HCl; T3253), ethyl-
enediaminetetraacetic acid (EDTA; 324504), sodium chloride solution 
(NaCl; S5150), L-glutathione reduced (GSH, G4251), L-glutathione 
oxidized (GSSG; G4501), cumene hydroperoxide (CHP; 247502), 

β-nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium 
salt hydrate (NADPH; N7505), monobromobimane (mBBr; B4380), and 
bovine serum albumin (BSA; A3311) were purchased from Sigma 
Aldrich (St. Louis, MO). Dimethyl sulfoxide (DMSO; BP231) was pur-
chased from ThermoFisher (Pittsburgh, PA). 

The primary screening was completed using the Library of 1280 
Pharmacologically Active compounds (LOPAC®1280) from Sigma- 
Aldrich (St. Louis, MO), and three internal mechanistically annotated 
libraries; the Mechanism Interrogation Plate (MIPE) 5.0, the NCATS 
Pharmaceutical Collection (NPC) 2.0, and the NCATS Pharmacologically 
Active Chemical Toolbox (NPACT), for a total of 11,892 compounds. 
The compound plates were prepared as described previously [51]. Pu-
rified recombinant human GPX1, GPX2, GPX4, GR, and TXNRD1 were 
produced and purified as previously reported [48–50]. As production of 
GPX2 was not optimized at the onset of screening, only GPX1 and GPX4 
underwent library screening, and GPX2 was used as a follow-up. 

2.2. Quantitative high-throughput biochemical screening 

Compounds from the MIPE 5.0, NPC 2.0, and NPACT libraries were 
screened at seven concentrations (LOPAC was run at five concentra-
tions) ranging from 68.3 nM to 49.8 μM. All HTS confirmatory, 
orthogonal, and counter-screen assays were tested in 11-point dose- 
response ranging from 842.5 pM to 49.8 μM. Follow-up and orthog-
onal assays were run in quadruplicate unless otherwise stated. Assay 
schemes are illustrated in Fig. 1. 

2.2.1. Primary GR-coupled GPX activity assays 
To measure GPX activity, assays were performed in 1536-well format 

in black medium-binding solid-bottom plates (Greiner). These assay 
conditions were optimized for high-throughput screening from an assay 
first described by Paglia and Valentine [52]. GPX activity is measured 
indirectly by coupling the reaction with GR whereby GPX reduces hy-
droperoxide by oxidizing two GSH to GSSG and the oxidized glutathione 
is recycled to its reduced state by GR and NADPH (Fig. 1B). The rate of 
consumption of NADPH is directly proportional to the activity of GPX 
and can be measured by the decrease in fluorescence at 340 nm/450 nm. 

First, 3 μL of enzyme in TES assay buffer (50 mM Tris-HCl, 2 mM 
EDTA (pH 7.5), 150 mM NaCl with enzyme [10 nM GPX1, 200 nM GPX4 
] and BSA [0.01%]) was added to columns 3–48 of 1536-well plates 
using a BioRAPTR Flying Reagent Dispenser (Let’s Go Robotics (LGR), 
Carlsbad, CA). A no-enzyme control (0.01% BSA in TES assay buffer) 
was added to columns 1–2. Compounds (25 nL, library and DMSO 
controls) were added to each well with a pin tool (Kalypsys), and the 
plates were incubated for 30 min at room temperature before 1 μL of 
master mix (100 nM GR, 1 mM GSH, 0.5 mM NADPH in TES buffer) was 
added. 1 μL of cumene hydroperoxide (CHP) ([0.5 mM] in 50% EtOH) 
was then added within 5 min to initiate the reaction. Fluorescence at 
340/450 nm was measured using a ViewLux multimodal detector 
(PerkinElmer, Waltham, MA) at initial t = 0 and endpoint t = 15 min 
(GPX1) or t = 20 min (GPX4). 

Follow-up confirmation assays were also run in 96-well format using 
medium binding clear 96-well SpectraPlate microplates (PerkinElmer) 
and NADPH absorbance at 340 nm was measured every 30 s for 30 min 
using an Infinite® M Nano (Tecan). 

2.2.2. GR counter-assay 
To identify false positive compounds that interfere with the primary 

assay through inhibition of GR, ‘hits’ from the primary screening were 
run against a GR counter assay to identify this possible off-target inhi-
bition (Fig. 1C). Briefly, 3 μL enzyme mixture (100 nM GR, 0.01% BSA in 
TES buffer) was dispensed into columns 2–48 of a 1536-well black 
medium-binding solid-bottom plates. The no-enzyme control (0.01% 
BSA in TES buffer) was included in column 1 and 2. Compounds and 
controls (23 nL) were added to each well with a pin tool (Kalypsys), and 
the plates were incubated for 30 min before 2 μL of substrate mixture (1 
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mM GSSG 0.4 mM NADPH in TES buffer) was added to each well and 
absorbance at 340 nm was measured at t = 0 and t = 20 min using a 
ViewLux Multimodal detector (PerkinElmer). 

2.2.3. Monobromobimane orthogonal assay 
As an orthogonal assessment of GPX inhibition, a mono-

bromobimane endpoint assay was used (Fig. 1E). Briefly, 30 μL GPX 
mixture (0.01% BSA and enzyme [1 nM GPX1 or 25 nM GPX4] in TES 
buffer) was added to columns 2–24 of 384-well black medium-binding 
plates (Greiner) using a BioRAPTR FRD. TES buffer was used as a no- 
enzyme control in column 1. Compounds and controls were added in 
11-point dose-response titration and incubated with enzyme for 30 min 
whereupon 10 μL of 400 μM GSH in TES buffer was added before starting 
the reaction with the addition of 10 μL 200 μM CHP and the reaction was 
left at room temperature for 10 min (GPX1) or 15 min (GPX4). Upon 
GPX activity, GSH was depleted over time, whereupon 500 μM mBBr 
was added and fluorescence at 394/490 was measured using a Viewlux 
multimodal detector every 20 s for 20 min. 

2.2.4. Thioredoxin reductase 1 (TXNRD1) inhibition assay 
TXNRD1 activity was assessed using a modified 1536-well TXNRD1 

inhibition assay, based upon TXNRD1-catalyzed selenite reduction as 
previously described (Fig. 1D) [53]. Briefly, 2 μL of human TXNRD1 
mixture in TE buffer (50 mM Tris-HCl, pH 7.5, 2 mM EDTA, 180 nM 
TXNRD1 and 0.01% BSA) followed by 1 μL of NADPH in TE buffer were 
dispensed into each well of a Greiner black solid-bottom 1536-well 
plates using a BioRAPTR 2.0 (Let’s Go Robotics (LGR)) flying reagent 
dispenser. TE buffer was dispensed into column 1 and 2 as a no-enzyme 
control. Finally, 1 μL of sodium selenite in TE buffer was dispensed into 
each well for final concentrations of 90 nM hTXNRD1, 0.4 mM NADPH, 
and 0.4 mM sodium selenite. The plate was read in a Viewlux multi-
modal detector in kinetic mode and fluorescence at 340 nm/450 nm was 
measured every minute for 8 min. 

2.2.5. Nano differential scanning fluorimetry (nanoDSF) characterization 
Thermal stabilization of enzyme ± DMSO or ± compound was car-

ried out in a Prometheus NT.48 instrument (NanoTemper Technologies) 
with an excitation wavelength of 280 nm. Intrinsic fluorescence at 330 
nm and 350 nm was monitored while heating. Capillaries were filled 
with ~10 μL of a solution of GPX1/4 (1 mg/mL), ± small molecule (100 
μM) or DMSO, in TES buffer and placed into the instrument. The cap-
illaries were subjected to a temperature range from 30 to 90 ◦C at a ramp 
rate of 2 ◦C/min. The ratio of the recorded emission intensities (350nm/ 
330 nm) were plotted as a function of temperature. This ratio and first 
derivatives were calculated using the NanoTemper software and were 
plotted using GraphPad Prism. 

2.3. Analysis and triage 

Percent activity was determined by first calculating delta RFU 
(decrease in fluorescence between t = 0 and t = 20/30 min in primary 
GPX, GR counter-screen, and TXNRD1 assays, or increase in fluores-
cence between t = 0 and t = 20 min in the Monobromobimane GPX 
endpoint assay), and normalizing enzyme activity using median delta 
RFU values for DMSO-treated enzyme control, and DMSO-treated no- 
enzyme controls. 

Compound inhibitory activity in the qHTS assays was determined by 
plotting dose-response data for each sample and fitting with a four- 
parameter logistic fit to assess IC50 values, efficacy (maximal 
response), and AUC (area under the curve), as previously described [51]. 
Hits were classified by the quality of the concentration-response curves 
(CRC). Curve classes − 1.1 and − 1.2 being the highest-confidence actives 
with complete CRCs and classes − 2.1 and − 2.2 being lower-confidence 
actives with incomplete CRCs. Compounds in these classes were further 
categorized as high- and low-quality actives based on maximal responses 
of ≤25% or ≤50% remaining activity, respectively, and an IC50 value of 

≤20 μM. 
Compounds were further clustered and analyzed using TIBCO Spot-

fire 11.4.4 (Spotfire Inc., Cambridge, MA, USA) based on activity from 
both primary and follow-up screens, and figures and final curves were 
generated using log(inhibitor) vs. response for four-parameter variable 
slope GraphPad Prism version 9.3.1 (GraphPad Software, San Diego, CA, 
USA). 

HTS data and assay information can be found at PubChem using ID 
numbers 1845191 for the GPX1 HTS and 1845192 for the GPX4 HTS. 

3. Results 

3.1. Assay development and optimization 

Modifying a previously described assay [52] to be amenable for 
high-throughput screening, GSSG production by GPXs was coupled to 
GR activity (Fig. 1B). This assay setup includes two human enzymes, 
GPX (either GPX1 or GPX4) and GR, that naturally function together in 
cellular responses to oxidative stress. GPX converts two GSH molecules 
to GSSG as it reduces a hydroperoxide, and as GR recycles GSSG to GSH, 
it consumes NADPH in the process. The NADPH can be directly 
measured by NADPH autofluorescence, providing a coupled readout of 
GPX activity wherein reduction of CHP is equivalent to the consumption 
of NADPH. Although both GPX1 and GPX4 efficiently reduce a variety of 
substrates, CHP was selected for a lower background activity when 
compared to H2O2 (Supp. Fig. 1). Initial titration of NADPH and GR in 
our miniaturized assay setup determined that maximal turnover and 
maximal signal window occurred at 500 μM NADPH and 100 nM GR 
(not shown) and 0.5 mM CHP was selected as substrate. Because GPXs 
do not follow Michaelis-Menten kinetics, an initial ‘matrix’ of GSH:CHP 
ratios was performed to determine good assay behavior. With the opti-
mized GR and NADPH conditions, and 0.5 mM CHP, we tested several 
GSH concentrations from 0.125 mM to 8 mM, and in both GPX1 and 
GPX4 assays the 2:1 ratio resulted in optimal assay velocity 
(Figs. 2A–3A, optimized concentrations shown in red). GPX enzyme 
concentration was then optimized for reaction time, with 10 nM GPX1 
and 200 nM GPX4 found to give suitable linearity in NADPH con-
sumption during 15 min of incubation and complete NADPH con-
sumption within 25 min (Figs. 2B–3B, optimized concentrations shown 
in red). As the concentration of GR in the GPX1 assay posed a potential 
for amassing GR-specific hits, additional GR concentration tests were 
conducted, ensuring that activity was dependent primarily on GPX ac-
tivity, and not GR (Figs. 2C–3C). Initial assay performance was strong 
with average plate statistics of 0.75 Z′ and 6.8 S/B for GPX1 (Figs. 2D) 
and 0.71 Z′ and 7.8 S/B for GPX4 (Fig. 3D). Optimized assay conditions 
for GPX1 and GPX4 are displayed in Table 1. 

Previously reported inhibitors (‘prior art’) were selected and tested 
against the optimized assay. Of the five GPX inhibitors noted in the 
literature [16,42,54] only two compounds exhibited inhibitory activity 
on GPX1, Auranofin (IC50: 4.84 μM) and MSA (IC50: 1.44 μM) (Fig. 2E). 
MSA inhibited GPX4 with an IC50 of 57.7 μM. No previously reported 
GPX4-targeting compounds (RSL3, ML162, ML210) showed inhibitory 
activity in the GPX4 biochemical assay (Fig. 3E), as reported elsewhere 
in further detail [42]. To further ensure that the GPX4 assay was indeed 
inhibitable, mercuric chloride was assessed as a Sec-targeting agent 
[55], and showed inhibition with IC50 values of 5.83 μM and 7.89 μM for 
GPX1 and GPX4, respectively (Figs. 2E–3E). 

The GR counter screen assay (Fig. 1C) was optimized for 1536-well 
format from a previous report [56]. GR concentration was optimized 
for an amenable reaction time (Supp. Fig. 2A) and GSSG concentration 
was optimized within the linear range of NADPH fluorescence (Supp. 
Fig. 2B). The ideal conditions were found using 25 nM hGR, 0.5 mM 
NADPH, and 200 μM GSSG. The linearity of the reaction suggested that 
imaging after a 15-min incubation would be sufficient. Assay perfor-
mance was strong with average plate statistics of 0.77 Z’ and 34.9 S:B 
(Supp. Fig. 2C). 
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Monobromobimane (mBBr) is a heterocyclic compound that reacts 
readily with low molecular weight thiols, like glutathione [57]. In its 
reduced state, mBBr reacts with the thiol on glutathione, and becomes 
fluorescent. We here assessed whether mBBr would function as a suit-
able orthogonal endpoint measurement of GPX activity (Fig. 1D). We 
first assessed linearity and reaction speed and the signal window and 
rapid formation of the GSH-mBBr complex were found to be reproduc-
ible and suggested compatibility (Supp. Fig. 3A). However, due to the 
viscosity of the MBBr solution, liquid handling was better suited for a 
384-well plate using larger dispense volumes. Using the mBBr:GSH ratio 
with the largest signal window and a 2:1 GSH:CHP ratio, GPX1 and 
GPX4 at several concentrations were tested at varying timepoints to 
assess the timing of non-coupled activity. The optimized assay condi-
tions for GPX1 were found to be 5 nM hGPX1, 500 μM GSH, and 500 μM 
mBBr, while GPX4 required 50 nM hGPX4, 500 mM GSH, and 500 μM 
mBBr. Initial tests using the validated GPX1 inhibitor, auranofin, 
resulted in similar activity in either assay (IC50 of 1.94 μM in the 
GR-coupled assay, and 5.3 μM in the mBBr assay). The lower GSH 
concentrations required similar incubations, whereby mBBr was added 
to react with remaining GSH at t = 15 min for both enzymes (Supp. 
Fig. 3B). Performance for this assay was moderate with average plate 
statistics of 0.49 Z′ and a 1.5X S:B for GPX1 and 0.47 Z’ and a 1.8X S:B 
for GPX4 (Supp. Fig. 3C, Supp. Fig. 3D). 

3.2. High-throughput screen 

Primary library screening using our principal assay (Fig. 1B) was run 
once using the LOPAC®1280 library at five concentration points, and the 

MIPE 5.0, NPC 2.0, and NPACT libraries at seven concentration points, 
totaling 11,892 unique small molecules, using an automated screening 
platform. During the screens, plates were read at t = 0 min and t = 15 or 
20 min for GPX1 and GPX4, respectively. A total of 64 positive control 
(enzyme + DMSO treatment), and 64 negative control (no enzyme +
DMSO treatment) wells were included in each 1536-well plate to 
monitor assay performance. The activity of each compound was 
measured as the change in signal from an initial (t = 0) read and was 
normalized against control wells. Using Δ15 min signal for GPX1, the 
HTS assays resulted in an average Z′ of 0.67 ± 0.05, and a S/B of 6.7 ±
1.4 (Fig. 4A–B). The GPX4 assay was run at Δ20 min and resulted in 
assay performance with an average Z’ of 0.67 ± 0.1 and a S/B of 7.1 ±
1.2 (Fig. 4D–E). High quality actives were defined as displaying >50% 
reduction in activity, an IC50 ≤ 20 μM, and a complete CRC (concen-
tration–response curve). Analysis of the CRCs resulted in 180 high- 
quality GPX1 actives (Figs. 4C), and 318 high-quality GPX4 actives 
(Fig. 4F), with resulting hit rates of 1.3% and 2.7%, respectively. 

Auranofin was present in the screening libraries and inhibited GPX1 
with an IC50 of 2.26 μM and aurothioglucose (a known TRXRD1 inhib-
itor with GPX1 inhibitory activity) showed moderate inhibition of GPX1, 
reducing activity to 49% at the top dose (not shown). 

3.3. Hit confirmation and triage 

The top compounds showing activity in the primary screen were 
reacquired, replated, and screened in an 11-point dose-response with 
freshly QC’ed stock to confirm activity. Of the 377 initial hits, 40 
inhibited both GPX1 and GPX4 (‘pan-active,’ or ‘pan-GPX active’). 

Fig. 2. Validation of GPX1 qHTS primary assay. A) GPX1 assay velocity with 10 nM GPX1 and 0.5 mM CHP with varying GSH concentrations, red denotes 
optimized 2:1 ratio of 1 mM GSH and 0.5 mM CHP (8:1, 4 mM GSH; 4:1, 2 mM GSH; 2:1, 1 mM GSH; 1:1, 0.5 mM GSH; 1:2, 0.25 mM GSH; 1:4, 0.125 mM GSH); B) 
GPX1 dilution and time course of GR-coupled activity assay with 100 nM GR, 1 mM GSH, 0.5 mM CHP, and 0.5 mM NADPH, red denotes optimized concentration of 
10 nM; C) effect of GR concentration on GPX1 velocity with optimized substrate and enzyme conditions, red bar denotes optimized concentration of 50 nM; D) 1536- 
well plate performance of optimized GR-coupled GPX1 assay, average Z′ for whole plate was 0.75; E) Prior art GPX1 inhibitor activities in optimized assay curve fit 
for IC50 calculation: IC50 of auranofin, MSA, and mercuric(II) chloride were 4.84 μM, 1.44 μM, and 5.83 μM, respectively. (For interpretation of the references to 
color in this figure legend, the reader is referred to the Web version of this article.) 
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Several secondary assays and counterscreens were selected to triage the 
initial screening hits, as summarized in the triage schematic in Fig. 5A. A 
total of 215 compounds from the primary assays reconfirmed activity in 
the expanded 11-point dose response validation, though 44 of these 

were removed for demonstrating activity at only the top concentration 
tested (i.e., weak activity). The 171 compounds remaining as confirmed 
underwent further analysis in secondary assays. 

A GR activity assay was then run to identify ‘false positive’ com-
pounds from the screen that interfered with the coupled primary assays. 
94 compounds were found to inhibit the GR assay and were excluded 
from subsequent analysis. Of the 49 reconfirmed GPX1 hits, 24 (49%) of 
the compounds were GR actives, 54 of the 132 GPX4 actives showed 
activity in the GR assay (41%), and 59% of the pan-active hits were 
active in the GR assay (Fig. 5B–C). 

The 121 compounds now remaining were subjected to further testing 
in a TXNRD1 activity assay to identify specific inhibitors of each GPX, 
pan-GPX inhibitors, and potentially also broad Sec-targeting com-
pounds. Of the 121 GPX inhibiting compounds, 30 were found to inhibit 
TXNRD1 as well. This amounted to 14 of the 20 remaining GPX1 in-
hibitors and 11 of the remaining 42 GPX4 inhibitors (70% and 26%, 
respectively), and 5 of the compounds inhibiting both GPX1 and GPX4. 
We found four compounds that showed pan-GPX inhibition and 
TXNRD1 inhibition, but not GR, suggesting they may be specific Sec- 
targeting agents. 

The 40 compounds remaining were then assessed for GPX activity in 
the orthogonal endpoint MBBr assay, and the inhibitory activity of all 
compounds tested was confirmed. Taken together, the assay panel 
suggested that the activities of these 40 compounds were indeed directly 
dependent on the GPXs, and not the coupling enzymes or assay formats 
(Fig. 5B–C). 

A total of 5 GPX1-specific compounds, top 9 GPX4-specific com-
pounds, and 2 pan-GPX active compounds (20 total, 21 with auranofin) 

Fig. 3. Validation of GPX4 qHTS primary assay. A) GPX4 assay velocity with 200 nM GPX4 and 0.5 mM CHP with varying GSH concentrations, red denotes 
optimized 2:1 ratio of 1 mM GSH and 0.5 mM CHP (8:1, 4 mM GSH; 4:1, 2 mM GSH; 2:1, 1 mM GSH; 1:1, 0.5 mM GSH; 1:2, 0.25 mM GSH; 1:4, 0.125 mM GSH); B) 
GPX4 dilution and time course of GR-coupled activity assay with 100 nM GR, 1 mM GSH, 0.5 mM CHP, and 0.5 mM NADPH, red denotes optimized concentration of 
200 nM; C) effect of GR concentration on GPX4 velocity with optimized substrate and enzyme conditions, red bar denotes optimized concentration of 50 nM; D) 
1536-well plate performance of optimized GR-coupled GPX4 assay, average Z′ for whole plate was 0.75; E) Prior art GPX4 inhibitor activities in optimized assay 
curve fit for IC50 calculation: IC50 of MSA, and mercuric(II) chloride were 57.74 μM, and 7.90 μM, respectively. None of the Class II FINs showed inhibitory activity, 
as reported elsewhere [42]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Protocol for GPX qHTS assays.  

Step Parameter Value Description 

1 Dispense enzyme 3 μL GPX1 or GPX4 
2 Pin-transfer library 

compounds Pin-transfer 
controls 

23 nL 1:3 dilution series 45–0.1 μL 
auranofin dilution series 
(GPX1) 

3 Incubation time 30 min. Room temperature 
4 Dispense substrate A 1 μL GSH/GR/NADPH 
5 Dispense substrate B 1 μL CHP 
6 Read fluorescence Endpoint Viewlux, 340/450 nm 

Step notes. 
1. [1.67X] enzyme mix: 0.0133 μM hGPX1 (0.333 μL hGPX4), 0.0167% BSA in 
TES buffer (50 mM Tris-HCl, pH 7.5 + 2 mM EDTA + 150 mM NaCl); same buffer 
but no enzyme in column 1. 
2. Pintool transfer (tip wash sequence: DMSO, IPA, 3 s vacuum dry); control 
compound dilution in column 2. 
3. Lidded plate. 
4. [5X] substrate A mix: 5 mM GSH, 0.05 μL hGR, 2.5 mM NADPH in TES buffer. 
5. [5X] substrate B mix: 2.5 mM CHP in 50% EtOH. 
6. 340 nm excitation, 450 nm emission, 2 s exposure, 10 flashes; t = 0 min and t 
= 15 min (20 min for GPX4). 
Final conc.: 10 nM hGPX1 or 200 nM hGPX4, 0.01% BSA, 50 nM GR, 1 mM GSH, 
0.5 mM NADPH, 0.5 mM CHP. 
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were then assessed in the final assays. 

3.4. Other glutathione peroxidases 

Previous work has shown similarities in the substrate specificities of 
GPX1 and GPX2, and a more unique substrate profile of GPX4 [8]. The 

final compound set was thus assessed for inhibitory activity in a GPX2 
assay to further delineate the specificity of the hits. The novel GPX4 
inhibitors did not show significant inhibition of GPX2 (80.4 ± 14.2% 
remaining activity at top dose), while all GPX1 hits also showed potent 
inhibition of GPX2 (17.9 ± 6.4% activity remaining at top dose) 
(Fig. 5D). 

Fig. 4. Primary screening results and assay performance. A) GPX1 qHTS plate performance as Z′ values for each library screened; B) GPX1 qHTS plate per-
formance as signal:background calculations for each library screened; C) GPX1 qHTS hit rate; D) GPX4 qHTS plate performance as Z′ values for each library screened; 
E) GPX1 qHTS plate performance as signal:background calculations for each library screened; F) GPX4 qHTS hit rate. 

Fig. 5. Hit triage. A) GPX1 and GPX4 HTS triage 
schematic; B) Summary of novel small molecule GPX1 
actives in primary assay and counter-screens; C) 
Summary of novel small molecule GPX4 actives in 
primary assay and counter-screens; D) Heat map 
showing relationships of hit compounds based on the 
similarities of their activity profiles against GPX1, 
GPX2, and GPX4. For further details on each com-
pound, see Table 2. Compounds 20 and 21 were not 
tested with GPX2 (shown as black box). Data is given 
as mean remaining activity at top concentration of n 
= 3 replicates.   
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For complete activity profiles of the top novel inhibitors encom-
passing five GPX1 inhibitors (+ a reconfirmation of auranofin), nine 
GPX4 inhibitors, two pan-active GPX inhibitors, and pan-selenoprotein 
inhibitors see Figs. 6–9. 

3.5. Thermal stability using nanoscale differential scanning fluorimetry 
(nanoDSF) 

We next aimed to evaluate via a biophysical method whether the 
compounds that inhibited GPX1, GPX4, or both GPX1 and GPX4 were 
interacting directly with the enzymes to further probe the interactions of 
the top inhibiting compounds with their target enzymes. nanoDSF is a 
high-throughput, label-free method to monitor changes in the fluores-
cence of intrinsic tryptophan in a protein as a function of temperature. 
Bound compounds typically thermally stabilize enzymes, resulting in a 
shift in melting temperature (Tm) at which 50% of the enzyme is 
degraded [58,59]. GPX1 contains two tryptophans, which resulted in 
lower fluorescent signal than GPX4, which contains four. Glutathione 

was used as a substrate and known binder, resulting in a +3.6 ◦C in-
crease in Tm for GPX1 (Fig. 10A) and +4.7 ◦C for GPX4 (Fig. 10B). The 
top performing inhibitors were next assessed for this cell-free binding to 
GPX1 and GPX4. With GPX1, auranofin showed a +8.3 ◦C shift in Tm to 
50.6 ◦C from a DMSO control, tenatoprazole showed significant thermal 
stabilization with an increase of Tm of +7.5 ◦C, while omapatrilat 
treatment resulted in two inflection points, the first at +6.3 ◦C, and the 
second at +12.8 ◦C (Fig. 10C). No other top GPX1 hits showed thermal 
stabilization. Top GPX4 hits from our HTS showed thermal stabilization 
with Tm values ranging from +3.2 ◦C to +5.0 ◦C. VU0661013 showed 
two inflection points, at 51.8 ◦C and 60.2 ◦C, with Tm shifts of +3.6 ◦C 
and +12.0 ◦C, respectively (Fig. 10D). These effects were found to be 
statistically significant using a two-tailed Welch’s t-test and were plotted 
by Tm (Fig. 10E and F). 

4. Discussion 

Here, we report the development and implementation of several 

Fig. 6. Activity profiles of top GPX1 inhibitors. Structure and activity profile of A) auranofin; B) omapatrilat; C) tenatoprazole; D) cefoxitin; E) ceftibuten; F) 2-3- 
dimercaptosuccinic acid. Data are normalized to DMSO and presented as mean ± s.d. of n = 3 replicates. 
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Fig. 7. Activity profiles of top GPX4 inhibitors. Structure and activity profile of A) pranlukast sodium hydrate; B) lusutrombopag C) brilanestrant; D) simeprevir E) 
grazoprevir (MK-5172); F) paritaprevir; G) navitoclax; H) venetoclax; I) VU0661013. Data are normalized to DMSO and presented as mean ± s.d. of n = 3 replicates. 
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primary and secondary assays in 1536-well format, as well as several 
characterization assays, for the identification of novel small molecule 
inhibitors of GPXs from high-throughput chemical libraries. These as-
says used Sec-containing enzymatically active human recombinant 
GPX1 and GPX4, produced and purified using a novel method in E. coli, 
to screen the mechanistically annotated compounds from our small 
molecule libraries (LOPAC1280, MIPE, NPC, and NPACT) in GR-coupled 
assays. All hits were additionally tested for inhibitory activity in a GR 
activity assay to remove any false positives from the primary screen, and 
subsequently also in TXNRD1 and GPX2 assays. 

After screening 11,892 compounds against the optimized qHTS 
GPX1 and GPX4 assays, hit compounds were defined as having >50% 
inhibitory activity at the top concentration. Auranofin was present in 
three of the libraries screened and was a high-quality active hit for GPX1 
in all three, representing the high reproducibility of this assay. RSL3 and 
ML210 were present in the HTS libraries, but as expected were not active 
hits in either screen [42]. Of the initial qHTS hits, 70% either did not 
reconfirm activity in the 11-point dose response follow-up GPX assays, 
or were shown to be false positives by inhibiting the coupled enzyme, 
GR. 

Of the novel GPX4 inhibitors we found in the HTS, only 8% showed 
cross-inhibition with TXNRD1, suggesting the promiscuity of the FINs 
(RSL3 and ML210) may not be representative of future development of 
specific GPX4 inhibitors. Surprisingly, almost a third of all GPX1-specific 
inhibitors also showed high-quality inhibition of TXNRD1, which sug-
gests a much larger overlap in chemical space for inhibition of these two 
enzymes, or alternatively a common mechanism of action against the 
Sec residue. If the latter is the case, this suggests that the Sec residue of 
GPX1 is more accessible to compounds than that in GPX4. It is well 
known that the Sec residue of TXNRD1 is solvent exposed and easily 
reacts with electrophilic compounds [60–62]. It is in this context note-
worthy that 2,3-dimercaptopropanesulfonic acid inhibited all seleno-
proteins but not GR, suggesting that this small molecule may access the 
Sec residue in GPX4 as well, and may thus possibly be a 
pan-selenoprotein inhibitor, although we have not yet tested it against 
other selenoproteins. Still, the evaluation of the inhibitory activity of the 
different compounds on other selenoproteins remains an important step 
in efforts to discover specific GPX inhibitors. 

Following triage assays, auranofin (classically known as a TXNRD1 
inhibitor) and five novel compounds were identified as GPX1/GPX2- 
specific inhibitors. Of these six compounds, auranofin, omapatrilat, 
and tenatoprazole showed significant shifts in the melting temperature 

of GPX1 and can thus be considered direct binders of the enzyme. The 
two cephalosporins, cefoxitin sodium salt, and ceftibuten did not show 
any thermal stabilization. The final three compounds do not share 
structural similarity, nor overlap in mechanism of action. Omapatrilat 
was developed as a dual neutral endopeptidase (NEP) and angiotensin- 
converting enzyme (ACE) inhibitor that has been experimentally 
assessed as a hypertension treatment, while tenatoprazole was a clinical 
candidate for peptic ulcer and reflux functioning as a proton pump in-
hibitor. Based on our findings, targeting of GPX1 and/or GPX2 could 
also be considered as a potential off-target mechanism of action for these 
compounds. 

The GPX2 isoform of human selenoprotein GPXs is found in epithe-
lial cells and has similar substrate specificity with GPX1, but not as much 
with GPX4 [8]. Additionally, GPX1 and GPX2 both form homotetramers 
and share similarities in structural homology, although GPX2 has a 
much slower turnover rate. All GPX1 inhibitors found here also showed 
similar potency against GPX2, but it should be noted that because the 
activity of GPX2 is much lower than that of GPX1, our assays required a 
25-fold higher concentration of GPX2 to measure activity. GPX2 was still 
effectively inhibited at lower enzyme:compound ratios, showing that 
GPX2 was efficiently inhibited. It remains to be seen whether 
cross-inhibition of GPX1 and GPX2 will prove to be a hurdle for drug 
development efforts seeking specific inhibitors of GPX1 or GPX2. 
Furthermore, any cellular effects of the compounds identified here as 
GPX1 inhibitors must also be considered as resulting from GPX2 inhi-
bition, or inhibition of both enzymes, depending on their respective 
expression profiles in a given cell or tissue. 

We identified 13 novel biochemical inhibitors of GPX4. These in-
hibitors proved less promiscuous in our suite of assays, showing little to 
no cross-inhibition with GPX1, GPX2, or TXNRD1. Although the final 
high-quality inhibitors were varied in mechanism of action and struc-
ture, several categories of structurally similar hits were identified, 
helping to validate the assay and pipeline. Unsurprisingly considering 
the affinity of GPX4 for phospholipid hydroperoxides, the largest cate-
gory of inhibiting compounds contained fatty acids and surfactants. 
These tended to inhibit primarily at top doses and were not considered 
high-quality hits, however several of the final hits, namely lusu-
trombopag and pranlukast, contain longer carbon chains. Of the more 
drug-like classes, these included three NS3-4A serine protease inhibitors 
produced for treatment of hepatitis C: simeprevir, grazoprevir, and 
paritaprevir. Furthermore, the Bcl-2 family protein inhibitors, navito-
clax and venetoclax, both showed potent GPX4 inhibition. The final set 

Fig. 8. Novel Pan-GPX inhibitors. Structure and activity profile of A) metamizole sodium; B) isoniazid sodium methanesulfate; Data are normalized to DMSO and 
presented as mean ± s.d. of n = 3 replicates. 
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of GPX4 inhibitors included GSK-3965 and CDIBA, liver X receptor 
(LXR) agonist and a cytosolic phospholipase A2 (cPLA2) inhibitor, 
respectively. The remaining top high-quality hits, namely brilanestrant 
and VU0661013 were considered singleton hits and remain structurally 
different from the other compounds. Important to consider when 
assessing these hits is our choice to use the substrate CHP in our assay. 
This helped to facilitate the difficulties of HTS, so these hits have not 
been assessed using other lipid hydroperoxides as GPX4 substrates (and 
such a HTS-amenable biochemical assay has not yet been reported). If 
GPX4 inhibition contributes to the pharmacological effects of any of 
these compounds when used in vivo remains to be investigated. 

The purpose of this study was to establish an HTS discovery pipeline 
for GPXs and to evaluate the workflow for identifying specific probes 
inhibiting GPX1 and GPX4. Though the compounds screened have other 
established targets and are known to be promiscuous, and were selected 

for that purpose, the identification of auranofin, a known GPX1 inhibi-
tor, using these assays helps to validate the screening process. During 
this pilot, many compounds were identified that interfere with GR and 
TXNRD1 in secondary assays, demonstrating the relevance of these 
follow-ups to exclude false-positive hits and more general Sec-targeting 
activity. In total, 20 novel GPX inhibitors, two of which were pan-GPX 
inhibitors, five inhibited GPX1 (and GPX2) and 13 specifically inhibi-
ted GPX4. Furthermore, the overlap in compounds that inhibit GPX1 and 
GPX2 suggests the importance of assaying GPX2 inhibition, and possibly 
other GPX isoforms, to fully characterize GPX1 inhibition. With our 
studies confirming several compounds as inhibitors of GPXs, the effects 
and possible mechanisms of action in vivo for these compounds should be 
assessed next, with a focus on GPX inhibition. This is especially impor-
tant considering that the chemical libraries utilized here encompassed 
compounds having previously confirmed pharmacological activities and 

Fig. 9. Pan-selenoprotein inhibitors. Structure and activity profile of A) 2,3-dimercaptopropanesulfonate; B) PI4KIII beta inhibitor 3; C) SCE-2174; D) cefotetan 
sodium; Data are normalized to DMSO and presented as mean ± s.d. of n = 3 replicates. 
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presumed mechanisms of action. GPX inhibition has, however, typically 
not been considered as a possible activity for most of these compounds. 

Our study provides a basis for future identification, development, 
and characterization of novel GPX inhibitors for the potential treatment 
of malignancies by establishing a series of robust assays designed for 
detecting and triaging hits from high-throughput small molecule library 
screens. 
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recombinant selenoproteins. 
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GPX glutathione peroxidase 
GR glutathione reductase 
GSH reduced glutathione 
GSSG oxidized glutathione 
HTS high-throughput screening 
mBBr monobromobimane 

MSA mercaptosuccinic acid 
NADPH reduced nicotinamide adenine dinucleotide phosphate 
NSCLC non-small-cell lung cancer 
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ROS reactive oxygen species 
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Sec selenocysteine 
TES Buffer Tris-HCl, EDTA and NaCl 
TE buffer Tris-HCl, EDTA 
TXNRD1 thioredoxin reductase 1 
qHTS quantitative high-throughput screening 
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