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Abstract
Motivation: Cancer is one of the leading causes of death worldwide. Despite significant improvements in prevention and treatment, mortality
remains high for many cancer types. Hence, innovative methods that use molecular data to stratify patients and identify biomarkers are needed.
Promising biomarkers can also be inferred from competing endogenous RNA (ceRNA) networks that capture the gene–miRNA gene regulatory
landscape. Thus far, the role of these biomarkers could only be studied globally but not in a sample-specific manner. To mitigate this, we intro-
duce spongEffects, a novel method that infers subnetworks (or modules) from ceRNA networks and calculates patient- or sample-specific scores
related to their regulatory activity.

Results: We show how spongEffects can be used for downstream interpretation and machine learning tasks such as tumor classification and
for identifying subtype-specific regulatory interactions. In a concrete example of breast cancer subtype classification, we prioritize modules
impacting the biology of the different subtypes. In summary, spongEffects prioritizes ceRNA modules as biomarkers and offers insights into the
miRNA regulatory landscape. Notably, these module scores can be inferred from gene expression data alone and can thus be applied to cohorts
where miRNA expression information is lacking.

Availability and implementation: https://bioconductor.org/packages/devel/bioc/html/SPONGE.html.

1 Introduction

Despite recent advances in screening, diagnosis, and progno-
sis, and an increased understanding of the mechanisms driv-
ing tumorigenesis, progression, and maintenance, cancer
deaths are estimated to be �400 000/year by 2040 in the US
alone (Rahib et al. 2021), highlighting the need for innovative
approaches for the diagnosis, monitoring, and treatment. In

addition to the traditional study of genome variation and
gene expression, microRNAs (miRNAs) have been assessed as
potential biomarkers, given their important roles in regulating
gene expression both in physiological conditions and in can-
cer (Liu et al. 2018). Mature miRNAs are short non-coding
RNAs with lengths of �20 to 23 nucleotides that play an im-
portant role in regulating gene product abundance (Kartha
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and Subramanian 2014). miRNAs are involved in regulating
at least half the genes in the human genome (Friedman et al.
2009) and are dysregulated in many diseases (Jiang et al.
2009). They function via the targeting of RNAs that will be
degraded or whose translation will be impeded (Bartel
2009). miRNA–target recognition is facilitated via matching
the seed region at the 50 end of the miRNA with the 30 bind-
ing site of the target (canonical targeting) or via the action of
additional regions outside of the seed that can contribute to
the recognition of the target (non-canonical targeting)
(McGeary et al. 2019). Salmena et al. (2011) proposed the
competitive endogenous RNA (ceRNA) hypothesis, which
suggests that RNAs with miRNA binding sites compete for a
limited pool of miRNAs, giving rise to a complex gene regu-
latory network (Tsang et al. 2010). Past studies have identi-
fied genes that act as ceRNAs (Salmena et al. 2011; Tay
et al. 2014) and have associated them with different RNA
classes, like messenger RNAs (mRNAs), circular RNAs,
pseudogenes, transcripts of 30 untranslated regions (UTRs),
and long non-coding RNAs (lncRNAs) (Dykes and
Emanueli 2017). In coding genes, effective miRNA targeting
(i.e. reducing transcript levels) largely occurs in 30UTRs
(Agarwal et al. 2015). lncRNAs have recently received par-
ticular attention in the framework of ceRNAs, suggesting
the key role these molecules may play in binding miRNAs
and indirectly regulating the expression of protein-coding
genes sharing the same miRNA binding site region (Wang
et al. 2022). It is important to note that the key actors in
these modules are not the miRNAs but rather the ceRNAs
that influence the expression of other ceRNAs by using
miRNAs as a limited resource.

A range of computational methods has been developed to
identify potential miRNA–target interactions based on differ-
ent inputs, such as gene expression data, protein–protein inter-
action networks, and sequence information (Muniategui et al.
2013). Such methods often result in a large number of inferred
interactions that, in return, suggest complex ceRNA networks
that are typically difficult to explore. The key problem is to
dissect these networks into functional units, or modules, that
could play a role in specific tissues or diseases (Choobdar et al.
2019). The identification of ceRNA modules could highlight
the biological relevance of miRNA regulation in specific pro-
cesses while potentially identifying new prognostic biomarkers
and therapeutic targets for clinical applications.

While tools for inferring ceRNA networks exist (Zhang
et al. 2022), it is not straightforward to identify functional
modules with biological or clinical relevance. Moreover, none
of the ceRNA module identification methods proposed to
date is able to summarize the information content of the mod-
ules in a patient- or sample-specific way. A sample-specific
measure of ceRNA regulatory activity would be useful for the
interpretation of its biological function and make it accessible
for downstream analysis tasks such as clustering and classifi-
cation. Methods that infer personalized ceRNA networks
(Wang et al. 2022) are suited to identify individual interac-
tions (edges) that deviate from the norm but do not capture
the overall activity of ceRNAs (nodes) in the network.

Here, we introduce spongEffects, a new method to (i) ex-
tract ceRNA modules from previously inferred ceRNA net-
works [e.g. with SPONGE (List et al. 2019)] and (ii) to assess
their regulatory activity using enrichment scores as surrogates
for module activity. These spongEffects scores (enrichment
scores of the modules) are calculated at the single patient- or

sample-level, thus allowing the study of ceRNA effects across
groups of samples or patients or even in personalized analyses.

Given gene expression data and a pre-computed ceRNA
network, spongEffects performs several steps (Fig. 1): (i) it fil-
ters for significant interactions with meaningful effect size and
identifies the most important ceRNAs via network centrality
analysis; (ii) for the subset of nodes with the highest centrality
values, it constructs ceRNA modules by incorporating first-
degree ceRNA network neighbors; (iii) it performs single-
sample gene set enrichment using the identified nodes, thus
obtaining spongEffects scores; and (iv) it uses the
spongEffects scores to perform downstream machine learning
tasks for classification and biomarker identification.

We applied spongEffects to ceRNA networks inferred with
two partial correlation-based methods [SPONGE (List et al.
2019) and Positive correlation (Zhang et al. 2019b)] and one
conditional mutual information-based method [Hermes
(Sumazin et al. 2011)] and investigated how robust these
modules are across different datasets. We used data from two
independent breast cancer cohorts to test the enrichment
methods underlying spongEffects for robustness to missing
values and across different technologies (e.g. RNA-seq and
microarray). We further investigated how consistent the
ceRNA models are across ceRNA networks or when swap-
ping train (i.e. the cohort used for ceRNA network inference
and training a classifier) with the test data (the second inde-
pendent cohort). We showed that spongEffects scores could
be used to classify breast cancer subtypes with good accuracy.
Finally, we show that non-coding RNAs outperform coding
RNAs in classification. Importantly, once a ceRNA network
is inferred, spongEffects scores can be computed from gene
expression data alone, i.e. in the absence of miRNA expres-
sion profiles which are rarely available. By offering a systems
biology view on the miRNA regulatory landscape,
spongEffects scores are suited to uncover important ceRNAs
and miRNAs in cancer biology and generate new hypotheses
on the role of long non-coding RNAs.

2 Materials and methods

spongEffects was implemented in R (version 3.6.2) and is pro-
vided to the community as a new function in the SPONGE
package in Bioconductor (see Availability). As datasets, we
downloaded log2(TPM þ 0.001) transformed TCGA-BRCA
expression data (RNAseq) from the XENA Browser
(Goldman et al. 2020). In addition, we downloaded gene
expression data (Illumina HT 12, EGAD00010000434)
and miRNA expression data (Agilent ncRNA 60k,
EGAD00010000438) from the first and second METABRIC
(Molecular Taxonomy of Breast Cancer International
Consortium) cohorts (Curtis et al. 2012) from the European
Genome-phenome Archive (Freeberg et al. 2021; Lappalainen
et al. 2015). Importantly, while the TCGA datasets contain
expression values for both coding and non-coding RNAs,
METABRIC contains only mRNA abundances. We used
three different ceRNA inference tools to benchmark
spongEffects, Positive Correlation (PC) (Xu et al. 2015),
Hermes (Sumazin et al. 2011), and SPONGE (List et al.
2019). Given the heavy computational cost of these methods,
they were run on reduced versions of the TCGA and
METABRIC datasets (i.e. the 4000 mRNAs and 1000
miRNAs shared across both cohorts) with standard parame-
ters. PC and Hermes networks were inferred with the
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miRspongeR Bioconductor package (Zhang et al. 2019b)
with standard settings. The SPONGE Bioconductor package
(List et al. 2019) was used to calculate the SPONGE network.
The same list of the candidate, ceRNA-miRNA interactions,
was used to infer edges across the three methods. In order to
run a more extensive analysis and analyze the role of
lncRNAs in breast cancer, we further ran spongEffects on
pre-computed ceRNA networks with genome-wide coverage
downloaded from SPONGEdb (Hoffmann et al. 2021) as
inputs for spongEffects. For the latter, we could also consider
non-coding RNAs as ceRNA candidates which were absent in
the overlap of METABRIC and TCGA.

2.1 Defining ceRNA modules

Classical centrality measures, such as degree, closeness, and
betweenness, can extract important information in biological
networks by identifying hub and bottleneck nodes (He and
Zhang 2006). The definitions of such centrality measures
have been generalized for applications in weighted networks
(Barrat et al. 2004) to acknowledge that not all interactions
are equally important. Here we use a weighted centrality mea-
sure composed of the following centralities:

Degreei ¼
XN

j

xi;j [1]

Strengthi ¼
XN

j

wi;j [2]

Centralitya
i ¼ Degreei �

Strengthi

Degreei

 !a

¼ ðDegreeiÞ
ð1�aÞ � Strengtha

i [3]

Equation (1) describes the definition of the degree of cen-
trality of a node i in an undirected network of size N. xij is the
binary adjacency matrix describing the connection of nodes i
and j (i.e. xij ¼ 1 if i and j are connected in the graph and 0
otherwise). Equation (2) formalizes the weighted degree cen-
trality measure or node strength of node i in a network of size
N. In particular, wij > 0 if nodes i and j are connected and it
corresponds to the weight of the edge between i and j.
Centrality is defined in Equation (3). Opsahl et al. describes a
as “a positive tuning parameter that can be set according to
the research setting and data. If a is between 0 and 1, then
having a high degree is taken as favorable, whereas if it is set
above 1, a low degree is favorable” (Opsahl 2009).
spongEffects uses weighted degree centrality as implemented
in the R package tnet (version 3.0.16) (Opsahl 2009) with the
alpha parameter set to 1. In the context of a ceRNA network,
we thus prioritize ceRNAs with a large sum of weights [using
multiple sensitivity correlation (mscor) as effect size]. The
mscor extends the definition of sensitivity correlation by con-
sidering the effect of multiple miRNAs for the computation of
the partial correlation (see List et al. 2019). We define ceRNA
modules as subnetworks consisting of ceRNA genes with the
highest weighted centrality scores (central node) and their
first-degree neighbors.

Figure 1. The workflow of spongEffects. spongEffects accepts a gene expression matrix and a ceRNA network as input. Subsequently, it (a) filters the

network and calculates weighted centrality scores to identify important nodes, (b) identifies first neighbors, (c) runs single-sample gene set enrichment,

and (d) prepares the output for further downstream tasks (e.g. machine learning-based classification and extraction of mechanistic biomarkers).
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2.2 spongEffects scores

We implemented three different gene set enrichment
approaches to aggregate the information associated with
genes belonging to the newly defined spongEffects modules
into unique enrichment scores, which we call spongEffects
scores. These methods belong to the class of unsupervised and
single-sample assessment tools (Hänzelmann et al. 2013), in
that they do not require initial knowledge of existing pheno-
type groups, are often unavailable, and yield patient-specific
scores for each module. In this work, we treat the genes in a
module as a gene set. The approaches include single sample
Gene Set Enrichment Analysis (ssGSEA) and Gene Set
Variation analysis (GSVA) algorithms as implemented in the
GSVA package (version 1.34.0) (Hänzelmann et al. 2013),
and Overall Expression (OE) (Jerby-Arnon et al. 2018).

Importantly, these approaches allow the calculation of the
spongEffects scores even when some of the ceRNAs (e.g.
circRNAs or lncRNAs) in the modules are not present in the
input expression matrix, and result in module-by-sample
score matrices that can be used for downstream analyses.
When comparing results between GSVA, ssGSEA, and OE
(Supplementary Fig. S1) we observed no major differences in
the results. The original GSVA publication highlights that the
choice of the optimal single-sample enrichment tool is highly
dependent on the specific task and dataset and cannot be de-
fined a priori.

spongEffects scores were calculated for the two datasets
(i.e. TCGA and METABRIC) separately. Comparison of the
different enrichment methods showed that scores calculated
with OE, GSVA, or ssGSEA resulted in models with similar
subtype classification performances (Supplementary Fig. S1).
For all the subsequent analyses, spongEffects scores were cal-
culated via OE, given its previous application in similar bulk
transcriptional profiles (Jerby-Arnon et al. 2018).

2.3 Machine learning for subtype classification

We trained three classes of machine learning models, namely
Random Forest, Support Vector Machine with the linear ker-
nel (Linear SVM), and eXtreme Gradient Boosting
(XGBoost), as implemented in the caret R package (version
6.0.90) (Kuhn 2008) to classify tumor samples in the respec-
tive subtypes, using spongEffects scores calculated on the
training dataset as input. For each approach, we optimized
the following hyperparameters via repeated (3�) 10-fold
cross-validation: (i) a number of features randomly sampled
at each split (mtry) for the Random Forest models, (ii) the
cost (C) of misclassification for linear SVM models, and (iii)
the number of trees (nrounds), maximum tree depth (max_-
depth), and learning rate (eta) for XGBoost. We implemented
a stratified approach in order to preserve the proportion of
samples in each subtype at each iteration of the cross-
validation procedure. Given the multi-classification problem
at hand, we defined the optimal parameter as the one result-
ing in the highest subset accuracy (Ghamrawi and McCallum
2005) during cross-validation. After cross-validation, we used
the learned parameter to train a new classifier on the complete
training set. To test these models, we predicted subtype labels
using spongEffects scores calculated on a second independent
expression dataset. This means that the training dataset was
used to infer a ceRNA network, identify ceRNA modules, and
train a classifier, while the test data were not part of the train-
ing procedure and were thus considered a valid external test-
ing dataset. The approach resulted in two performance

metrics, subset accuracies for the training and testing sets,
that were used to evaluate and compare the models. To aid in
the interpretation and identification of modules driving sub-
type predictions in the Random Forest models, we calculated
the Gini index as implemented in the randomForest package
(version 4.6.14) (Svetnik et al. 2003).

2.4 Randomization of the ceRNA networks

We designed a procedure to validate our findings and evaluate
whether the modules defined by spongEffects are robust. In
particular, for each original module, we sampled a random
module of the same size while preserving the same size distri-
bution of the real modules. Subsequently, the random mod-
ules are used to train a classifier as previously described. An
AIMe report has been generated at https://aime-registry.org/re
port/UHkSyD (Matschinske et al. 2021).

3 Results and discussion

The spongEffects method offers sample-specific insights into
the miRNA regulatory landscape and highlights ceRNAs
heavily engaged in miRNA cross-talk and thus implicated in
many biological processes as biomarkers. To illustrate the po-
tential of spongEffects scores for functional interpretation and
machine learning, we exemplarily consider the task of breast
cancer subtyping.

Breast cancer, the leading cause of cancer-related deaths in
women (Sung et al. 2021), is a heterogeneous disease charac-
terized by five subtypes [Luminal A (LumA), Luminal B
(LumB), Basal, HER2-positive (Her2), and Normal] with dif-
ferent genetic prognostic profiles (Perou et al. 2000).
Mechanisms of miRNA dysregulation play a role in breast
cancer (Mulrane et al. 2013), offering the chance to validate
miRNA mature strands as potential biomarkers (Hamam
et al. 2017). Here, we use spongEffects to study differences in
miRNA regulation at the patient-specific level based on data
from The Cancer Genome Consortium (Cancer Genome Atlas
Network 2012) [TCGA-BRCA, number of samples (n) ¼
1063] and the Molecular Taxonomy of Breast Cancer
International Consortium (Curtis et al. 2012) (METABRIC
cohorts 1 and 2, n¼ 1905). For both cohorts, we removed all
samples for which the subtype was missing or not identified
as one of the five classes of interest (LumA, LumB, Her2,
Basal, Normal). Furthermore, we filtered out 19 samples from
the TCGA cohort for which the tumor stage indication was
missing (5 patients) or unclear (Stage X, 14 patients). This
step resulted in two final datasets: (1) TCGA-BRCA
(n¼944), which we used for model training, and (2)
METABRIC (n¼ 1699), both of them were used once as
training and once as an independent external validation set to
build subtype classifiers as in standard machine learning
applications to control for potential overfitting (see
Supplementary Table S1 for the number of samples per sub-
type for TCGA and METABRIC).

3.1 spongEffects scores are robust across different

datasets

A wide variety of methods for the identification of potent
ceRNA interactions is available in the literature (Zhang et al.
2019b). These methods have been found to result in very dif-
ferent ceRNA networks, often sharing just a few miRNA
sponge interactions (Zhang et al. 2019b). We validated this
result by comparing the results of three methods commonly
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used for ceRNA network inference: Positive Correlation (PC)
(Xu et al. 2015), Hermes (Sumazin et al. 2011), and SPONGE
(List et al. 2019). Given the computing time these methods
take, especially for high dimensional datasets with hundreds
of observations, we downsampled the TCGA and
METABRIC datasets to the 4000 genes and 1000 miRNAs se-
quenced in both. After inference, the networks were filtered
based on the statistical significance (i.e. adjusted P-value <
0.05 for Hermes and SPONGE) and strength of the inferred
edges (corr > 0.1 for PC and mscor > 0.1 for SPONGE) to
preserve significant associations with non-negligible effect
sizes (List et al. 2019). This step resulted in 3773 and 1007
edges for the PC networks inferred from METABRIC and
TCGA, respectively, 1103 and 60 edges for Hermes, and
3090 and 2495 edges for SPONGE. Weighted centrality
measures were calculated for each remaining node in the net-
works (see Section 2). As expected, the number of interactions
shared across different datasets and methods was generally
quite low (Fig. 2), confirming the high dataset- and method-
specificity of ceRNA network inference tools and emphasizing
that further work is needed to understand the discrepancies
between existing methods.

To compare the predictive power of modules calculated
across different datasets and methods, we trained different
types of classifier models to predict breast cancer subtypes
based on spongEffects scores. Random Forest, Support
Vector Machine with the linear kernel (linear SVM), and
eXtreme Gradient Boosting (XGBoost) models were used to
build two separate families of models in order to evaluate the
robustness of the modules. The first one was trained with

modules calculated on networks inferred from the TGCA-
BRCA dataset and validated on the METABRIC modules. In
the second one, the training and datasets were switched.
Upon training, we investigated the prediction performances of
the model families and the similarity of the modules driving
predictions in both contexts.

Despite the limited number of edges and dataset sizes, the
resulting modules showed relatively good predictive perform-
ances independently of the type of machine learning model
(Supplementary Fig. S2). While the machine learning models
built on the TCGA modules displayed higher predictive per-
formance during training, classifiers trained on METABRIC
showed better generalization capabilities and resulted in
higher accuracy on the TCGA test set (Fig. 2b). The perform-
ances of models built on modules extracted from different
ceRNA network tools were quite heterogeneous. In this par-
ticular setting, the Hermes method seemed to drastically
underperform when compared to modules built on PC or
SPONGE modules and was thus left out for subtype
prediction.

We next investigated if similar ceRNA modules were se-
lected as top-performing classification features when training
on TCGA or METABRIC data, respectively, as this would
emphasize the robustness of our approach as well as the ca-
pacity of spongEffects scores to reflect important aspects of
tumor biology. We ranked modules by their feature impor-
tance (mean decrease in Gini index) and investigated the over-
lap of the top 20 modules reported by the PC- and SPONGE-
based models between the TCGA and the METABRIC-
trained classifiers. 18/20 modules were identical in the PC-

Figure 2. Testing the robustness of spongEffects modules using the ceRNA network inference methods PC, Hermes, and SPONGE. (a) The overlap of

the same edges between the datasets METABRIC and TCGA-BRCA. (b) The accuracy of PC, Hermes, and SPONGE using either METABRIC or TCGA-

BRCA as training or independent test set (e.g. if METABRIC is used as a training set, then TCGA-BRCA is used as a test set and vice versa). (c) We

compared the top-scoring spongEffects modules (Gini index) from PC and SPONGE. The numbers in the boxes indicate the module size, while the bars

indicate the overlap of modules obtained from training on the two different datasets. Red means that the same central ceRNA was found in both

methods. We excluded Hermes from this evaluation as it achieved very low prediction performance.
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based models and 10/20 in the SPONGE models, indicating
that the PC method is more robust in feature selection. We
found only five of the top 20 modules to overlap from PC and
SPONGE, which once more emphasizes that ceRNA inference
methods following different concepts show comparably little
agreement in results (Zhang et al. 2019b).

3.2 spongEffects modules predict breast cancer

subtypes

Long non-coding RNAs have often been discussed for their
relevance in breast cancer (Su et al. 2014) and for their role as
miRNA sponges and potential biomarkers (Wang et al.
2022). We investigated the capacity of long-non-coding
RNAs as potential ceRNAs by applying spongEffects to the
TCGA-BRCA ceRNA network in SPONGEdb (Hoffmann
et al. 2021). The original network, containing �3� 107 edges
between multiple RNA classes (e.g. mRNAs and lncRNA),
was filtered down to 702 026 edges as described above. The
750 lncRNAs with the highest weighted centrality measures
were selected and used as central nodes to define the
spongEffects modules. We retain modules containing 10–200
genes after removing genes missing in the expression matrices,
as previously suggested (Hänzelmann et al. 2013).

Figure 3 shows that the distribution of spongEffects scores
overall found modules differ markedly between subtypes. We
note that the distribution of the basal subtypes diverges from
a normal-like distribution suggesting a hidden subgroup of
patients. After dissecting this distribution using the R package
mixtools (version 1.2.0) (Benaglia et al. 2009), we find that
the smaller group is enriched in stroma-high tumors (Fig. 3
and Supplementary Fig. S3a), as calculated via ESTIMATE
(Yoshihara et al. 2013), and in extracellular matrix (ECM)-re-
lated genes, which have been associated with Basal invasion
programs under the regulation of KRT14 related genes
(Hanley et al. 2020) (Supplementary Fig. S3b). Analogous
studies have identified similar Basal subgroups from different
data types and cohorts (Asleh et al. 2022). This highlights the
ability of spongEffects to identify a subset of samples with po-
tential prognostic values.

We trained a Random Forest classifier on the TCGA-BRCA
dataset and validated the resulting model on the METABRIC
dataset. We repeated this analysis using different numbers of
lncRNAs (200, 250, 500, 750, 1000, 1500, and 2000) to
study the robustness of our approach and to highlight the

relatively small influence of the number of initial lncRNAs
(and thus modules) considered on the final results
(Supplementary Fig. S4). To assess whether spongEffects
scores offer additional value over the expression level of the
ceRNAs alone, we compared our results to the predictive per-
formance of randomly defined modules and a baseline model
trained on the expression values (not on spongEffects scores)
of the 25 lncRNAs common to both datasets. The subset ac-
curacy metric (Ghamrawi and McCallum 2005) was used to
evaluate the classification performance along with sensitivity,
specificity, and F1 score (confusion matrices in
Supplementary Fig. S5). The spongEffects-based classification
model outperformed the random module-based and the
lncRNA-based models both in training and testing (Fig. 4a)
and preserved good specificity, sensitivity, and F1 scores
across all breast cancer subtypes (Supplementary Fig. S6b).
Moreover, a comparison of the prediction performances of
models based on mRNA expression only (Fig. 2) and
lncRNA-based (Fig. 4) models suggests that non-coding
RNAs might carry important information about the post-
transcriptional regulatory wiring in different breast cancer
subtypes. Improved performance might be due to the in-
creased number of interactions inferred when different classes
of RNA are included, offering a better description of the regu-
latory landscape of the disease in analysis, as hypothesized in
(Gysi and Barabasi 2022).

3.3 ceRNA modules identify key biological

mechanisms

Upon closer inspection of the top 25 ceRNA modules across
breast cancer subtypes in both datasets (Fig. 4b,
Supplementary Fig. S7), we observed that Basal samples
showed lower scores for modules centered around lncRNAs
that were previously suggested to act as miRNA sponges. For
example, CACNA1G-AS1 was shown to decrease prolifera-
tion, EMT transition, and migration in hepatocellular carci-
noma (Yang et al. 2019) and non-small cell lung cancer (Yu
et al. 2018) and to downregulate p53 levels in colorectal can-
cer (Wei et al. 2020). In contrast, DNM3OS has been shown
to promote tumor progression and SNAIL-mediated EMT in
gastric cancers (Wang et al. 2019) and to confer resistance to
radiotherapy by mediating DNA damage response mecha-
nisms in esophageal squamous cell carcinoma. TPM1-AS has
been shown to regulate alternative splicing of TPM1 and reg-
ulate TPM1-mediated migration of cancer cells in esophageal
cancer (Huang et al. 2017). Modules such as LINC00461
show strong enrichment in Basal samples. LINC00461 has
been shown to promote migration and invasion in breast can-
cer (Dong et al. 2019; Zhang et al. 2019a) and to play a role
in the progression of other cancer types, such as hepatocellu-
lar carcinoma (Ji et al. 2019) and renal cell carcinoma (Chen
et al. 2019), or in mediating radiosensitivity in lung adenocar-
cinoma (Hou et al. 2020). However, such clear modules are
only available for the Basal subtype, and we cannot identify
such modules for the rest of the breast cancer subtypes as we
believe that these are combinatorial effects of more than one
module that separates the rest of the subtypes (Fig. 4b). In
TCGA-BRCA, where patient-matched miRNA and gene ex-
pression data are available, we ranked miRNAs based on
how many times they were predicted by SPONGE to target
the genes in the modules and noted several miRNA families
shared across modules (Supplementary Fig. S8a). Thirteen of
the 51 miRNAs that were frequently associated with modules

Figure 3. Distribution of the spongEffects scores over all modules in the

TCGA-BRCA (training) and METABRIC (testing) dataset. With the

exception of Basal breast cancer, the scores for the various breast cancer

subtypes are approximately normally distributed. For the Basal subtype,

the bimodality of the distribution hints at the existence of a subgroup of

patients with characteristics different from the rest of the class

(Supplementary Fig. S3).
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were also considered highly predictive in a subtype classifica-
tion model based on miRNA expression data from the
TCGA-BRCA dataset (Supplementary Fig. S9) and showed
clear differences in expression between subtypes
(Supplementary Fig. S8b). This highlights how our approach
offers insights into miRNA and ceRNA regulation even when
miRNA expression data is unavailable. Focusing on the
miRNA expression differences between subtypes offers a po-
tential explanation for the spongEffects scores we observed.

3.4 Predictive spongEffects modules can identify

potential biomarkers in breast cancer

Here, as an example, we describe in more detail the
CACNA1G-AS1 module and its miRNAs, which have been
experimentally validated. Specifically, we investigate its role
in the Basal subtype, one of the most aggressive breast cancer
subtypes for which effective targeted therapies are still missing
(Foulkes et al. 2010; Lehmann et al. 2011).

Genes in module CACNA1G-AS1 have lower expression
levels in the Basal subtype when compared to the other sub-
types in TCGA-BRCA and METABRIC (Supplementary Fig.
S8a and b) and contribute to the biology of this subtype. For
example, expression of TBC1D9 has been shown to be in-
versely correlated to proliferation and grading in Basal breast
cancer (Kothari et al. 2021), while genes such as MYB and
ZBTB16 are tumor suppressors whose promoter regions are
often hypermethylated in Basal breast cancers (Roll et al.
2013; He et al. 2020).

In order to check whether we could exploit our modules
to explain such changes, we further investigated the most
frequent miRNAs in the CACNA1G-AS1 module
(Supplementary Fig. S8) and checked their expression in the
TCGA-BRCA dataset. Interestingly, miR-301b-3p and miR-
130b-3p had higher expression in the Basal subtypes, giving a
potential explanation for the spongEffects score of the genes
they target (Supplementary Fig. S10c). The same approach
can be applied to module LINC00461, where genes belonging
to these modules are known to be upregulated in Basal

cancers and contribute to its highly proliferative and aggres-
sive phenotype (Supplementary Fig. S10b and d).

In addition, we investigated if the members of a module
jointly contribute to important biological functions via gene
set enrichment analyses with g: Profiler (Raudvere et al.
2019). The majority of modules were enriched in terms de-
scribing functions of the extracellular matrix, plasma mem-
brane, and cell-to-cell signaling (Supplementary Excel
Tables). These results appear reasonable since it was previ-
ously shown that the state of the extracellular membrane
could predict the prognosis of the patient (Robertson 2016).
Moon et al. (2020) showed in experiments with the MCF-7
cell line that there are changes in the plasma membrane be-
tween subtypes, and Worsham et al. (2015) have shown that
cell-to-cell signaling differentiates between breast cancer sub-
types. We further found three modules (LINC02126,
ENSG00000240499, FOXP1-IT1) that are enriched for the
term mammary gland development, a crucial process in breast
cancer, i.e. known to be deregulated (Supplementary Excel
Tables) (Ercan et al. 2011; Chen et al. 2021). Two other mod-
ules are enriched in known cancer pathways (DNM3OS,
TPM1-AS) (Supplementary Excel Tables).

4 Conclusion

spongEffects is a new method for extracting and interpreting
ceRNA modules from pre-computed ceRNA networks. To
the best of our knowledge, spongEffects is the first method
that offers a sample- or patient-specific score that can quan-
tify the regulatory activity of a ceRNA and its associated
miRNAs. We demonstrated how the spongEffects method
could be applied to ceRNA networks inferred with different
approaches. Considering the use case of breast cancer subtype
prediction, we could show that spongEffects module scores
are robust features for subtype classification across indepen-
dent cohorts and gene expression profiling technologies. Our
analysis confirmed previous studies highlighting low agree-
ment between ceRNA inference tools and the need for further
research into method benchmarking and possibly the use of

Figure 4. Overview of results. (a) Overview of performance metrics for the Random Forest models calibrated on spongEffects modules (red), randomly

defined modules (green), and lncRNAs common to both the TCGA (training) and METABRIC (testing) datasets (yellow). Subset accuracy (the proportion of

samples that have all their labels classified correctly) values in training and testing for the three models. (b) Heatmaps showing the standardized

spongEffects scores for the top 25 most predictive modules calculated on the TCGA and METABRIC datasets. The heatmaps show a clear separation of

the Basal subtype from the remaining ones, potentially pointing to the role of miRNA-regulated modules in the aggressive and proliferative phenotype

observed in this subtype.
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consensus strategies. While this is an active area of research,
we see spongEffects as a way to identify ceRNA modules gen-
eralizable across different cohorts and suitable as potential
biomarkers.

We expect spongEffects scores to reflect two overlapping
regulatory mechanisms. The first is miRNA-mediated
ceRNA–target regulation, where an increase in the expression
of a ceRNA leads to miRNA depletion, relieving other target
genes from miRNA repression and, conversely, a decrease in
ceRNA expression leaves more miRNA copies that can act as
repressors of their target genes (Fig. 5 middle). The second
mechanism is the classical miRNA regulation, where an in-
crease in the expression of a miRNA leads to the repression of
its target genes and vice versa (Fig. 5 bottom). While it is pos-
sible to verify the former in specific settings, e.g. in the pres-
ence of miRNA expression data, it is challenging to
disentangle the two effects computationally. Single-sample en-
richment tools estimate the enrichment or depletion of the
spongEffects modules with respect to the expression of all the
other genes in the expression matrix. In spite of the difficult
interpretation, spongeEffects scores highlight important bio-
markers. We have calculated spongEffects scores for samples
from 22 different cancer types from TCGA and made the
scores publicly available so that the community can use them
to infer ceRNA and miRNA regulatory activities and gain
insights into the gene regulatory landscape where the cohort
size is too small for robustly inferring ceRNA networks or
where supporting miRNA expression data is missing.

Using SPONGE-inferred ceRNA networks and RNA-seq
data for TCGA breast cancer as inputs, we demonstrate how
spongEffects scores can capture important aspects of cancer
biology and be used in downstream machine learning tasks
such as subtype prediction and biomarker identification.

Using independent microarray-based gene expression data
from the METABRIC consortium, we show that the inferred
modules generalize to different cohorts. A particular strength
of our approach is that spongEffects modules, once inferred
from a ceRNA network, can also be computed for datasets or
cohorts that lack miRNA data. For the modules that were
predictive in subtype classification, spongEffects scores cap-
ture contributions of two different regulatory mechanisms:
ceRNA regulation and miRNA regulation (see Section
spongEffects scores). While it is challenging to separate the
two, we observe that, in practice, our method returns a robust
representation of microRNA-mediated regulatory effects.

We presented an extensive use case on the application of
spongEffects to study lncRNA- mediated miRNA regulation.
Our analysis showed that ceRNA interactions calculated on
coding and non-coding RNAs together have higher discrimi-
native power than interactions calculated on mRNAs alone,
probably due to the extended interaction space allowed by the
integration of multiple classes of RNAs. Many gene regula-
tory mechanisms of lncRNAs are poorly understood and
must be experimentally discovered (Statello et al. 2021).
spongEffects modules could help prioritize lncRNAs that
have an expected impact on cancer biology and miRNA regu-
lation, informing experimental validation and unraveling cur-
rently uncharacterized gene regulatory mechanisms of
lncRNAs in combination with miRNAs. Of particular interest
here is to address the question of lncRNAs’ modes of action.
For instance, it is currently debated if lncRNAs are exported
outside of the nucleus, which would be a requirement for the
established Argonaute-dependent mechanism of miRNA regu-
lation (McGeary et al. 2019). lncRNAs with an experimen-
tally verified role as ceRNAs could then serve as important
biomarkers and potential therapeutic drug targets. We
showed that our method is generally applicable to different
ceRNA networks, but we envision it as a potential solution to
analyze gene-regulatory networks where similar concepts
have already been explored (Castro et al. 2016; Chagas et al.
2019). We foresee two interesting directions for further re-
search. First, recent studies on the inference of regulons
(Fletcher et al. 2013; Castro et al. 2016) offer the chance to
integrate methods for the combined analysis of transcription
factors and miRNA regulation. Second, the surge of single-
cell sequencing technologies allows the study of regulatory
mechanisms at a higher resolution than what was possible be-
fore (Ma et al. 2020; Van de Sande et al. 2020; Gibbs et al.
2022), paving the way to the design of methods with the po-
tential of uncovering new insights into the complexity of tu-
mor biology.
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Figure 5. Understanding increments and reductions in spongEffects

scores. Increments in spongEffects scores can result from Scenario 1: an

increase in the expression of a module’s central ceRNA while miRNA

expression levels remain constant, leading them to upregulation of the

module’s target ceRNAs, and/or Scenario 2: a decrease in the expression

of a module’s miRNAs that results in higher expression of the module

ceRNAs. Negative spongEffects scores can result from Scenario 3: a

decrease of expression in the module’s central ceRNA while miRNA

expression levels remain constant, leading to the downregulation of the

module’s target ceRNAs, and/or Scenario 4: an increase of expression in a

module’s miRNAs that results in lower expression of the module’s target

ceRNAs.
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