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Abstract: Fenebrutinib is an orally available Bruton tyrosine kinase inhibitor. It is currently in
multiple phase III clinical trials for the management of B-cell tumors and autoimmune disorders.
Elementary in-silico studies were first performed to predict susceptible sites of metabolism and
structural alerts for toxicities by StarDrop WhichP450™ module and DEREK software; respectively.
Fenebrutinib metabolites and adducts were characterized in-vitro in rat liver microsomes (RLM) using
MS3 method in Ion Trap LC-MS/MS. Formation of reactive and unstable intermediates was explored
using potassium cyanide (KCN), glutathione (GSH) and methoxylamine as trapping nucleophiles to
capture the transient and unstable iminium, 6-iminopyridin-3(6H)-one and aldehyde intermediates,
respectively, to generate a stable adducts that can be investigated and analyzed using mass spec-
trometry. Ten phase I metabolites, four cyanide adducts, five GSH adducts and six methoxylamine
adducts of fenebrutinib were identified. The proposed metabolic reactions involved in formation
of these metabolites are hydroxylation, oxidation of primary alcohol to aldehyde, n-oxidation, and
n-dealkylation. The mechanism of reactive intermediate formation of fenebrutinib can provide a
justification of the cause of its adverse effects. Formation of iminium, iminoquinone and aldehyde
intermediates of fenebrutinib was characterized. N-dealkylation followed by hydroxylation of the
piperazine ring is proposed to cause the bioactivation to iminium intermediates captured by cyanide.
Oxidation of the hydroxymethyl group on the pyridine moiety is proposed to cause the generation of
reactive aldehyde intermediates captures by methoxylamine. N-dealkylation and hydroxylation of
the pyridine ring is proposed to cause formation of iminoquinone reactive intermediates captured by
glutathione. FBB and several phase I metabolites are bioactivated to fifteen reactive intermediates
which might be the cause of adverse effects. In the future, drug discovery experiments utilizing this
information could be performed, permitting the synthesis of new drugs with better safety profile.
Overall, in silico software and in vitro metabolic incubation experiments were able to characterize
the FBB metabolites and reactive intermediates using the multistep fragmentation capability of ion
trap mass spectrometry.

Keywords: fenebrutinib; Bruton tyrosine kinase inhibitor; metabolism; reactive intermediates; trapping
agents; LC-ITMS

1. Introduction

Fenebrutinib (Figure 1; FBB) is an investigational orally available Bruton tyrosine
kinase inhibitor developed by Roche pharmaceuticals [1]. FBB inhibits B cell signaling path-
ways. It is used for the management of B cell tumors and autoimmune disorders specifically
rheumatoid arthritis and multiple sclerosis [2,3]. FBB shows the highest potency of Bruton
tyrosine kinase inhibitors in phase III clinical trials for multiple sclerosis [4,5]. Adverse
effects of FBB include: nausea, vomiting, bleeding, bruising, alanine aminotransferase
elevation [6].
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Figure 1. Chemical structure of fenebrutinib. 

Drug metabolism studies are crucial for investigational drugs. Identification of drug 
metabolites and their possible toxicities is very important [7,8]. Rat liver microsomes are 
used to investigate drug metabolism in vitro [9]. LC/MS is an efficient technology to iden-
tify and characterize drug metabolites [10–13]. Most drugs are transformed into polar and 
stable metabolites that aid into their excretion from the body. However, some drugs are 
bioactivated into unstable electrophiles that has the ability to bind and damage DNA and 
proteins [14,15]. The formation of such reactive intermediates can be investigated in vitro 
using RLMs and trapping agents. So as to identify compounds with probable toxicity 
problems, definite care is set to structural alerts, that have the ability to generate reactive 
molecular intermediates via metabolism bioactivation. The awareness of such information 
is necessary in order to decrease the probability that new candidates (pharmaceuticals) 
might have toxic side effects. Characterization of reactive intermediates is crucial step in 
the procedure of new drug design with expected good toxicological features [16,17]. Liq-
uid chromatography mass spectrometry (LC-MS) is deliberated the analytical tool of 
choice that could be used for characterization of reactive intermediates [18–20]. The un-
stable and transient nature of reactive intermediates makes it is difficult to be detected 
directly. Instead, a trapping agent for reactive intermediates resulted in adducts formation 
of that are stable and can be detected and characterized by LC-MS [21]. Trapping agents 
binds to the unstable reactive intermediates and make it easier for investigators to char-
acterize and identify these intermediates using mass spectrometry [22–25]. In silico tox-
icity evaluation of the FBB and its metabolites were performed using the DEREK module 
of software, while the XenoSite and StarDrop software were used to prove the bioactiva-
tion theory [26,27]. 

2. Results and Discussion 
2.1. Results of In Silico FBB Metabolism and Toxicity Prediction 

StarDrop software predictions of FBB metabolism indicates the lability of each site 
with respect to metabolism by different isoforms of CYP450 enzymes. This indicates that 
C46, C47 and C49 in the oxetane ring, C22 the methyl group on the nitrogen atom in the 
pyridine ring, C39-43 at the other end of the molecule are predicted to be labile to metab-
olism by CYP450 enzymes especially CYP3A4. The composite site liability (CSL) is shown 
in the top-right of the metabolic landscape (Figure 2A) and its value is 0.9917 which pre-
dicts that FBB is highly susceptible to metabolism by CYP450 isoforms. The results of the 
WhichP450™ module, concluded in the pie chart is predicting the most likely CYP450 
isoforms that has a critical role in FBB metabolism (Figure 2A). According to these results, 
CYP3A4 isoform has the major role in FBB metabolism [28–30]. 

DEREK software was used to assess the possible toxicities of FBB based on its chem-
ical structure. FBB shows possibility of causing HERG channel inhibition (plausible) due 
to the piperazine moiety and the adjacent pyridine ring (highlighted in red in Figure 2B) 
[31]. 

Figure 1. Chemical structure of fenebrutinib.

Drug metabolism studies are crucial for investigational drugs. Identification of drug
metabolites and their possible toxicities is very important [7,8]. Rat liver microsomes are
used to investigate drug metabolism in vitro [9]. LC/MS is an efficient technology to
identify and characterize drug metabolites [10–13]. Most drugs are transformed into polar
and stable metabolites that aid into their excretion from the body. However, some drugs are
bioactivated into unstable electrophiles that has the ability to bind and damage DNA and
proteins [14,15]. The formation of such reactive intermediates can be investigated in vitro
using RLMs and trapping agents. So as to identify compounds with probable toxicity
problems, definite care is set to structural alerts, that have the ability to generate reactive
molecular intermediates via metabolism bioactivation. The awareness of such information
is necessary in order to decrease the probability that new candidates (pharmaceuticals)
might have toxic side effects. Characterization of reactive intermediates is crucial step in
the procedure of new drug design with expected good toxicological features [16,17]. Liquid
chromatography mass spectrometry (LC-MS) is deliberated the analytical tool of choice
that could be used for characterization of reactive intermediates [18–20]. The unstable
and transient nature of reactive intermediates makes it is difficult to be detected directly.
Instead, a trapping agent for reactive intermediates resulted in adducts formation of that
are stable and can be detected and characterized by LC-MS [21]. Trapping agents binds to
the unstable reactive intermediates and make it easier for investigators to characterize and
identify these intermediates using mass spectrometry [22–25]. In silico toxicity evaluation
of the FBB and its metabolites were performed using the DEREK module of software, while
the XenoSite and StarDrop software were used to prove the bioactivation theory [26,27].

2. Results and Discussion
2.1. Results of In Silico FBB Metabolism and Toxicity Prediction

StarDrop software predictions of FBB metabolism indicates the lability of each site
with respect to metabolism by different isoforms of CYP450 enzymes. This indicates that
C46, C47 and C49 in the oxetane ring, C22 the methyl group on the nitrogen atom in
the pyridine ring, C39-43 at the other end of the molecule are predicted to be labile to
metabolism by CYP450 enzymes especially CYP3A4. The composite site liability (CSL) is
shown in the top-right of the metabolic landscape (Figure 2A) and its value is 0.9917 which
predicts that FBB is highly susceptible to metabolism by CYP450 isoforms. The results of
the WhichP450™ module, concluded in the pie chart is predicting the most likely CYP450
isoforms that has a critical role in FBB metabolism (Figure 2A). According to these results,
CYP3A4 isoform has the major role in FBB metabolism [28–30].

DEREK software was used to assess the possible toxicities of FBB based on its chemical
structure. FBB shows possibility of causing HERG channel inhibition (plausible) due to the
piperazine moiety and the adjacent pyridine ring (highlighted in red in Figure 2B) [31].
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Figure 2. (A) Predicted metabolic sites for FBB by StarDrop WhichP450 module. (B) Structural alerts 
of spebrutinib by DEREK module of StarDrop software. 

2.2. Fragment Ions Study of FBB 
FBB peak elutes at 21.2 min in product ion chromatogram (Figure 3). Dissociation of 

FBB ion at m/z 665 inside the collision cell produces one fragment at m/z 647 (loss of water 
molecule). Further investigation using MS3 analysis of fragment m/z 647 yielded eight 
characteristic and qualitative fragment ions at m/z 629.1, m/z 617.2, m/z 534.1, m/z 491.1, 
m/z 473.1, m/z 443, m/z 399 and m/z 281.9 (Scheme 1). 

 
Figure 3. Product ion chromatogram of FBB (A). Product ion mass spectrum of FBB (B). 

Figure 2. (A) Predicted metabolic sites for FBB by StarDrop WhichP450 module. (B) Structural alerts
of spebrutinib by DEREK module of StarDrop software.

2.2. Fragment Ions Study of FBB

FBB peak elutes at 21.2 min in product ion chromatogram (Figure 3). Dissociation of
FBB ion at m/z 665 inside the collision cell produces one fragment at m/z 647 (loss of water
molecule). Further investigation using MS3 analysis of fragment m/z 647 yielded eight
characteristic and qualitative fragment ions at m/z 629.1, m/z 617.2, m/z 534.1, m/z 491.1,
m/z 473.1, m/z 443, m/z 399 and m/z 281.9 (Scheme 1).
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2.3. Identification of FBB Related Metabolites 
FBB incubation in RLM resulted in the characterization of ten in vitro metabolites. 

Proposed reactions by CYP450 enzymes include hydroxylation, oxidation, N-dealkylation 
and N-oxidation. Different sites of the drug are susceptible to metabolism by the most 
vulnerable site is the piperazine ring (Figure 4). Figure 5 shows chemical structures of 
proposed metabolites. The details for all other FBB metabolites are exhibited in the sup-
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Scheme 1. Proposed interpretation of FBB fragmentation.

2.3. Identification of FBB Related Metabolites

FBB incubation in RLM resulted in the characterization of ten in vitro metabolites.
Proposed reactions by CYP450 enzymes include hydroxylation, oxidation, N-dealkylation
and N-oxidation. Different sites of the drug are susceptible to metabolism by the most
vulnerable site is the piperazine ring (Figure 4). Figure 5 shows chemical structures
of proposed metabolites. The details for all other FBB metabolites are exhibited in the
supplementary file (Supplementary Materials: Figures S1–S9; Table S1).
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Figure 5. Summary of the ten proposed metabolites of FBB.

Identification of M1

M1 (m/z 494.3) is proposed to be generated by hydroxylation and N-dealkylation
of FBB. M1 peak elutes at 18.4 min in product ion chromatogram. Dissociation of FBB
ion at m/z 494.3 inside the collision cell produces one fragment at m/z 476 (loss of water
molecule). Further investigation using MS3 analysis of fragment m/z 476 yielded three
characteristic fragment ions at m/z 464.4, m/z 380.8 and m/z 321.9 (Figure 6).
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2.4. Identification of Iminium Reactive Intermediates Using Potassium Cyanide as Trapping Agent
2.4.1. Identification of M11/KCN Cyanide Adduct

M11/KCN is proposed to form by the addition of cyanide group to M3 of FBB.
M11/KCN (m/z 620.3) peak appeared at 16.94 minute in product ion chromatogram.
Dissociation of M11/KCN ion inside the collision cell produces four fragment ions at
m/z 525.2 m/z 457.1, m/z 347.5 m/z and m/z 267.8 (Figure 7).
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Figure 7. Product ion mass spectrum of M11/KCN cyanide adduct (A) and proposed interpretation
of fragmentation of M11/KCN (B).

2.4.2. Proposed Bioactivation Mechanism of FBB to Iminium Reactive Intermediates

Figure 8 shows the bioactivation pathway for FBB to iminium intermediates. The
generation of M11/KCN, M12/KCN, M13/KCN and M14/KCN cyanide adducts revealed
the formation of iminium unstable intermediates in the piperazine ring during in vitro
metabolism of FBB. Hydroxylation by CYP450 enzymes at piperazine moiety in FBB
followed by loss of one water molecule (dehydration) lead to the formation of iminium ions
intermediate which are unstable species that can be captured by cyanide as nucleophile
forming stable adduct that can be characterized in mass spectrometry. Figure 9 summarizes
the proposed cyanide adducts of FBB. The details for all other FBB cyano adducts are
exhibited in the supplementary file (Supplementary Materials: Figures S10–S12; Table S2).
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2.5. Identification of 6-Iminopyridin-3(6H)-One Reactive Intermediates Using Glutathione (GSH)
as Trapping Agent
2.5.1. Identification of M15/GSH GSH Adduct

M15/GSH is proposed to form by the addition of GSH to the 6-iminopyridin-3(6H)-
one reactive metabolite of M1 of FBB. M15/GSH (m/z 799.3) peak appeared at 17.3 min
in fragment ion chromatogram. Dissociation of M15/GSH ion at m/z 799 inside the
collision cell produces one fragment at m/z 739 (loss of trimethylene oxide ring). Further
investigation using MS3 analysis of fragment m/z 739 yielded five characteristic and



Molecules 2023, 28, 4225 8 of 15

qualitative fragment ions at m/z 725.3, m/z 699.4, m/z 609.2 m/z 454.8 and m/z 252.6
(Figure 10).
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2.5.2. Proposed Bioactivation Mechanism of FBB to 6-Iminopyridin-3(6H)-One
Reactive Intermediates

Figure 11 shows the bioactivation pathway for FBB to 6-iminopyridin-3(6H)-one in-
termediates. N-dealkylation and hydroxylation of pyridine ring performed by CYP450
enzymes results in the formation of reactive 6-iminopyridin-3(6H)-one intermediates cap-
tured by glutathione. Figure 12 summarizes the proposed GSH adducts of FBB. The details
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for all other FBB GSH adducts are exhibited in the supplementary file (Supplementary
Materials: Figures S13–S16; Table S3).
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2.6. Identification of Aldehyde Reactive Intermediates Using Methoxylamine as Trapping Agent
2.6.1. Identification of M20/CH3ONH2 Methoxylamine Adduct

M20/CH3ONH2 is proposed to form by the addition of methoxylamine to aldehyde
reactive intermediate of FBB. M20/CH3ONH2 (m/z 692.4) peak appeared at 22.4 min in
fragment ion chromatogram. Dissociation of M20/CH3ONH2 ion at m/z 692.4 inside the
collision cell produces one fragment at m/z 664.4. Further investigation using MS3 analysis
of fragment m/z 664.4 yielded two characteristic and qualitative fragment ions at m/z 610.5
and m/z 474.6 (Figure 13).
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2.6.2. Proposed Bioactivation Mechanism of FBB to Aldehyde Reactive Intermediates

Figure 14 shows the bioactivation pathway for FBB to aldehyde intermediates. The
generation of FBB692, FBB521, FBB636, FBB708 and FBB724a/b methoxylamine adducts
(Figure 15) revealed the generation of aldehyde intermediates in the acrylamide group
during in vitro metabolism of FBB [32]. Oxidation of primary alcohol by CYP450 enzymes
leads to the formation of aldehyde reactive intermediates which are trapped by methoxy-
lamine forming stable methoxylamine adducts that can be analyzed and detected in mass
spectrometry [33]. The details for all other FBB methoxylamine adducts are exhibited in
the supplementary file (Supplementary Materials: Figures S17–S21; Table S4).
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3. Chemicals and Methods
3.1. Chemicals and Animals

Sprague Dawley rats were used for RLMs preparation [25,34]. Acetonitrile, formic acid,
potassium cyanide, glutathione and methoxylamine were obtained from Sigma-Aldrich
company (St. Louis, MO, USA). FBB was purchased from MedChemExpress company
(Princeton, NJ, USA). Water (HPLC grade) was provided by Milli-Q plus purification system
(Billerica, MA, USA) available at site. All chemicals are analytical grade and solvents are
HPLC grade.

Ethical approval for the Animal experiments was acquired from the Animal Ethics
Committee at King Saud University (No. KSU-SE-22-83). All animal experiments were
completed following the standards of the experimental Animal Use and Care Guidelines of
the National Institutes of Health and the Supervision of Animal Experiments Committee.
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Sprague-Dawley rats were acquired from experimental animal care center King Saud
University (Riyadh, Saudi Arabia).

3.2. Chromatographic Conditions

6320 Ion Trap LC–MSn (Agilent Technologies, Palo Alto, CA, USA) was used for the
analysis of samples. Electrospray ionization was performed at room temperature in positive
ion mode. The dry temperature was 350 ◦C, the nebulizer pressure was 60 psi, the capillary
temperature was 325 ◦C, the dry gas was 10 L/min. The column used was an Eclipse plus
C18 (4.6 × 150 mm, 3.5 micron) (Agilent Technologies, Palo Alto, CA, USA). LC separation
was conducted using a mobile phase solvent A: water with 1% formic acid and solvent B:
acetonitrile. The run began at 95% mobile phase A, then the percentage of mobile phase B
was increased from 5 to 60% in 20 min and then increased to reach 65% at 25 min then
kept at this percentage until minute 30. Gradient chromatography was performed with a
mobile phase of a water/acetonitrile mixture with a flow rate of 0.4 mL/min and a total
run time of 45 min. Injection volume of samples was 5 µL taken from vials that are placed
in the autosampler. The indicated chromatographic parameters for investigation of FBB
metabolites are summarized in Table 1.

Table 1. Summary of selected liquid chromatography and mass spectrometry conditions.

Mobile phase.

Binary system of
0.1% Formic acid in H2O (A) and ACN (B)

ESI source

Positive ESI

High purity N2 gas Drying gas at
10 L/min with pressure (60 psi)0.4 mL/min.

Elution time: 45 min.

Agilent Zorbax
eclipse plus C18

Column

Length 150 mm ESI temperature: 350 ◦C

ID 4.6 mm Capillary voltage: 4000 V

Particle size 3.5 µm Modes Mass scan, MS2 and MS3

Temperature 22 ± 1 ◦C Collision gas High purity N2

Gradient elution
system

Time in min. % ACN Analytes FBB and its metabolites

0 5

Mass
parameters

Fragmentor voltage (FV): 145 V
Amplitude: 1.25 V

20 60

25 65

30 65

45 5

3.3. In Silico Prediction of FBB Metabolites and Structural Alerts Using WhichP450™ Metabolism
Module and DEREK NEXUS Module of StarDrop Software

StarDrop software was used to predict the main sites of metabolism and to predict site
lability specified by the composite site lability (CSL). This software contains the WhichP450
module which predicts regioselectivity of metabolism by different isoforms. This module
concludes the findings by a pie chart of the most likely CYP450 isoform that has a major
role in FBB metabolism. DEREK module was used to identify structural alerts in FBB that
can cause certain toxicities.

3.4. RLM Incubations

Protein concentration of the prepared RLMs was determined using Lowery method [35].
FBB was dissolved in dimethyl sulfoxide (DMSO). FBB (5 µM) was incubated with RLMs
(1 mg/mL) in phosphate buffer (50 mM Na/K and 3.3 mM MgCl2) at pH 7.4. One mM
NADPH was added to initiate the metabolic reaction. One mM of trapping agents KCN,
GSH or methoxylamine were used in the experiments for capturing of iminium, iminopy-
ridinone and aldehyde reactive intermediates, respectively. The reactions were performed
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in a thermostatic shaking water bath (37 ◦C for 60 min.). Two mL of ACN (ice cold) was
added to stop the metabolic reaction by denaturation of enzymes protein. Centrifugation
at 9000× g was done for 12 min at 4 ◦C to precipitate proteins. The clear supernatants
were evaporated under a stream of nitrogen gas then reconstituted in mobile phase (50:50).
Negative controls were prepared in the absence of RLMs or NADPH to confirm that FBB
phase I metabolites were metabolically produced [28,36,37].

3.5. Characterization of FBB Reactive Intermediates

Extracted ion chromatograms (EIC) of various incubation mixtures were used to
characterize FBB metabolites and reactive intermediates. Fragment ions were used to
reconstruct the chemical structure of FBB metabolites and reactive intermediates.

4. Conclusions

This study involved in vitro (RLMs) metabolite characterization and bioactivation
identification of FBB using LC-MS/MS. Ten in vitro phase I metabolites of FBB were identi-
fied (Figure 6). Different pathways of phase I metabolism of FBB were proposed including
oxidation of primary alcohol to aldehyde, hydroxylation, N-oxidation and N-dealkylation.
Four iminium reactive intermediates, five 6-iminopyridin-3(6H)-one reactive intermediates
and six aldehyde reactive intermediates of FBB were identified. Piperazine moiety in FBB is
predicted by DEREK software to cause toxicity and is proposed to bioactivated to iminium
reactive intermediates captured by cyanide. Oxidation of the hydroxymethyl group on the
pyridine ring is proposed to the cause the formation of reactive aldehyde intermediates
captures by methoxylamine. N-dealkylation and hydroxylation of the pyridine ring is
proposed to cause formation of 6-iminopyridin-3(6H)-one reactive intermediates captured
by glutathione. FBB and several phase I metabolites are bioactivated to fifteen reactive
intermediates which might be the cause of adverse effects.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28104225/s1, Figure S1: Product ion mass spectrum of M2
showing proposed fragmentation pattern; Figure S2: Product ion mass spectrum of M3 showing
proposed fragmentation pattern; Figure S3: Product ion mass spectrum of M4 showing proposed
fragmentation pattern; Figure S4: Product ion mass spectrum of M5 showing proposed fragmentation
pattern; Figure S5: Product ion mass spectrum of M6 showing proposed fragmentation pattern;
Figure S6: Product ion mass spectrum of M7 showing proposed fragmentation pattern; Figure S7:
Product ion mass spectrum of M8 showing proposed fragmentation pattern; Figure S8: Product
ion mass spectrum of M9 showing proposed fragmentation pattern; Figure S9: Product ion mass
spectrum of M10 showing proposed fragmentation pattern; Figure S10: Product ion mass spectrum
of M12/KCN cyanide adduct showing proposed fragmentation pattern; Figure S11: Product ion
mass spectrum of M13/KCN cyanide adduct showing proposed fragmentation pattern; Figure S12:
Product ion mass spectrum of M14/KCN cyanide adduct showing proposed fragmentation pattern;
Figure S13: Product ion mass spectrum of M16/GSH adduct showing proposed fragmentation pattern;
Figure S14: Product ion mass spectrum of M17/GSH adduct showing proposed fragmentation pat-
tern; Figure S15: Product ion mass spectrum of M18/GSH adduct showing proposed fragmentation
pattern; Figure S16: Product ion mass spectrum of M19/GSH adduct showing proposed fragmenta-
tion pattern; Figure S17: Product ion mass spectrum of M21/CH3ONH2 methoxyleamine adduct
showing proposed fragmentation pattern; Figure S18: Product ion mass spectrum of M22/CH3ONH2
methoxyleamine adduct showing proposed fragmentation pattern; Figure S19: Product ion mass
spectrum of M23/CH3ONH2 methoxyleamine adduct showing proposed fragmentation pattern;
Figure S20: Product ion mass spectrum of M24/CH3ONH2 methoxyleamine adduct showing proposed
fragmentation pattern; Figure S21: Product ion mass spectrum of M25/CH3ONH2 methoxyleamine
adduct showing proposed fragmentation pattern; Table S1: In vitro phase 1 metabolites of FNB;
Table S2: Summary of proposed cyanide adducts of FNB; Table S3: Summary of proposed GSH
adducts of FNB; Table S4: Summary of proposed methoxylamine adducts of FNB.
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