Skip to main content
. 2023 May 20;23(10):4929. doi: 10.3390/s23104929
Algorithm 1 Lightweight LSTM-based adaptive CQI feedback.
  • 1:

    Input:

  •    

    Actual channel gains htL+1,htL+2,...,ht,ht+1,ht+2,...,ht+M

  •    

    Threshold ϵ.

  •    

       

  •    

    /* Training a lightweight LSTM network */

  • 2:

    Build a lightweight LSTM network with N input nodes and M output nodes.

  • 3:

    Initialize lightweight LSTM network parameters Wi,Wh,B, and set training epochs.

  • 4:

    while epoch < MAX_EPOCH do

  • 5:

        Process fhtL+1,htL+2,...,ht,Wi,Wh,B=h^t+1,h^t+2,...,h^t+M

  • 6:

        Update parameters with loss function 1Mi=1M|ht+ih^t+i|2

  • 7:

        Update epoch ← epoch +1

  • 8:

    end while

  •    

       

  •    

    /* Predicting the CQI index */

  • 9:

    Calculate the predicted channel gain with the trained neural network

  •    

    fhtL+1,htL+2,...,ht,Wi,Wh,B=h^t+1,h^t+2,...,h^t+M

  • 10:

    Calculate the predicted SNR γ^t+kfd

  • 11:

    Calculate the predicted CQI index μ^t+kfd

  • 12:

    whilet < MAX_STEP do

  • 13:

        if |μ^t+kfdμ˜t+kfd1|>ϵ then

  • 14:

            Update μ˜t+kfdμ^t+kfd

  • 15:

            Reports the CQI index to the BS

  • 16:

        else

  • 17:

            Update μ˜t+kfdμ˜t+kfd1

  • 18:

        end if

  • 19:

        Update tt+1

  • 20:

    end while