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Abstract: Porcine meat is the most consumed red meat worldwide. Pigs are also vital tools in bi-
ological and medical research. However, xenoreactivity between porcine’s N-glycolylneuraminic
acid (Neu5Gc) and human anti-Neu5Gc antibodies poses a significant challenge. On the one hand,
dietary Neu5Gc intake has been connected to particular human disorders. On the other hand, some
pathogens connected to pig diseases have a preference for Neu5Gc. The Cytidine monophospho-N-
acetylneuraminic acid hydroxylase (CMAH) catalyses the conversion of N-acetylneuraminic acid
(Neu5Ac) to Neu5Gc. In this study, we predicted the tertiary structure of CMAH, performed molecu-
lar docking, and analysed the protein–native ligand complex. We performed a virtual screening from
a drug library of 5M compounds and selected the two top inhibitors with Vina scores of −9.9 kcal/mol
for inhibitor 1 and −9.4 kcal/mol for inhibitor 2. We further analysed their pharmacokinetic and
pharmacophoric properties. We conducted stability analyses of the complexes with molecular dy-
namic simulations of 200 ns and binding free energy calculations. The overall analyses revealed the
inhibitors’ stable binding, which was further validated by the MMGBSA studies. In conclusion, this
result may pave the way for future studies to determine how to inhibit CMAH activities. Further
in vitro studies can provide in-depth insight into these compounds’ therapeutic potential.

Keywords: sialic acid; Neu5Gc; Neu5Ac; CMAH; pathogenesis; Alphafold2; Vina; inhibitors

1. Introduction

Porcine meat, one of the primary animal protein sources, is the most popular red
meat consumed worldwide [1]. Additionally, pigs share a significant number of physio-
logical and anatomical features with humans and are vital tools in biological and medical
research [2,3]. Pig organs are also used as replacements for failed human organs in cross-
species transplantation (xenotransplantation) [4]. Despite the significance of everything
mentioned above, one major challenge of porcine meat consumption and xenotransplan-
tation is the xenoreactivity between the N-glycolylneuraminic acid (Neu5Gc) of porcine
meat/organs, a sialic acid (Sia), and the human anti-Neu5Gc antibodies. These xenoreac-
tivities are found to be associated with specific diseases and disorders, such as cancer and
diabetes [5]. Neu5Gc is absent in poultry meat and fish, but high contents are found in
pork and other red meat products [6].

The common Sias in mammals are Neu5Gc and N-acetylneuraminic acid (Neu5Ac).
The enzyme Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) en-
coded by the CMAH gene catalyses the conversion of the activated Neu5Ac (CMP-Neu5Ac,
i.e., the native substrate or ligand of CMAH) to Neu5Gc. Only Neu5Ac is present in humans
due to a mutation in the human CMAH that leads to gene inactivation [7,8].

Sia can exhibit structural diversity generated by various linkages from its 2-carbon
to underlying glycans. These Sia-linkages are typically formed at the 3- or 6-position of
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galactose (Gal) residues or the 6-position of N-Acetylgalactosamine (GalNAc) residues [9].
Pigs express the α2-3 Sia-linkage (avian type) and the α2-6 Sia-linkage (preferred human
type), as well as the two primary Sia structures (Neu5Gc and Neu5Ac). Sias are known
receptors for a variety of viruses and bacteria. Studies have demonstrated that there is
a high affinity between specific bacteria and viruses and Neu5Gc [10–12]. The resultant
diseases of this affinity with porcine Neu5Gc could have an unpredictable economic impact
on pig breeding. Pigs are also referred to as “mixing vessels” of influenza viruses between
avian species and humans [13]. Gene exchange between avian, swine, and human viruses
can occur in pigs [14,15], creating a novel virus that could cause human pandemics [16].

The challenges posed by the presence of Neu5Gc in pig cells cannot be simply dis-
missed. The functional and structural studies of the porcine CMAH enzyme remain scarce
due to the unavailability of the tertiary structure of the protein in the databases, thereby
limiting studies on how this enzyme is regulated via different interactions, such as lig-
and(s) and other protein(s). In general, structural predictions of proteins have been used to
identify protein families, significant functional groups, and protein interactions [17]. For
instance, the resolved tertiary structure of the SAR-CoV2 protein has been used in studies
to discover critical binding sites, distinct interactions with inhibitors [18,19], and the impact
of mutations [20,21] to gain a deeper understanding of the virus.

Several groups have eliminated Neu5Gc in pig cells using genome editing
approaches [22–26]. Although, most of those studies performed the elimination primarily
for reasons related to xenotransplantation rather than for dietary purposes. The ethical
argument regarding genome editing and its sometimes irreversible consequences on the
organism (off-target effects) is also challenging. In this study, we employed a different
approach to genome editing, using molecular structural information with the help of
various computational tools as a potential solution to prevent or inhibit the biosynthesis
of Neu5Gc in porcine cells by identifying potential competitive inhibitors of the native
ligand of CMAH. The tertiary structure of the CMAH protein was predicted with deep
learning tools. High throughput structure-based virtual screening and computational
physicochemical properties analysis of the novel inhibitors were performed. The binding
modes of the screened inhibitors were initially predicted by molecular docking. Molecular
docking helps to predict the optimal orientation of a ligand in the binding pocket of a target
protein. The highest Vina or negative scores could be viewed as signs of more effective
binding interactions, which could be used as basis for the selection of the top or best in-
hibitors [27–31]. Although, ranking based on Vina scores are mostly effective for predicting
binding poses rather than the effectiveness of the binding affinity [32,33]; however, further
in-depth molecular dynamics (MD) simulations or validations with experimental data are
usually required. In addition to this study, the complexes were subjected to molecular
dynamics simulation to assess their stabilities. MD simulation helps to analyse the ligand
and protein flexibility. The main advantage of this process is that it mimics the physical
environment, that is, how the protein and ligands interact with each other in time. It also
helps in analysing the flexibility of structures and their entropic effects [34]. A flowchart of
the study is shown in Figure 1.
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The secondary structure of CMAH was predicted through the European Molecular 
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(http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/, accessed on 1 May 2023) [35]). 
The absence of the tertiary structure of CMAH in the database is hampering further stud-
ies on how this protein interacts with ligands and other proteins at the molecular level. 
Data, such as the binding site residues, are also not available. We predicted the tertiary 
structure using AlphaFold2 (ColabFold). The AlphaFold2, a deep learning approach, was 
regarded as an effective method following its breakthrough in 2021 [36]. The collaboration 
between ColabFold and Google made the open-source platform software available at 
https://github.com/sokrypton/ColabFold (accessed on 1 May 2023). Protein structures are 
predicted by generating sequence alignments through MMseqs and HHsearch [37]. 

The CMAH protein sequence (NP_001106486.1) was retrieved from the NCBI protein 
database (https://www.ncbi.nlm.nih.gov/, accessed on 1 May 2023). We performed addi-
tional protein structure refinement using the GalaxyWEB refiner tool (https://gal-

Figure 1. Schematic workflow of the molecular structural analysis of porcine CMAH–native ligand
complex and virtual screening to identify novel inhibitors.

2. Materials and Methods

In this study, we employed computational approaches to determine the CMAH pro-
tein structure and its inhibitors. The ab initio approach was employed for the structure
prediction, and validation was performed through several other tools. The inhibitors of this
protein were first virtually screened, and the obtained two top inhibitors were molecularly
docked and simulated for their interaction affinity and stability assessment.

2.1. Prediction, Refinement, and Validation of Tertiary Structure of CMAH Protein

The secondary structure of CMAH was predicted through the European Molecular
Biology Laboratory-European Bioinformatics Institute (EMBL-EBI) tool, PDBsum (http://
www.ebi.ac.uk/thornton-srv/databases/pdbsum/, accessed on 1 May 2023) [35]). The
absence of the tertiary structure of CMAH in the database is hampering further stud
ies on how this protein interacts with ligands and other proteins at the molecular level.
Data, such as the binding site residues, are also not available. We predicted the tertiary
structure using AlphaFold2 (ColabFold). The AlphaFold2, a deep learning approach, was
regarded as an effective method following its breakthrough in 2021 [36]. The collaboration

http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
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between ColabFold and Google made the open-source platform software available at
https://github.com/sokrypton/ColabFold (accessed on 1 May 2023). Protein structures
are predicted by generating sequence alignments through MMseqs and HHsearch [37].

The CMAH protein sequence (NP_001106486.1) was retrieved from the NCBI protein
database (https://www.ncbi.nlm.nih.gov/, accessed on 1 May 2023). We performed ad-
ditional protein structure refinement using the GalaxyWEB refiner tool (https://galaxy.
seoklab.org/index, accessed on 1 May 2023). The server uses MD simulations to execute
repetitive structure perturbation and eventual overall structural relaxation [38]. The tertiary
structure was validated using the PDBsum webserver (http://www.ebi.ac.uk/thornton-
srv/databases/pdbsum/Generate.html, accessed on accessed on 1 May 2023) to analyse
the Ramachandran plot [35] and ProSA online tool (https://prosa.services.came.sbg.ac.
at/prosa.php, accessed on accessed on 1 May 2023) for additional analysis [39]. We also
incorporated ERRAT analysis to validate the predicted structure’s accuracy [40].

2.2. Prediction of Active Site Residues

The protein’s active site was predicted by the COACH online tool (https://zhanggroup.
org/COACH/, accessed on 1 May 2023). It employs a meta-server approach to generate
predictions for complementary ligand binding sites based on the structure of target proteins
using two comparative methods: TMSITE and SSITE. The COACH compares binding-
specific substructures and sequence profiles to recognise active sites of templates from
the BioLiP protein function database [41,42]. It combines the outcomes of the other three
cutting-edge techniques: COFACTOR, FINDSITE, and ConCavity [42]. Users can either
input primary sequences or tertiary structures. The result was cross-validated with the
DoGSiteScorer tool from the protein plus online tool (https://proteins.plus/, accessed on
1 May 2023). This tool is a “grid-based method that utilises a difference of Gaussian filter to
identify potential binding pockets based solely on the tertiary structure of the protein and
then divides them into sub-pockets” [43].

2.3. Computational Docking of Porcine CMAH and the Native Ligand

The three-dimensional structure of the native ligand CMP-Neu5Ac was downloaded
from the PubChem database (CID 448209; https://pubchem.ncbi.nlm.nih.gov/, accessed
on 1 May 2023) [44]. The OpenBabel software version 3.1.1 was used to convert the
ligand structure-data file (SDF) format to Protein Data Bank (PDB), [partial charge (Q), and
atom type (T)] (PDBQT) format and prepared for docking. All rotatable bonds were kept
flexible. Additionally, the tertiary structure of CMAH was uploaded into the molecular
graphic laboratory (MGL) software version 1.5.7 and prepared for docking by adding polar
hydrogen and Kollman charges. The grid box for the docking calculation was centred
on the protein’s active site (X = 2.074, Y = 1.004, Z = −0.609) and size (X = 95, Y = 95,
Z = 95), encompassing all the amino acid residues. The configuration file defined the
coordinates of exhaustiveness and energy ranges as 80 and 4, respectively. The prepared
structure was saved in the PDBQT file format for molecular docking using the AutoDock
Vina application of the MGL software. After docking, the MGL tool, Discovery studio,
protein plus (https://proteins.plus/, accessed on 1 May 2023) [45], and protein–ligand
interaction profiler (PLIP; https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index,
accessed on 1 May 2023) online tools [46] were used to visualise and analyse the AutoDock
Vina output file, and the best conformation was selected.

2.4. High Throughput Structure-Based-Virtual Screening

Structure-based-virtual screening (SBVS) is a computational approach that efficiently
identifies key inhibitors or lead compounds from many compounds based on interactions
within the active or binding pockets of target proteins [47]. The SBVS was performed with
MCULE (https://mcule.com/, accessed on 1 May 2023), an online database with millions
of synthetically accessible molecules. Fast results are possible due to many the central
processing units (CPUs) of cloud machines [48].

https://github.com/sokrypton/ColabFold
https://www.ncbi.nlm.nih.gov/
https://galaxy.seoklab.org/index
https://galaxy.seoklab.org/index
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html
http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html
https://prosa.services.came.sbg.ac.at/prosa.php
https://prosa.services.came.sbg.ac.at/prosa.php
https://zhanggroup.org/COACH/
https://zhanggroup.org/COACH/
https://proteins.plus/
https://pubchem.ncbi.nlm.nih.gov/
https://proteins.plus/
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
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The tertiary protein structure of CMAH was uploaded in the PDB format. The basic
Lipinski’s rule of five [49], otherwise known as Pfizer’s rule of five, was used as the property
filter in the workflow of the SBVS; that is, hydrogen bond donor (HBD) not more than 5,
hydrogen bond acceptor (HBA) not more than 10, molecular mass less than 500 Daltons,
and log P (octanol-water partition coefficient) not more than 5. In addition, the polar
surface area was adjusted to 140 Å2 maximum, sampler size to 1000, and similarity cut off
at 0.7 and 3 million as the maximum number of compounds after sphere exclusion. Other
settings of the MCULE were kept at default. An estimated 5,000,000 ligands were screened
against the CMAH active site. Lastly, the same grid box calculated above for the molecular
docking of CMAH and the native ligand was used.

The virtual screening was performed with the inbuilt Vina tool. The top two inhibitors
having the highest Vina-docking score were selected as a basis for further validations. The
selected inhibitors were also assessed for their pharmacokinetic properties and compared
with the native ligand through the SwissADME online tool (http://www.swissadme.ch/,
accessed on 1 May 2023) [50]. The absorption, distribution, metabolism, and excretion
(ADME) analytic tools are customised for humans. Since pigs are used in human preclinical
trials [51–53], we included the analysis to provide insight into the inhibitors’ applicability
at the clinical level. In addition, the physicochemical properties and the amino acid
residues interacting with the target protein were assessed. The pharmacophore analyses
were performed through the Zincpharmer online tool (http://zincpharmer.csb.pitt.edu/
accessed on 1 May 2023) [54]. The inhibitors were loaded, and pharmacophore features
were displayed after utilising the load features option. The images obtained were saved for
further analysis.

The complexes were further visualised and analysed with tools such as Discovery
studio, protein plus, and PLIP online tools. Furthermore, to assess the accuracy of the
molecular docking, the catalytic domain of CMAH was particularly docked with sorted
inhibitors and analysed for the similarity between docked complexes consisting of apo-
CMAH-inhibitors and catalytic domain-CMAH.

2.5. Molecular Dynamic Simulations of the Complexes

The complexes were subjected to a 200 ns MD simulation. CHARMM-GUI server was
used to prepare the input files for simulation. The Antechamber program embedded in the
server generated the charm topology and ligand parameter files [55]. Subsequently, the
solvation of complexes was performed in a periodic box of size 10 Å containing TIP3P water
molecules [56], then neutralised by adding Na+ and Cl− ions. After neutralisation, the
steric clashes were removed via minimisation of the systems for 5000 steps that followed the
equilibration steps in NVT and NPT ensembles for 50,000 and 100,000 steps, respectively.
Finally, the systems were subjected to a production run at 310K temperature [57]. The
constant temperature (310 K) and pressure (1 atm) were maintained by the Berendsen
thermostat and Parrinello–Rahman algorithms. The LINCS algorithm [58] was applied
to constrain the optimal lengths of hydrogen atoms, while non-bonded interactions were
dealt with using the Verlet algorithm [59]. The short-range electrostatic interactions were
computed using the Particle Mesh Ewald method [60]. The CHARMM36 forcefield [61]
was used during the production run. The MD trajectories were stored at every 10 ps and
then analysed using gmx rms, gmx_rmsf, gmx_area, gmx_cod, and gmx_gyrate commands.
VMD and PyMOL were used to investigate the hydrogen bonds [62].

3. Results
3.1. Predicted Active Site Residues and Tertiary Structure Validation

Before proceeding to tertiary structure prediction, the secondary structure of the
CMAH protein was predicted. Secondary structure analysis indicated that beta-sheets
dominate the CMAH structural configuration, and most residues at N-terminus participate
in beta-sheets formation (Figure S1).

http://www.swissadme.ch/
http://zincpharmer.csb.pitt.edu/
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In drug discovery, the validation of predicted protein structures is essential. The
AlphaFold2 performed the initial step of the structural prediction, and refinement of the
structure was further carried out by the GalaxyWEB server refiner tool [38]. The PDBsum,
a web-based application, was used to analyse the structural information and quality of the
protein’s tertiary structure. The PDBsum results are image-based and analyses of the tertiary
structure quality were performed using the PROCHECK tool [35]. The Ramachandran
plot analysis of the tertiary structure revealed that 91.4% of the residues were found in
the most favoured regions (Figure 2B). The result from ProSa revealed that the predicted
protein has a Z-score of −10.73. This shows that the structure conforms to the standard
X-ray crystallography for proteins of a similar size (Figure 2D). ERRAT analysis also gave
the overall quality factor of 95.007%, which is indicative of a high-quality protein structure
(Figure 2E). The overall analysis of this protein indicates that the protein is of high quality
and may be used for structure-based drug discovery.

1 
 

 
Figure 2. Visualisation of the tertiary structure of the CMAH protein with the active site obtained
via protein plus tool (A). Ramachandran’s plot depicted that 91.4% of the amino acid residues are
located in the most favoured regions (B). The 3D structure of CMP-Neu5Ac was extracted from the
PubChem database (C). The ProSa analysis image shows a Z-score of −10.73 (D). ERRAT overall
score indicates a 95% quality factor for the predicted structure. Yellow colour indicates the region
that can be rejected at the 95% confidence level (intermediate quality or disordered region). Regions
that can be rejected at the 99% level are shown in red (low quality) (E).

The result from the COACH server predicted 10 amino acid residues as the active
site. These are Gly164, His197, Ser198, Asp199, Ser312, Pro315, Ile332, Glu335, Arg336,
and Lys337. The image of the tertiary structure of CMAH is shown with the active pocket
(Figure 2A), and Figure 2C shows the three-dimensional structure of the native ligand.
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3.2. Analysis and Visualisation of the Docked Complex of CMAH and CMP-Neu5Ac

The AutoDock Vina predicted the ideal pose with a Vina score of −8.7 kcal/mol. A
strong druggability value was disclosed by the cross-validated DoGSiteScorer result, which
also showed the native ligand’s binding pose with the CMAH (Figure 3A). The tool predicted
a volume of 1052.2 Å3, a surface of 1105.62 Å2, a drug score of 0.8, and a simple score of 0.59.
The Discovery studio image (Figure 3B) and protein plus (Figure 3C) show two-dimensional
(2D) images of the interacting amino acid residues and non-covalent interactions.
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magenta indicates hydrophobic interactions (B). Two-dimensional (2D) images of the interactions by
protein plus (C).

3.3. Identification of Potential Inhibitors through Structure-based Virtual Screening

In this study, the top two inhibitors, MCULE-5735538220-0-1 (Inhibitor 1) and MCULE-
3985112460-0-5 (Inhibitor 2), as shown in Figure 4, were selected. The primary basis for
their selection was based on having the best Vina docking score of −9.9 kcal/mol and
−9.4 kcal/mol, respectively. In addition, physicochemical property analysis based on
the parameters listed above and the different types of non-covalent interactions were
also used as selection criteria. The selected inhibitors were further analysed for their
pharmacophore properties. The pharmacophore models of inhibitor 1 and inhibitor 2
(Figure 5 and Tables S1 and S2) represent the relative binding affinities at different positions
of the molecules forming the inhibitors.
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Figure 4. The 2D and 3D images of the inhibitor 1 (PubChem CID 52900436, N-[(2S)-1-[(5-butyl-1,3,4-
thiadiazol-2-yl)amino]-1-oxopropan-2-yl]-4-pyridin-2-ylpiperazine-1-carboxamide) and inhibitor
2 (PubChem CID 53241828, N-[3-[(4r)-2-Azanylidene-5,5-Bis(Fluoranyl)-4-Methyl-1,3-Oxazinan-4-
Yl]-4-Fluoranyl-Phenyl]-5-Cyano-Pyridine-2-Carboxamide), Adapted with permission from the Pub-
Chem database [44].
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Figure 5. Depiction of pharmacophore models produced through ZINCpharmer. (A) Model of
Inhibitor 1 and (B) Model of Inhibitor 2. Hydrophobic interactions are shown by green spheres;
hydrogen acceptors are represented by orange spheres; hydrogen donors by white spheres, while
aromatic rings are portrayed with purple spheres. The arrows pinpoint the relative positions of
identified features.



Pathogens 2023, 12, 684 9 of 18

The dimensions (x, y, and z) and the radius are also depicted (Tables S1 and S2). Each
pharmacophore feature is highlighted with a specific colour and numbered to distinguish
the classes. At two positions (10 and 11) hydrophobic atoms merged with aromatic rings,
but overall, purple is displayed to highlight the features. In total, 14 positions that represent
the distinct pharmacophore classes were identified.

The inhibitors were also analysed for their pharmacokinetic properties. Compared
to the CMP-Neu5Ac, both inhibitors have a lower molecular weight, fewer numbers of
hydrogen bond acceptors and donors, and rotatable bonds. Both inhibitors are favourable
for drug-likeness analysis. The pharmacokinetic properties of inhibitors and CMP-Neu5Ac
are provided in Table S3. Figure 6A,B show the inhibitors inside the active site pockets
and 2D images of non-covalent interactions involved. To ensure the accuracy of molecular
docking, the catalytic domain of CMAH was also docked with both inhibitors and super-
imposed with the apo-CMAH docked complex to identify similarities and differences. The
analysis indicated that residues Gly310, Ala311, Phe314, and Glu335 interacted actively
with inhibitor 1 in apo-CMAH-inhibitor 1 and catalytic domain-inhibitor 1 complexes.
Similarly, Phe314 and Thr289 interacted in apoprotein-CMAH-inhibitor 2 and catalytic
domain-inhibitor 2 complexes (Figure 7).
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We further performed a detailed comparative analysis among the three complexes
(CMAH complexes with the native ligand and the two inhibitors) using the PLIP tool to
identify all possible non-covalent interactions, such as hydrogen bonds, hydrophobic inter-
actions, and salt bridges. Figure 8 shows different interactions of the three complexes, and
Table 1 shows details of the amino acid residues involved. The amino acid residues Ser312
and Phe314 were common interacting amino acid residues among the three complexes.
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CMAH and inhibitor 2 complex. Bold and circled residues represent common residues in the catalytic
domain-inhibitor and apoprotein–CMAH–inhibitor complex.

Pathogens 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 8. The detailed comparative assessment by the PLIP tool of the different interactions of the 
CMAH complexes with the native ligand (A), inhibitor 1 (B) and inhibitor 2. (C) The hydrophobic 
interactions, hydrogen bonds, and salt bridges are represented by the grey dash line, blue line, and 
yellow dash line, respectively. 

3.4. Molecular Dynamic Simulations of the Complexes 
The stable interactions of the native ligand, inhibitors 1 and 2, with CMAH, were 

further evaluated through molecular dynamics (MD) simulations. Analyses related to Root 
Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), surface accessibility 
(SASA), the Radius of gyration (Rg), the average distance between protein and ligand, and the 
number of hydrogen bonds were investigated in 200 ns simulation (Figures 9–11). The anal-
yses indicated that, after 60 ns of simulation, the native ligand (CMAH-CMP-Neu5Ac) 
complex shows fluctuations in its average distance, RMSD, and Rg values (Figure 9). 
CMAH-inhibitor 1 complex also shows increased average distance, RMSD, and Rg after 
60 ns, but did not show that RMSD stabilises after 80 ns (Figure 10). Comparatively, the 
CMAH-inhibitor 2 complex shows a sudden increase in average distance after 20 ns, and 
then the motion stabilises and elevation in RMSD after 30 ns (Figure 11). In terms of hy-
drogen bond number, CMP-Neu5Ac made more hydrogen bonds with CMAH compared 
to inhibitors 1 and 2 at the beginning of the simulation. Still, the number of hydrogen 
bonds dropped after 80ns duration. Compared to CMP-Neu5Ac, both inhibitors only 
made 2–4 hydrogen bonds throughout the simulation, but the interaction was maintained. 
Analysis based on simulation shows that CMP-Neu5Ac made strong interaction with 
CMAH, but RMSF, SASA, RMSD, Rg, and average distance values indicate fluctuations 
in the interaction after 60 ns. Compared to the native ligand, the inhibitors’ interaction 
with CMAH stabilised after the first 20 ns. Additionally, at the end of the 200 ns, both 
inhibitors showed a stabilised interaction compared to the native ligand. 

Figure 8. The detailed comparative assessment by the PLIP tool of the different interactions of the
CMAH complexes with the native ligand (A), inhibitor 1 (B) and inhibitor 2. (C) The hydrophobic
interactions, hydrogen bonds, and salt bridges are represented by the grey dash line, blue line, and
yellow dash line, respectively.
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Table 1. The different amino acid residues involved in the various interactions.

Ligand Molecular
Formula Hydrophobic Interactions Hydrogen Bonds Salt Bridges Vina Score

(Kcal/mol)

Native C20H31N4O16P Phe314 & Arg336 Gln57, Cys288, Gly310, Ser312,
Glu335, Lys343, Asn376 His56, Asp270, Asp287 −8.7

Inhibitor 1 C19H27N7O2S Trp80, Tyr89, Pro92, Phe314, Trp555 His266, Gly310, Ser312, Glu335 None −9.9

Inhibitor 2 C18H14F3NSO2 Trp80, Thr289, Phe314, Try550 Asp287, Ser312, Tyr550 None −9.4

3.4. Molecular Dynamic Simulations of the Complexes

The stable interactions of the native ligand, inhibitors 1 and 2, with CMAH, were
further evaluated through molecular dynamics (MD) simulations. Analyses related to
Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), surface
accessibility (SASA), the Radius of gyration (Rg), the average distance between protein
and ligand, and the number of hydrogen bonds were investigated in 200 ns simulation
(Figures 9–11). The analyses indicated that, after 60 ns of simulation, the native ligand
(CMAH-CMP-Neu5Ac) complex shows fluctuations in its average distance, RMSD, and
Rg values (Figure 9). CMAH-inhibitor 1 complex also shows increased average distance,
RMSD, and Rg after 60 ns, but did not show that RMSD stabilises after 80 ns (Figure 10).
Comparatively, the CMAH-inhibitor 2 complex shows a sudden increase in average distance
after 20 ns, and then the motion stabilises and elevation in RMSD after 30 ns (Figure 11).
In terms of hydrogen bond number, CMP-Neu5Ac made more hydrogen bonds with
CMAH compared to inhibitors 1 and 2 at the beginning of the simulation. Still, the
number of hydrogen bonds dropped after 80 ns duration. Compared to CMP-Neu5Ac, both
inhibitors only made 2–4 hydrogen bonds throughout the simulation, but the interaction
was maintained. Analysis based on simulation shows that CMP-Neu5Ac made strong
interaction with CMAH, but RMSF, SASA, RMSD, Rg, and average distance values indicate
fluctuations in the interaction after 60 ns. Compared to the native ligand, the inhibitors’
interaction with CMAH stabilised after the first 20 ns. Additionally, at the end of the 200 ns,
both inhibitors showed a stabilised interaction compared to the native ligand.
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(B) Number of hydrogen bonds. (C) Rg, (D) RMSD, (E) RMSF, and (F) SASA.
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Figure 11. 200 ns of MD Simulation analysis of CMAH-inhibitor 2. (A) Average distance analysis.
(B) Number of hydrogen bonds. (C) Rg, (D) RMSD, (E) RMSF, and (F) SASA.

The relative binding free energies of the tested compounds were calculated by imply-
ing the MMGBSA module. The total binding free energy is the sum of electrostatic, van
der Waals, Polar solvation, and SASA energy. The binding energy terms of the identified
inhibitors were compared with that of the native ligand (Figure 12). The ∆G of the native
ligand was −134.31 kcal/mol, while those of inhibitors 1 and 2 were −179.038 kcal/mol
and −86.716 kcal/mol. This suggests that inhibitor 1 might have a stronger binding inter-
action [63]. The relative binding free energy values of the complexes are shown in Table 2.
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Figure 12. The comparison of binding free energy terms in the native and the identified inhibitors.

Table 2. Calculated binding free energies of tested compounds (KJ/mol).

Compound ∆G Van der Waal Energy Electrostatic Energy Polar Solvation Energy SASA
Energy

Native
−134.317 −167.815 −170.890 224.374 −19.985
±89.180 ±44.570 ±162.416 ±119.177 ±3.904

Inhibitor 1
−179.038 −185.644 −112.857 140.880 −21.418
±12.127 ±13.649 ±34.330 ±46.563 ±0.989

Inhibitor 2
−86.716 −116.820 −61.125 105.857 −14.629
±22.650 ±15.080 ±48.771 ±61.576 ±2.232

4. Discussion

The Neu5Gc is a crucial sialic acid sugar molecule associated with pathogenic inter-
actions in pig cells. With this considered, its role in xenoreactivities is linked to certain
diseases (cancer, atherosclerosis, and rheumatoid arthritis are some of the inflammatory and
autoimmune disorders), as described in the introduction. Our results highlight the need
for more studies into the health impacts of Neu5Gc xenoreactivity and the development of
measures to lessen the possible negative consequences [64]. Therefore, in this study, we
employed a computational technique called computer-aided drug discovery (CADD) to
identify novel inhibitors of the CMAH enzyme.

Molecular docking was utilised in this investigation. The first step was to clarify the
interactions between CMAH and the native ligand (CMP-Neu5Ac). The analysis of the
CMAH–native ligand complex revealed that the enzyme established seven hydrogen bonds
at the amino acid residues Gln57, Cys288, Gly310, Ser312, Glu335, Lys343, and Asn376.
Hydrogen bonds facilitate protein–ligand interactions and are vital in protein folding
catalysis [65]. In addition, two hydrophobic interactions were found between Phe314 and
Arg336 amino acids. Hydrophobic interactions are weak intermolecular interactions crucial
for stabilising energetically favoured ligands at the protein interface [66]. These interactions
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can enhance the binding efficiency of ligands or drugs [67]. When hydrophobic interactions
are maximised, they also can impact drug side effects and toxicity [66].

Salt bridges are the most potent non-covalent molecular interactions [68] and can
contribute to conformational specificity [69]. Similar to disulfide bonds, salt bridges can
likewise serve as significant interactions [70]. Three salt bridges were detected at the
amino acid sites: His56, Asp270, and Asp287. A Vina score of -8.7 kcal/ suggests that the
CMAH could have a high affinity for the native ligand, as shown by the abundant evidence
of interactions.

Enzyme inhibitors are low-molecular-weight chemical molecules that can inhibit or
reduce enzymatic activities either irreversibly or reversibly [71]. This type of inhibitor binds
non-covalently to the enzyme’s active site and competes with the native ligand. Reversible
competitive inhibitors are among the common inhibitors employed in pharmaceutical
industries to combat various diseases. For instance, polyoxins and nikkomycins are essen-
tial in treating fungal infections, functioning as competitive inhibitors to UDP-N-acetyl
glucosamine, a substrate for chitin formation [72].

High-throughput virtual screening was employed to identify two novel competitive
inhibitors based on their interactions and Vina scores. Top Vina scores (higher negativity)
could indicate more efficient binding interactions [27–31]. Inhibitor 1, N-[(2S)-1-[(5-butyl-
1,3,4-thiadiazol-2-yl)amino]-1(,N-[(2S)-1-[(5-butyl-1,3,4-thiadiazol-2-yl-1-oxopropan-2-yl]-4-
pyridin-2-ylpiperazine-1-carboxamide) had a higher Vina score (−9.9 kcal/mol) than the
native ligand. This might be an indication that this inhibitor may bind more efficiently
than the native ligand; however, in the introduction, we highlighted the non-reliability of
Vina scores [32,33]. The protein inhibitor 1 study revealed that this inhibitor interacted
with CMAH and formed five hydrophobic contacts at the Trp80, Tyr89, Pro92, Phe314, and
Trp555 amino acid residues.

Additionally, analysis of the complex uncovered four hydrogen bonds at the amino
acid residues His266, Gly310, Ser312, and Glu335. Unlike that of the native ligand, no salt
bridges were found. The native ligand and inhibitor 1 contain a hydrophobic interaction
with the amino acid residue Phe314. Similar hydrogen bonds were found at the amino acid
residues Gly310, Ser312, and Glu335 of both the native ligand and inhibitor 1. Therefore,
these similarities may have contributed to the highest Vina score for inhibitor 1.

The second-best or most effective inhibitor (inhibitor 2) identified based on the
Vina score was N-[3-[(4r)-2-Azanylidene-5,5-Bis(fluoranyl)-4-Methyl-1,3-Oxazinan-4-Yl]-
4-Fluoranyl-Phenyl]-5-Cyano-Pyridine-2-Carboxamide. It also had a greater Vina score
(−9.4 kcal/mol) than the native ligand. Although no salt bridges were discovered, four
hydrophobic interactions and three hydrogen bonds were observed at the following amino
acid residues: Trp80, Thr289, Phe314, Try550 and Asp287, Ser312, and Try550, respectively.
Hydrophobic interaction and hydrogen bonds were discovered at the Phe314 and Ser312
amino acid residues, compared to the native ligand. When the three complexes were
compared, phe314 and Ser312 were common amino acid residues involved in hydrophobic
interactions and hydrogen bonding. Therefore, these amino acid residues are assumed to
be crucial for the enzyme’s catalytic activity.

The two inhibitors obtained from virtual screening were further subjected to phar-
macophore analysis to study the steric and electronic features of the inhibitors. The
pharmacokinetic qualities of the inhibitors were also assessed. A compound may be af-
fected by many different variables, including the drug’s chemical structure, formulation,
method of administration, and interactions with other pharmaceuticals and physiological
conditions [73]. Both inhibitors passed the drug-likeness investigation. Inhibitor 1 had
lower water solubility than inhibitor 2. Overall, both inhibitors have bioactive properties
and can be used for therapeutic purposes.

MD simulations were employed further to analyse the complexes. MD simulation
analysis consisted of RMSD, RMSF, Rg, SASA, average distance, and hydrogen bond analy-
sis. MD simulations are extensively performed in the pharmaceutical industry to facilitate
drug discovery. The algorithms of MD simulations employ particle velocity and quantum
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mechanics to measure particle charges, bond energies, angles, and distances [74]. Through
this information, an assessment of the structure–function relationship can be easily per-
formed, facilitating drug discovery [75]. Interestingly, in this study, non-convergence was
observed in the MD simulation analysis of protein–ligand complexes, which was obvious
for the native ligand and the inhibitor 1. This can arise from various factors, among which is
possible inherent protein flexibility, which could have impacted the convergence [76,77] and
is associated with large conformational changes [76], multiple stable conformations [78],
or intrinsically disordered regions [76]. Intrinsically disordered regions of the CMAH
protein were also observed in our previous study on the predicted impacts of mutations on
bovine CMAH [79].

5. Conclusions and Recommendations

Considering the importance of the Neu5Gc sugar molecule in the pathophysiology of
pigs and its function in the development of several human diseases, it is imperative to iden-
tify the interacting partners, such as inhibitors, at the molecular level. Molecular structural
studies of CMAH in complexes with its native ligand and two newly discovered inhibitors
were performed using computational methods. Additionally, crucial enzymatic amino acid
residues of the CMAH were predicted in addition to the active site. MD simulation analysis
also determined the stable interaction between CMAH and the inhibitors. The study’s find-
ings are a valuable contribution to the scientific literature. However, due to the possibility
of intrinsically disordered regions of the protein, replica exchange molecular dynamics
(REMD), metadynamics, or accelerated molecular dynamics (aMD), which can improve the
exploration of conformational space and facilitate convergence [80], coupled with in vitro
studies for determining the therapeutic potential, are advised for future studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pathogens12050684/s1, Table S1: Representation of pharmacophore
class with positions, dimensions and radius of inhibitor 1; Table S2: Representation of pharmacophore
class with positions, dimensions and radius of inhibitor 2; Table S3: The pharmacokinetic properties
of inhibitors and CMP-Neu5Ac are provided i; Figure S1: Secondary structures of CMAH protein.
Arrows depict the beta-sheets, and coiled structures show alpha folds. Different colours represent its
different domains. The purple line indicates the N-terminal region and the orange line depicts the
C-terminal region.
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