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Abstract: Natural products have proven their value as drugs that can be therapeutically beneficial
in the treatment of various diseases. However, most natural products have low solubility and poor
bioavailability, which pose significant challenges. To solve these issues, several drug nanocarriers have
been developed. Among these methods, dendrimers have emerged as vectors for natural products
due to their superior advantages, such as a controlled molecular structure, narrow polydispersity
index, and the availability of multiple functional groups. This review summarizes current knowledge
on the structures of dendrimer-based nanocarriers for natural compounds, with a particular focus on
applications in alkaloids and polyphenols. Additionally, it highlights the challenges and perspectives
for future development in clinical therapy.
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1. Introduction

Natural products possess diverse pharmacological activities and low toxicity [1].
However, most drugs have poor bioavailability due to their hydrophobicity, making them
unable to develop into ideal dosage forms. The development of dendrimer molecules
can largely solve this. Dendrimers are three-dimensional, hyperbranched, monodispersed
polymers composed of a central core, branches, and terminal functional groups attached to
the branches [2,3]. They are considered ideal carriers for drug delivery due to their rich
internal cavities, functionalized surfaces that introduce various chemical groups to achieve
high customization, and good biocompatibility [4–6]. Compared with traditional polymers,
dendrimers have the advantages of high water solubility, polyvalency, biocompatibility, and
a precise molecular weight [7]. Various dendrimers have been developed and applied as
drug delivery vehicles for natural products (Figure 1) such as polyamidoamine (PAMAM),
polylysine (PLL), polypropylene (PPI), and polyglycerol (PG) [8]. The above dendrimers
can be used for targeting drug delivery through various methods, such as intravenous,
subcutaneous, intraperitoneal injection, oral, and ocular delivery [9].

Drugs are transported by dendrimers in two ways: (1) non-covalent interactions—
dendrimers wrap drug molecules within the interior of dendrimers and protect them from
being metabolized by the body when they reach their target location, thereby increasing
their bioavailability; (2) covalent interactions—drugs are covalently linked to dendritic
polymers, and the covalent bonds typically select cleavable functional groups such as esters,
amines, and carbamates to effectively control drug release [10–12]. This review introduces
the current status of dendrimer delivery systems for natural products, especially alkaloids
and polyphenolic compounds (Table 1), and provides challenges and perspectives for the
clinical development of the above dendrimers in the future.

Polymers 2023, 15, 2292. https://doi.org/10.3390/polym15102292 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15102292
https://doi.org/10.3390/polym15102292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://doi.org/10.3390/polym15102292
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15102292?type=check_update&version=1


Polymers 2023, 15, 2292 2 of 18Polymers 2023, 15, x FOR PEER REVIEW 2 of 22 
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Alkaloids are nitrogen-containing organic compounds which are divided into quin-

oline alkaloids, quinolizidine alkaloids, indole alkaloids, etc. [13]. These molecules have a 
wide range of biological activities, including antitumor, antibacterial, antiviral activities, 
etc. [14–17]. However, there are characteristics such as low solubility, instability, and low 
bioavailability in vivo. Typical bioactive alkaloids include camptothecin, paclitaxel, and 
berberine. 

2.1. Camptothecin 
Camptothecin (CPT) is an alkaloid isolated from Camptotheca acuminata which exhib-

its effective antitumor activity by targeting intracellular topoisomerase I enzyme and 
which is used to treat different types of cancer [18]. However, the bioavailability of CPT is 
unsatisfactory. The area under curve (AUC) and half-life of CPT (1 mg/kg, intravenous 
injection) were 2 × 10−4 mg h/mL and 1.291 h, respectively [19]. Additionally, the low water 
solubility, poor stability, and certain toxicity to normal cells limit the clinical use of CPT 
[20]. 

CPT can be encapsulated in the dendriform interior of PAMAM through hydropho-
bic interaction and can also be chemically combined with PAMAM dendrimers to achieve 
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2. Alkaloids Compound

Alkaloids are nitrogen-containing organic compounds which are divided into quino-
line alkaloids, quinolizidine alkaloids, indole alkaloids, etc. [13]. These molecules have a
wide range of biological activities, including antitumor, antibacterial, antiviral activities,
etc. [14–17]. However, there are characteristics such as low solubility, instability, and low
bioavailability in vivo. Typical bioactive alkaloids include camptothecin, paclitaxel, and
berberine.

2.1. Camptothecin

Camptothecin (CPT) is an alkaloid isolated from Camptotheca acuminata which exhibits
effective antitumor activity by targeting intracellular topoisomerase I enzyme and which
is used to treat different types of cancer [18]. However, the bioavailability of CPT is
unsatisfactory. The area under curve (AUC) and half-life of CPT (1 mg/kg, intravenous
injection) were 2 × 10−4 mg h/mL and 1.291 h, respectively [19]. Additionally, the low
water solubility, poor stability, and certain toxicity to normal cells limit the clinical use of
CPT [20].

CPT can be encapsulated in the dendriform interior of PAMAM through hydrophobic
interaction and can also be chemically combined with PAMAM dendrimers to achieve
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sustained drug release (Figure 2). Alibolandi et al. prepared a CPT-loaded PEGylated
PAMAM G5 dendrimer and functionalized the carrier with AS1411 antinucleolin aptamers
(1) to enhance the specific targeting to tumor cells and improve endocytosis [21]. N-acetyl-
D-glucosamine has also been applied to increase the targeting of CPT-loaded PAMAM [22].
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CPT has also been covalently conjugated to the surface of PAMAM dendrimers. CPT-
conjugated PAMAM G4 dendrimers (2) can inhibit the growth of colorectal cancer cell
line HCT-116 and induced nuclear fission [23]. Ma et al. selected a glucose transporter
1 (GLUT1)-specific ligand and glutathione (GSH)-sensitive junction to prepare a glucose-
polyethylene glycol(PEG)-PAMAM-S-CPT-Cy7 conjugate to deliver CPT to GLUT1 overex-
pressed HepG2 liver tumor cells (3) [24]. CPT could be covalently linked to PAMAM G3
dendrimers by an acrylate end group. The conjugates are linked by PEG (4). CPT can be
cleaved from dendrimers through the ammonolysis of ester bonds, and the rate of cleavage
can be adjusted by pH. The drug delivery system prolongs the release time of the drug, and
has injectability, which has a significant tumor inhibitory effect in head and neck cancer [25].
Furthermore, PLL dendrimers can be covalently linked to CPT. Fox et al. [26] prepared two
CPT-bonded PLL dendrimers with glycines as the linker. In summary, PAMAM is the main
carrier of CPT and has been used to develop several multifunctional nanomedicines.

2.2. Paclitaxel

Paclitaxel (PTX) is a kind of taxane diterpenoid compound used to treat breast can-
cer, ovarian cancer, pancreatic cancer, lymphatic cancer, etc. [27]. However, PTX is a
hydrophobic substance and almost insoluble in water (3 × 10−4 mg/mL) [28]. PTX also has
dose-dependent toxicity, including neurotoxicity, cardiovascular toxicity, gastrointestinal
toxicity, and cutaneous toxicity [29].

In order to increase the specificity of PTX, the PTX-loaded PAMAM dendrimers are
modified by ligands or active substances (Figure 3). The cationic PAMAM G3 dendrimers
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with dodecyl groups and diethylethanolamine (5) improved the effect of PTX on the
inhibition of primary tumor growth and reduced tumor metastasis [30]. α-tocopheryl
succinate (α-TOS) (6) can increase the targeting of PTX-PAMAM dendrimers [31]. Biotin (7),
omega-3 fatty acid, alkali blue, and octa-arginine (R8) (8) can also be applied to increase the
targeting of PTX-loaded PAMAM, subsequently enhancing the potential for cell uptake,
cytotoxicity, and apoptosis [32–36].
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Additionally, sialic acid (9), glucosamine (10), concanavalin A (11), and thiamine (12)-
modified PPI dendrimers can significantly increase the transport amount of PTX, resulting
in a higher biological distribution of PTX in brain tumors [37,38].

With regard to solubility enhancement, the triazine dendrimers had abundant hy-
droxyl groups (13) and increased solubility of PTX, from 0.0003 mg/mL to 0.562 mg/mL [39].
PG dendrimers enhanced the solubility of PTX by surrounding the aromatic ring of PTX and
some methylene groups (14). The solubility increases with the increase in PG dendrimer
generation [40].
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The connection between drugs and carriers can affect the bioavailability of drug
delivery platforms. Teow et al. selected a glutaric anhydride linker (15) to connect PTX
to PAMAM G3 dendrimers; the permeability was 12 times that of PTX alone [41]. When
the PTX was linked to PAMAM G4 dendrimers with succinic acid, the cytotoxicity of the
conjugate was 10 times higher than that of PTX alone in A2780 human ovarian cancer
cells [42]. Using the enzyme-sensitive linker glycylphenylalanylleucoglycine (GFLG) to
connect PTX with dendrimers, the conjugate can specifically target cancer cells, causing
significant cancer cell toxicity and apoptosis [43,44].

Small interfering RNA (siRNA) is widely used to silence malignant genes and has
shown great prospects in cancer treatment [45]. In addition to their use in delivering siRNA,
dendrimers have also been utilized to improve the delivery of PTX for the treatment of
pancreatic and ovarian cancer. Studies have shown that these dendrimer–PTX complexes
exhibit excellent loading capacity and targeting, leading to significant inhibition of tumor
growth and cell apoptosis [46,47]. Overall, the use of dendrimers offers promising oppor-
tunities to enhance the targeting, transferability, solubility, and bioavailability of PTX for
cancer therapy.

2.3. Berberine

Berberine (BBR) is a nitrogen-containing cyclic natural alkaloid [48,49]. Modern
pharmacological studies have confirmed that BBR is used to treat various cancers, including
breast cancer, lung cancer, liver cancer, ovarian cancer, cervical cancer, prostate cancer,
etc. [50,51]. However, BBR has a very low absolute bioavailability (0.68%) [52]. The half-life
and AUC of BBR in mice (0.5 mg/mL, intravenous injection) are 6.7 h and 1.424 mg/mL/h,
respectively [53].

PAMAM dendrimers could increase the permeability of BBR and prevent its outflow
from cancer cells [54]. The PAMAM dendrimer of BBR conjugation could increase the half-
life and AUC by 2.1 and 1.7 times, respectively, and reduce the elimination rate constant [53].
BBR was delivered through PAMAM G4 dendrimer conjugation or encapsulation, and
both formulations showed hemolytic toxicity of less than 5%, demonstrating safety and
biocompatibility. Compared with encapsulation, conjugated PAMAM-BBR has stronger
anticancer activity against MCF-7 and MDA-MB-468 breast cancer cells and a slower drug
release rate. It is believed that using conjugation to deliver BBRs through dendrimers is
better than using encapsulation [53].

3. Polyphenolic Compounds

Polyphenol compounds are widely found in natural plants, vegetables, and fruits.
They mainly include phenolic acids, flavonoids, tannins, stilbene, and lignans [55,56].
Polyphenol compounds have antioxidant, anti-inflammatory, and antitumor activities
as well as outstanding performance in the treatment of cancer, metabolic diseases, and
other aspects. Their specificity, low toxicity, or non-toxicity are key advantages of den-
drimers as anticancer agents, especially in the field of oncology [57–61]. However, their
low bioavailability in humans limits their clinical applications [62–64].

3.1. Quercetin

Quercetin has antioxidant, anti-inflammatory, and antitumor pharmacological activ-
ities. The antitumor aspect involves breast cancer, liver cancer, colon cancer, etc. [65–70].
However, there are application limitations related to the stability of use in vivo, which
limits the use of quercetin [71]. The aqueous solubility of quercetin is 0.000171 mg/mL [72].

PAMAM dendrimers can promote the solubility of quercetin. The main reason is that
the amine groups of PAMAM dendrimers interact with quercetin. Another reason is that PA-
MAM dendrimers have sufficiently large internal cavities to capture the guest molecules of
quercetin, and hydrophobic molecules dissolve in the aqueous medium. Pharmacodynamic
studies showed that quercetin PAMAM G3 dendrimer (16) increased the anti-inflammatory
activity of quercetin and extended the biological half-life of quercetin [73].
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Targeted drug delivery can improve the therapeutic effect of cancer. Margetuximab
can attach to the extracellular domain of the HER2 receptor on the surface of breast cancer,
promote the effective internalization of nanocarriers, and be used as a targeting agent in
drug delivery systems [74]. Yasaman et al. synthesized margetuximab and PEG conjugated
PAMAM G4 dendrimer to deliver quercetin to MDA-MB-231 breast cancer cells (17). It has
an obvious inhibitory effect on breast cancer cells by enhancing the expression of apoptosis
genes bax and caspase 9 [75]. Seyed et al. composed hyperbranched PAMAM-PEG-folic
acid-modified Fe3O4-nanoparticle-loaded quercetin (18). Due to the intracellular endocyto-
sis mediated by the folic acid receptor, nanoparticles have significant targeting, selectively
enter cancer cells to release drugs, and improve the anticancer effect [76]. Figure 4 describes
typical quercetin-loaded dendrimers.

Polymers 2023, 15, x FOR PEER REVIEW 6 of 22 
 

 

3. Polyphenolic Compounds 
Polyphenol compounds are widely found in natural plants, vegetables, and fruits. 

They mainly include phenolic acids, flavonoids, tannins, stilbene, and lignans [55,56]. Pol-
yphenol compounds have antioxidant, anti-inflammatory, and antitumor activities as well 
as outstanding performance in the treatment of cancer, metabolic diseases, and other as-
pects. Their specificity, low toxicity, or non-toxicity are key advantages of dendrimers as 
anticancer agents, especially in the field of oncology [57–61]. However, their low bioavail-
ability in humans limits their clinical applications [62–64]. 

3.1. Quercetin 
Quercetin has antioxidant, anti-inflammatory, and antitumor pharmacological activ-

ities. The antitumor aspect involves breast cancer, liver cancer, colon cancer, etc. [65–70]. 
However, there are application limitations related to the stability of use in vivo, which 
limits the use of quercetin [71]. The aqueous solubility of quercetin is 0.000171 mg/mL 
[72]. 

PAMAM dendrimers can promote the solubility of quercetin. The main reason is that 
the amine groups of PAMAM dendrimers interact with quercetin. Another reason is that 
PAMAM dendrimers have sufficiently large internal cavities to capture the guest mole-
cules of quercetin, and hydrophobic molecules dissolve in the aqueous medium. Pharma-
codynamic studies showed that quercetin PAMAM G3 dendrimer (16) increased the anti-
inflammatory activity of quercetin and extended the biological half-life of quercetin [73].  

Targeted drug delivery can improve the therapeutic effect of cancer. Margetuximab 
can attach to the extracellular domain of the HER2 receptor on the surface of breast cancer, 
promote the effective internalization of nanocarriers, and be used as a targeting agent in 
drug delivery systems [74]. Yasaman et al. synthesized margetuximab and PEG conju-
gated PAMAM G4 dendrimer to deliver quercetin to MDA-MB-231 breast cancer cells (17). 
It has an obvious inhibitory effect on breast cancer cells by enhancing the expression of 
apoptosis genes bax and caspase 9 [75]. Seyed et al. composed hyperbranched PAMAM-
PEG-folic acid-modified Fe3O4-nanoparticle-loaded quercetin (18). Due to the intracellular 
endocytosis mediated by the folic acid receptor, nanoparticles have significant targeting, 
selectively enter cancer cells to release drugs, and improve the anticancer effect [76]. Fig-
ure 4 describes typical quercetin-loaded dendrimers. 

 
Figure 4. Typical quercetin-loaded dendrimers. 

3.2. Gallic Acid 
Gallic acid (GA) is a kind of phenolic acid which shows obvious anticancer activity 

in various cancers, such as colon cancer, breast cancer, lung cancer, stomach cancer, liver 
cancer, etc. GA has been recognized as a potential anticancer agent [77,78]. 

PAMAM G4 dendrimers can increase the bioavailability of GA and its antitumor ac-
tivity against colon cancer cells HCT116. Its mechanism is to increase the uptake of GA 
[79]. At the same time, dendrimers target the release of GA and play a synergistic role with 
anticancer drugs [80]. After oral administration of the conjugation to a CCl4-induced oxi-
dative damage rat model, the conjugation significantly reduced liver marker enzymes and 

Figure 4. Typical quercetin-loaded dendrimers.

3.2. Gallic Acid

Gallic acid (GA) is a kind of phenolic acid which shows obvious anticancer activity
in various cancers, such as colon cancer, breast cancer, lung cancer, stomach cancer, liver
cancer, etc. GA has been recognized as a potential anticancer agent [77,78].

PAMAM G4 dendrimers can increase the bioavailability of GA and its antitumor
activity against colon cancer cells HCT116. Its mechanism is to increase the uptake of
GA [79]. At the same time, dendrimers target the release of GA and play a synergistic
role with anticancer drugs [80]. After oral administration of the conjugation to a CCl4-
induced oxidative damage rat model, the conjugation significantly reduced liver marker
enzymes and enhanced the protection of GA to affect the liver. It may be related to
dendrimers controlling the release rate of GA, allowing GA to be continuously released
and maintaining the minimum effective concentration of the drug for a longer period of
time, thereby improving the bioavailability [81].

3.3. Resveratrol

Resveratrol (RSV) is a kind of stilbene compound and an obvious antioxidant. RSV’s
pharmacological applications include anticancer, diabetes, vascular metabolic diseases,
etc. [82–84]. Due to its low water solubility, short half-life (9.2 ± 0.6 h), and low bioavail-
ability, the current use of RSV is insufficient [85–87].

Due to electrostatic interactions and hydrogen bonding, RSV can be encapsulated by
dendritic macromolecules, which can solve the shortcomings of RSV. PAMAM G4 den-
drimers can improve the solubility and stability of RSV in water and cream formulations
and enhance its penetration in the skin [88]. Sugary maze dendrimer-like glucan (SMDG)
increased the solubility of RSV; thus, the antioxidant activity and cell uptake ability of RSV
were also significantly enhanced [89]. Octenylsuccinate hydroxypropyl phosphoglycogen
(OHPP) dendrimer decreased the crystallinity of RSV and increased the solubility in a
dose-dependent manner. This was mainly due to hydrophobicity and hydrogen bond-
ing between OHPP and RSV. Specifically, the high-density distributed hydroxypropyl
and octenylsuccinate groups on the surface of OHPP have strong interactions with RSV,
providing a favorable environment for this compound [90].
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3.4. Silybin

Silybin (SIL) is a natural flavonoid lignan isolated from the plant of Silybin. SIL has
antioxidant and anti-inflammatory properties as well as antitumor effects [91]. Unfortu-
nately, it has poor water solubility (0.4 mg/mL). The oral bioavailability of SIL in rats is
approximately 0.73% [92,93].

PAMAM dendrimers can significantly improve the water solubility and bioavailability
through the electrostatic interaction between the external amines and the phenolic hydroxyl
groups of the SIL [94]. PEGylated PAMAM-G4 dendrimers could increase the solubility of
insoluble drug SIL. The results showed that the PEGylated system with a 2.0 kDa chain
increased the solubility of SIL by 5 times [95]. Shetty et al. found that peptide dendrimers
can enhance the skin penetration and deposition of antioxidant SIL [96].

3.5. Curcumin

Curcumin (CUR) is a natural polyphenol compound derived from the rhizome of
Curcuma longa [97–99]. CUR can treat various diseases including cancer, metabolic diseases,
orthopedic diseases, cardiovascular diseases, etc. [100–103]. Several clinical experiments
have proved that CUR is non-toxic and safe for the human body [104–106]. CUR (2 g/kg)
administered orally to healthy humans produced a maximum serum concentration (Cmax)
of only 6 × 10−6 mg/mL within 1 h, an AUC0−t of 4 × 10−6 mg/h/mL, and no serum
concentration of CUR detected in the serum [107]. CUR has rapid metabolism, a short
half-life, and poor bioavailability [108].

PAMAM dendrimers are considered a suitable carrier for encapsulating CUR, which
protects CUR and has low toxicity through their surface-located amine groups, resulting
in a significant inhibitory effect on cancer cells [109]. When the PAMAM dendrimers
are loaded with CUR (Figure 5), the solubility of CUR is 415 times that of free Cur [110].
PAMAM G3 dendrimer-CUR (19) enhanced the toxicity of CUR on different types of cancer
cells (MDA-MB-231 breast cancer cells, U-251 human malignant glioma, head and neck
squamous cell carcinoma cells, etc.) [111]. PAMAM G5 dendrimers with acetyl terminal
groups increased the solubility of CUR by 200 times and promoted the production of
reactive oxygen species (ROS) in human lung adenocarcinoma A549 cells [112]. CUR was
encapsulated by dendrimers (10% amine and 90% hydroxy) and can reduce the cell activity
of three glioblastoma cell lines (mouse GL261, rat F98, and human U87). By decreasing
the amount of amine on the surface of PAMAM dendrimers, the effective utilization rate
of CUR can be improved [113]. Nosrati et al. modified PAMAM G5 dendrimers with
Fe3O4 nanoparticles and loaded CUR on the surface of the nanocarrier (20). The inhibitory
effect of this composite on MCF7 human breast cancer cells was stronger than that of free
CUR [114].

Mitochondrial function is crucial for the occurrence and development of cancer
cells [115]. Kianamiri et al. prepared a CUR mitochondrial delivery system using triph-
enylphosphonium (TPP)–PAMAM G4 dendrimer conjugation CUR (21) and found that
CUR co-located with the mitochondria of cancer cells, inducing apoptosis of liver cancer
cells without affecting normal cells. It can resist tumors by inducing ROS and lipid per-
oxidation, thereby activating the signaling pathway of apoptosis [116]. CUR–PAMAM
G4 dendrimers grafted Bcl-2 siRNA onto amine groups, These nanoparticles (22) were
delivered to human cervical cancer (HeLa) cells and increased the solubility and stability of
CUR [117].

In addition, CUR can improve osteoporosis by acting on multiple steps of osteoclast
activation and differentiation [118,119]. Yang studied the use of hexachlorocyclotriphosp-
hazene (HCCP) as a linker to couple CUR and PAMAM to make nanoparticles, and the
loading capacity of CUR could reach 27.2%. This nanoparticle effectively inhibited the
differentiation of osteoclasts in a dose-dependent manner and promoted osteogenesis [120].
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3.6. Puerarin

Puerarin (PUE) is an isoflavone compound extracted from pueraria lobata which has
been widely used in the treatment of eye diseases, but there is a problem of low bioavail-
ability. PAMAM dendrimers could interact with PUE through a weak hydrogen bond. The
slow release of PUE from the complex results in prolonged ocular retention time, thereby
increasing the bioavailability of PUE [121], in Table 1. Liu et al. prepared PUE liposomes
coated with PAMAM dendrimers, and complex can improve the corneal permeability of
rabbit eyes [122]. The pharmacokinetic parameters Cmax, AUC, and elimination half-life
of PUE-PAMAM G3 dendrimer complex after ocular infusion were 1.3, 2, and 2.7 times
higher than those of the PUE solution, respectively [123]. Dendrimers can also improve the
oral bioavailability of PUE. The main reason is that the electrostatic interaction between
the amine groups on the surface of the PAMAM dendrimers and the phenolic hydroxy
groups on PUE increases the solubility of PUE. Additionally, higher generations of PAMAM
dendrimers are more likely to interact with the cornea than lower generations [124,125], and
the solubility of the whole generation of PAMAM dendrimers (G2/G3) is much stronger
than that of the half-generation (G1.5/G2.5) [126].
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Table 1. Characteristics of dendrimers for different applications.

No. Type of
Compounds Compounds Type of Dendrimers Characteristic Application Mode of Administration Refs.

1 alkaloid CPT
PEGylated PAMAM G5 dendrimers–AS1411

antinucleolin aptamers (Encapsulation efficiency (EE) =
93.67%, loading content% (LC) = 8.1%)

specific targeting BALB/c female mice
bearing C26 tumors

intravenous injection
(200 mL) [21]

2 alkaloid CPT N-acetyl-D-glucosamine-labelled–PAMAM G3.5
dendrimers (EE = 66.26 ± 2.72%) specific targeting mice with B16F10 lung

metastasis intravenous injection [22]

3 alkaloid CPT amine-terminated PAMAM G4 dendrimers–succinic
acid-glycine linker

absence of small molecular weight
impurities, size and drug content

colorectal cancer cells
HCT-116 in vitro experiments [23]

4 alkaloid CPT Glucose–PEG–PAMAM–S–CPT–Cy7 specific targeting, cellular
microenvironment responsive

monolayer (2D) and
multilayer tumor spheroid

(3D) HepG2
cancer cell models GLUT

in vitro experiments [24]

5 alkaloid CPT PAMAM G3 dendrimers–CPT with acrylate end groups self-cleaving mechanism HN12 head and neck
tumor-bearing mouse

injection (0.16 mg of CPT in
50 µL/mouse) [25]

6 alkaloid CPT PEGylated PLL dendrimers–glycine linker improved the bioavailability, solubility, and
efficacy of CPT

mouse (C26) and human
colon cancer cells HT-29

intravenous injection (single dose of CPT
10 mg/kg) [26]

7 alkaloid CPT PAMAM dendrimers–ROS–cleavable thioketal
linker–CPT–surface modification with GGT enzyme-triggered transcytosis

mice inoculated with
BxPC-3 orthotopic
pancreatic ductal
adenocarcinoma

intravenous injection (equivalent to CPT
10 mg/kg) [127]

8 alkaloid PTX dodecyl groups and diethylethanolamine
surface-modified cationic PAMAM dendrimers

its high DNA binding ability and TLR
inhibition activity, low toxicity, and smaller

nanoparticle (NP) size.

a murine breast cancer
metastasis model

intraperitoneal injection
(15 mg/kg) [30]

9 alkaloid PTX PAMAM G4 dendrimers–α-TOS–PEGylated Transferrin
(EE = 71.18 ± 2.38%) specific targeting human cervical epithelial

cells HeLa in vitro experiments [31]

10 alkaloid PTX PEGylated PAMAM G4 dendrimers–α-TOS specific targeting
murine melanoma cancer
cells (B16F10) xenografted

C57Bl6/J mice
intratumoral injections (10 mg/kg/day) [128]

11 alkaloid PTX PEGylated PAMAM G4 dendrimers–Biotin specific targeting human non-small cell lung
cancer A549 cell line in vitro experiments [32]

12 alkaloid PTX PAMAMG4.0-NH2 dendrimers–omega-3 fatty acid
docosahexaenoic acid specific targeting

upper gastrointestinal
cancers cells AGS and

FLO-1
in vitro experiments [33]

13 alkaloid PTX PAMAM-alkali blue dendrimers the intralymphatic targeting tumor-bearing mice subcutaneous administration (1 mg/kg) [34]

14 alkaloid PTX PEGylated PAMAM G4 dendrimer–PEG–R8 intracellular targetability human cervical cancer cell
line HeLa in vitro experiments [35]

15 alkaloid PTX PEGylated PAMAM G4 dendrimers–R8–vitamin-E
succinate

cell penetration and improved
PTX-mediated cytotoxicity

B16F10 tumor-bearing
mice

intraperitoneal injection
(10 mg/kg) [36]

16 alkaloid PTX Sialic acid/glucosamine/concanavalin A/thiamine–PPI
G5.0 dendrimers specific targeting

human astrocytoma cells
U373MG/human

neuroblastoma cells
IMR-32

in vitro experiments [37,38]

17 alkaloid PTX triazine dendrimers no adverse toxicity, increases its
water solubility BALB/c mice intraperitoneal injection

(40/60/100/200/500 mg/kg) [39]

18 alkaloid PTX PG dendrimers solubilization different solvents in vitro experiments [40]

19 alkaloid PTX lauryl chains-modified PAMAM G3 dendrimers–glutaric
anhydride linker high permeability

human colon
adenocarcinoma cell line
Caco-2, primary cultured
porcine brain endothelial

cells

in vitro experiments [41]
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Table 1. Cont.

No. Type of
Compounds Compounds Type of Dendrimers Characteristic Application Mode of Administration Refs.

20 alkaloid PTX PAMAM G4 dendrimers–succinic acid linker cytoplasmic and nuclear delivery, enhanced
anticancer activity of PTX

human ovarian carcinoma
cells A2780 in vitro experiments [42]

21 alkaloid PTX Janus PEGylated peptide dendrimers–GFLG enzyme-responsive feature
murine breast

cancer cells 4T1
(tumor-bearing mice)

intravenous injection (5 mg/kg body
weight each day for 10 days) [43]

22 alkaloid PTX PAMAM G4 dendrimers–GFLG specific targeting breast cancer cell (MDA
MB-231) mouse

intraperitoneal injection
(40 mg/kg) [44]

23 alkaloid PTX dendrimers–plectin-1 targeted peptide –nuclear receptor
siRNA tumor-targeted, redox-sensitive panc-1 xenograft-bearing

mice intravenous injection [46]

24 alkaloid PTX a triethanolamine-core PAMAM G6 dendrimers–Akt
siRNA

initiating Akt target gene silencing both in vitro
and in vivo, while being minimally toxic

mice containing human
ovarian cancer cells

SKOV-3

intraperitoneal injection
(2 mg/kg/week) [47]

25 alkaloid PTX phospholipid-modified PAMAM dendrimers–siMDR1 siRNA encapsulation ability, high gene delivery
efficiency, and great cellular uptake

human breast cancer cells
MCF-7/ADR in vitro experiments [129]

26 alkaloid PTX PAMAM G5 dendrimers–miR-21 inhibitor
improved the cytotoxicity of PTX

increased the level of apoptosis of MCF-7 cells,
decreased the invasiveness of the tumor cells

human breast
adenocarcinoma cells

MCF-7
in vitro experiments [130]

27 alkaloid BBR PEGylated PAMAM G4 dendrimers (EE = 69.56 ± 23%) controlled the release of drug, enhanced its
bioavailability

human breast cancer cells
MCF-7 in vitro experiments [54]

28 alkaloid sinomenine hydroxy PAMAM G4 dendrimers with ethylenediamine
nucleus (64 hydroxyl terminal groups)

increasing the therapeutic window in the
treatment of early inflammation and for
improving the efficacy of the drug in TBI

rabbit model of pediatric
traumatic brain injury intravenous injection (55 mg/kg, 200 µL) [131]

29 polyphenol quercetin PAMAM G3 dendrimers enhancing longer biological half-life
rats using a

carrageenan-induced paw
edema model

oral administration (20 mg/kg body
weight) [73]

30 polyphenol quercetin PEGylated PAMAM G4 dendrimer–Margetuximab specific targeting human breast cancer cells
MDA-MB-231 in vitro experiments [75]

31 polyphenol quercetin PAMAM-b-PEG-folic acid-modified Fe3O4 nanoparticles pH-responsiveness, specific targeting
HeLa human cervical

cancer cells, human breast
cancer cells MDA-MB-231

in vitro experiments [76]

32 polyphenol GA PAMAM G4 dendrimers specific targeting, improved the bioavailability
human colon carcinoma
cells HCT-116, human
breast cancer MCF-7

in vitro experiments [79,80]

33 polyphenol GA PAMAM-G4-NH2 dendrimers improved the bioavailability, increased
hepatoprotective effect

CCl4-induced oxidative
damage in rat liver

oral administration (50 mg/kg/day,
7 days) [81]

34 polyphenol RSV PAMAM G4 dendrimers enhanced solubility, stability and transdermal
permeation

simulated gastric and
simulated intestinal fluid,

rat skin
in vitro experiments [88]

35 polyphenol RSV SMDG improved bioavailability human intestinal cells
Caco-2 in vitro experiments [89]

36 polyphenol RSV OHPP dendrimers solubilization

solvents included ethanol,
methanol, isopropanol,
chloroform, acetonitrile,

butanol, dimethyl
sulfoxide (DMSO),

pyridine, simulated gastric
fluid, McIlvaine buffers

in vitro experiments [90]
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Table 1. Cont.

No. Type of
Compounds Compounds Type of Dendrimers Characteristic Application Mode of Administration Refs.

37 polyphenol SIL PAMAM G2 dendrimers improved bioavailability rats oral administration
(12 mg/kg) [94]

38 polyphenol SIL PEGylated PAMAM G4 dendrimers solubilization DMSO in vitro experiments [95]
39 polyphenol SIL peptide dendrimers enhanced skin permeation and deposition rat skin in vitro experiments [96]

40 polyphenol CUR PAMAM G0.5 dendrimers/CUR (1:1/1:0.5) improved solubility mixture of distilled water
and EtOH in vitro experiments [110]

41 polyphenol CUR PAMAM G3 dendrimers full solubility, specific targeting,
minimizing systemic toxic effect

breast cancer cells
MDA-MB-231, human

malignant glioma U-251,
squamous head and neck

cancer cells HNSCC, breast
cancer cell line T47D

in vitro experiments [109,111]

42 polyphenol CUR PAMAM G5 dendrimers with acetyl terminal groups improved solubility and bioavailability human lung
adenocarcinoma cells A549 in vitro experiments [112]

43 polyphenol CUR PAMAM dendrimers (10% amine and 90% hydroxyl-G4
90/10-Cys) safe, only toxic to cancer cells

glioblastoma cell lines:
mouse-GL261, rat-F98, and

human-U87
in vitro experiments [113]

44 polyphenol CUR PAMAM G5 dendrimers–modified citric acid coated
Fe3O4 (EE = 45.58 ± 0.41%, LC = 12 ± 0.03%) pH-responsiveness human breast cancer cell

line MCF7 in vitro experiments [114]

45 polyphenol CUR PAMAM G4 dendrimers–TPP mitochondrial targeting
HuH-7, Jurkat T cell,

Hepa1-6, and human and
mouse fibroblasts

in vitro experiments [116]

46 polyphenol CUR PAMAM G4 dendrimers–Bcl-2 siRNA (LC = 82 wt%)
improved solubility and bioavailability,

induced the most apoptosis in HeLa
cancer cells

HeLa cells in vitro experiments [117]

47 polyphenol CUR PAMAM dendrimers–HCCP linker pH-responsiveness bone marrow macrophage
cells BMMs in vitro experiments [120]

48 polyphenol CUR PAMAM G4 dendrimers–palmitic acid core–shell
nanoparticle (EE = 80.87%) potentially active against acute stress adult male albino mice intravenous injection (25 mg/kg) [132]

49 polyphenol PUE PAMAM G3.5/G4/G4.5/G5 dendrimers improved the corneal permeation
corneas of each male New

Zealand
albino rabbit

drip into the cornea (50 µL) [121]

50 polyphenol PUE PAMAM G3/G4/G5 dendrimers improved the corneal permeation rabbit aqueous humor instillation (0.5 mg, 1% PUE solutions) [123–125]
51 polyphenol PUE PAMAM G2 dendrimers improved solubility and bioavailability rats oral administration (130 mg/kg PUE) [126]

52 polyphenol baicalin PAMAM dendrimers–folic acid specific targeting

HeLa human epithelial
carcinoma cell line, human

lung carcinoma cell line
A549

in vitro experiments [133]

53 polyphenol daidzein PAMAM G3 dendrimers, PPI G4 dendrimers improved solubility, prolonged the delivery,
and maintained the antioxidant activity

human breast cancer
MCF-7, human lung
carcinoma cells A549

in vitro experiments [134]

54 polyphenol anthocyanin PAMAM dendrimers–silica inhibiting the proliferative effects of Neuro
2A cancer cells, non-toxicity to the cells Neuro 2A cancer cells in vitro experiments [135]
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4. Conclusions

The most ideal characteristics for the development of natural product pharmaceuticals
are high stability, good bioavailability, and specific targeting. Dendrimers can be used in
promising strategies due to the size and structure of nanospheres, high water solubility, and
multivalent surface properties, which can effectively deliver drugs through encapsu-lation
or covalent methods.

This review found that the most commonly used dendrimers for natural products are
the relatively mature PAMAM dendrimers, followed by PPI dendrimers, PPL dendrimers,
PG dendrimers, and triazine dendrimers, which are used to treat various cancers (breast
cancer, glioma, lung cancer, cervical cancer, ovarian cancer, pancreatic cancer, etc.), eye
diseases, and osteoporosis. The above dendritic macromolecules have active groups such
as amino and hydroxyl groups, which are suitable for drug covalent binding and physical
adsorption and also provide rich modification sites for targeted therapy. The linkers
between drugs and carriers can also affect the bioavailability of drug delivery platforms,
such as GFLG, modified Fe3O4, succinic acid-glycine, and HCCP linkers, to achieve a pH
response and enzyme-triggered transcytosis. In order to increase the specific targeting of
natural product delivery platforms, researchers have developed various conjugated ligands
and active substances to co-deliver drugs such as siRNA, N-acetyl-D-glucosamine, α-TOS,
folic acid, Biotin, AS1411 antinucleolin aptamers, alkali blue, sialic acid, glucosa-mine,
concanavalin A, thiamine, R8, transferrin, etc. Thus, dendrimers have been used as a
platform for natural products and multiple ligands. However, the dendrimers currently
used in natural products have a single structure, often only amino groups or hydroxyl
groups, and there is no mixed-carrier matrix with multiple functional groups. Although
these single-structured dendrimers are currently used for the delivery of some natural
products, we need to specifically design and synthesize dendrimers with amino, carboxyl,
and hydroxyl groups based on different drug solubility and targeting requirements. For
example, the solubility and cell internalization of PEGylated dendrimers is increased
by the change of the ratio between surface amino and hydroxyl groups. Thus, these
multifunctional drug delivery systems will be able to better utilize the pharmacological
effects of natural products.

Another limitation of dendrimers in the application of natural products is that there
are currently only a few natural compounds used. This may be one reason why dendritic
macromolecule-modified natural product complexes have not yet been used in clinical
practice. Natural products have low toxicity and good safety, and have unique advantages
in many chronic diseases, such as diabetes, obesity, hypertension, digestive diseases, etc.
The natural products modified by dendritic macromolecules may provide better therapeutic
effects in the treatment of these diseases. In addition, current research on natural products
loaded with dendrimers mainly focuses on their pharmacological effects, and further
exploration of their pharmacological mechanisms is needed.

In summary, dendrimers can effectively overcome the drawbacks of low water sol-
ubility, low bioavailability, and poor targeting of natural products. In order to develop
more perfect drug delivery dendrimers for natural products in the future, it is necessary to
design and synthesize multifunctional surfaces of dendrimers, select suitable ligands, and
couple specific targeted substances to construct a drug delivery system to meet the needs of
natural products with different structures and the targeted treatments of different diseases.
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α-tocopheryl succinate (α-TOS), berberine (BBR), camptothecin (CPT), curcumin (CUR), dimethyl
sulfoxide (DMSO), encapsulation efficiency% (EE), gallic acid (GA), glucose transporter 1 (GLUT1),
glutathione (GSH), glycylphenylalanylleucoglycine (GFLG), hexachlorocyclotriphosphazene (HCCP),
loading content% (LC), maximum serum concentration (Cmax), octa-arginine (R8), octenylsuccinate
hydroxypropyl phosphoglycogen (OHPP), paclitaxel (PTX), polyamidoamine (PAMAM), polyethy-
lene glycol (PEG), polyglycerol (PG), polylysine (PLL), polypropylene (PPI), puerarin (PUE), reactive
oxygen species (ROS), resveratrol (RSV), silybin (SIL), small interfering RNA (siRNA), sugary maze
dendrimer-like glucan (SMDG), triphenylphosphonium (TPP).
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