
Citation: Tadisetty, S.; Chodavarapu,

R.; Jin, R.; Clements, R.J.; Yu, M.

Identifying the Edges of the Optic

Cup and the Optic Disc in Glaucoma

Patients by Segmentation. Sensors

2023, 23, 4668. https://doi.org/

10.3390/s23104668

Academic Editors: Sukho Lee

and Dae-Ki Kang

Received: 13 March 2023

Revised: 8 May 2023

Accepted: 10 May 2023

Published: 11 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

Identifying the Edges of the Optic Cup and the Optic Disc in
Glaucoma Patients by Segmentation
Srikanth Tadisetty 1, Ranjith Chodavarapu 1, Ruoming Jin 1, Robert J. Clements 2 and Minzhong Yu 3,*

1 Department of Computer Science, Kent State University, Kent, OH 44242, USA; stadiset@kent.edu (S.T.);
rchodava@kent.edu (R.C.)

2 Department of Biological Sciences, Kent State University, Kent, OH 44242, USA; rclement@kent.edu
3 Department of Ophthalmology, University Hospitals, Case Western Reserve University,

Cleveland, OH 44106, USA
* Correspondence: minzhong.yu@uhhospitals.org

Abstract: With recent advancements in artificial intelligence, fundus diseases can be classified
automatically for early diagnosis, and this is an interest of many researchers. The study aims to detect
the edges of the optic cup and the optic disc of fundus images taken from glaucoma patients, which
has further applications in the analysis of the cup-to-disc ratio (CDR). We apply a modified U-Net
model architecture on various fundus datasets and use segmentation metrics to evaluate the model.
We apply edge detection and dilation to post-process the segmentation and better visualize the optic
cup and optic disc. Our model results are based on ORIGA, RIM-ONE v3, REFUGE, and Drishti-GS
datasets. Our results show that our methodology obtains promising segmentation efficiency for
CDR analysis.
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1. Introduction

Fundus images are routinely used to detect eye diseases. Ophthalmologists used
to analyze these images via a non-automated process, and it is a heavy burden for any
ophthalmologist to read and explain the fundus images during the diagnosis of the ocular
diseases [1]. Glaucoma is one of the major ocular diseases that causes visual impairment [2].
According to the World Health Organization (WHO), it has affected millions of people
globally, and the early detection of glaucoma can prevent vision loss. The optic nerve
transfers signals from the retina to the brain, whereby ganglion cell axons converge at
the optic disc and exit the eye to form the optic nerve. The optic disc has a cup-shaped
structure at the center, called the optic cup, which has a different color than the optic disc.
In individuals with glaucoma, the size of the optic cup increases due to the death of the
ganglion cells caused by the increase in intraocular pressure (IOP) and/or the loss of blood
flow to the optic nerve. Therefore, the cup-to-disc ratio (CDR) is a main index for the early
diagnosis of glaucoma and for the quantitative evaluation of the severity of glaucoma. The
normal CDR is less than 0.5. A CDR less than 0.4 without an abnormally small optic disc size
indicates a normal optic disc. In this stage, glaucoma must be diagnosed by IOP or other
methods. If the CDR is between 0.5 and 0.8, it is considered the moderate stage of glaucoma.
If the CDR is higher than 0.8, it is considered the severe stage of glaucoma [3]. With
recent advancements in artificial intelligence, fundus images with different diseases can be
classified automatically for the early diagnosis of diseases. The most widely used method
in image classification networks is the application of convolutional neural networks. Many
previous studies have used various pre-trained network architectures for the classification
of images and various other methods to obtain the edges of the optic cup and the optic
disc in fundus images. In the current study, several datasets of glaucoma fundus images
were segmented and compared using our proposed deep learning methodology. U-Net
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is particularly effective for biomedical image segmentation tasks, such as cell and tissue
segmentation [4]. U-Net outperforms other CNN architectures, such as VGG and ResNet,
in these applications affirming its potential utility for the current task [4].

In this paper, we propose a new method to visualize the contours of the optic cup and
disk. We implemented a modified U-Net for segmenting the optic cup and optic disc of the
glaucoma images, later applying edge detection and dilation using the Canny edge filter.
Our model is evaluated on four publicly available datasets namely ORIGA, RIM-ONE v3,
REFUGE, and Drishti-GS. Our approach achieves a good performance measured using
popular image segmentation metrics (IOU and Dice) in detecting early-stage CDR.

2. Related Work

Several studies have aimed to segment fundus images. Among them, Cheng et al. are
the first to utilize a clustering-based approach for the segmentation of both the optic disc
and optic cup [5]. Sarkar et al. proposed the threshold-based approach for the segmentation
of both the optic disc and optic cup on the RIM-ONE dataset [6]. Sun et al. used a deep
object detection network for the joint localization and segmentation of the optic cup and
disc on the ORIGA dataset [7]. Thakur et al. used a level-set based approach to adaptively
regularize Kernel-based intuitionistic Fuzzy C means (LARKIFCM) for optic cup and disc
segmentation on RIM-ONE and Drishti-GS datasets [8]. Sevastopolsky et al. used a modi-
fied U-Net for disc and cup segmentation on RIM-ONE-V3 and DRISHTI-GS datasets [9].
Kim et al. used an FCN (fully connected network) on the RIGA dataset [10]. Yu et al. uses
Modified U-net from ResNet-34 for segmentation on Messidor and RIGA datasets [11].
Al-Bande et al. used Fully conventional Dense-Net for disc and cup segmentation [12].

Some recent studies consider adopting the state-of-the-art deep vision architectures.
Guo et al. segmented the optic cup and optic disc of glaucoma images using segmentation
models, such as DeepCDR, Wavelet, and their proposed modified U-Net++ [13]. Fu et al.
segmented the disc and cup in glaucoma using polar transformation and the deep learning
architecture named M-net. That network solves the segmentation of the optic disc and the
optic cup in a single-stage multi-layer input and is shown to perform better on the ORIGA
and SCES datasets compared to other segmentation models, such as U-net, Superpixel,
LRR, etc. [14]. Bajwa et al. used G1020, a large publicly available dataset with 1020 fundus
images for glaucoma classification. They obtained an accuracy of approximately 80%
using the Inception V3 architecture [15]. Anitha et al. classified and segmented the
glaucoma images using a trained DenseNet-201 classifier and U-Net segmentation model.
They show their models perform better than other deep learning models, such as VGG19,
Inception, ResNet, etc., on ORIGA dataset [16]. Juneja et al. segmented the optic disc and
cup using a modified version of the U-Net architecture and tested on the DRISHTI-GS
dataset [17]. Pascal et al. developed a model that simultaneously learns the segmentation
and classification and tested on REFUGE [18]. Jiang et al. used a region-based convolutional
neural network for joint optic cup and optic disc segmentation, which was shown to
outperform other methods on the ORIGA dataset [19]. Gu et al. proposed a context
encoder network, which gathered high-level data and saved them as spatial data for
segmentation and was shown to perform better on DRIVE datasets [20]. Liu et al. proposed
a multi-layer edge attention network that utilizes the edge information in the encoding
stage [21]. Bajwa et al. evaluated the disc localization on the ORIGA dataset, which
resulted in a 2.7% relative improvement over the state-of-the-art results on the ORIGA
dataset [22]. Xie et al. proposed a novel fully convolutional network called SU-Net, which
combines with the Viterbi algorithm to jointly decode the segmentation boundary [23].
Gao et al. developed a Recurrent Fully Convolution Network (RFC-Net) for the automatic
joint segmentation of the optic disc and the optic cup, which can capture more high-level
information and subtle edge information [24]. Hervella et al. developed a simultaneous
classification of glaucoma and segmentation of the optic disc and cup by taking advantage
of both pixel-level and image-level labels during network training. Additionally, the
segmentation results allowed the extraction of relevant biomarkers such as the cup-to-
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disc ratio. They have evaluated the model using REFUGE and DRISHTI-GS datasets [25].
Parkhi et al. utilized DeepLabv3 and ensemble models to perform the segmentation of the
optic disc and cup [26]. Zhou et al. developed a one-stage network named EfficientNet
and Attention-based Residual Depth-Wise Separable Convolution (EARDS) for joint OD
and OC segmentation [27]. Wu et al. developed a transformer-based conditional U-Net
framework and a new Spectrum-Space Transformer to model the interaction between
noise and semantic features. This architectural improvement leads to a new diffusion-
based medical image segmentation method called MedSegDiff-V2 [28]. Sun et al. used
ResFPN-Net to learn the boundary features and the inner relation between OD and OC
for automatic segmentation [29]. Xue et al. used hybrid level set modeling for disc
segmentation [30]. Zaaboub et al. proposed a two-stage (OD localization and segmentation)
approach to detect the contour of the OD [31]. Liu et al. proposed a novel unsupervised
model based on adversarial learning to perform the optic disc and cup segmentation [32].
Xiong et al. proposed a weak label-based Bayesian U-Net exploiting Hough transform-
based annotations to segment the optic disc in fundus images. To achieve this, they built a
probabilistic graphical model and explored a Bayesian approach with the state-of-the-art U-
Net framework [33]. Wang et al. extended the EfficientNet-based U-Net, named EE-U-Net,
for OD and OC segmentation [34].

3. Materials and Methods
3.1. Dataset

In this study, we introduce a modified U-Net model to perform edge segmentation
and dilation (boundary thickening) using various datasets with different image resolutions:
ORIGA (2499 × 2048), RIM-ONE v3 (1300 × 1100), REFUGE (2124 × 2056), and Drishti-GS
(2049 × 1751) (Table 1). Datasets consist of images and masks, which are binary images
consisting of zero-valued RGB pixels as background and RGB values greater than or equal
to [128, 128, 128] at each pixel index i for objects of interest, keeping in mind the presence
of gray and white labels.

Table 1. Glaucoma segmentation datasets.

Dataset Description Reference

Drishti-GS [35,36]
It contains a total of 101 images.

“http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-
dataset2/Home.php (accessed on 19 March 2023)”

[11,37–40]

ORIGA

It has a total of 650 retinal images that are available
publicly on Kaggle.

“https://www.kaggle.com/datasets/arnavjain1
/glaucoma-datasets?select=ORIGA

(accessed on 19 March 2023)”

[38,40–43]

RIM-ONE-V3 [44]

RIM-ONE is a publicly available dataset of 74 colored
fundus images.

“http://medimrg.webs.ull.es/research/downloads/
(accessed on 19 March 2023)”

[37,38,40,45]

REFUGE [46]

It comprises 1200 colored retinal images with 400 images
each for testing, validation, and training purposes.
“https://www.kaggle.com/datasets/arnavjain1

/glaucoma-datasets?select=REFUGE
(accessed on 19 March 2023)”

[41]

3.2. Architecture

We use U-Net to extract features from the input fundus images and then convert the
features into a high-level visual representation, which are processed for edge detection and
dilation. The U-Net consists of an encoder and decoder. The encoder creates a compact
representation of the input image (low dimension representation) to extract features via

http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php
http://cvit.iiit.ac.in/projects/mip/drishti-gs/mip-dataset2/Home.php
https://www.kaggle.com/datasets/arnavjain1/glaucoma-datasets?select=ORIGA
https://www.kaggle.com/datasets/arnavjain1/glaucoma-datasets?select=ORIGA
http://medimrg.webs.ull.es/research/downloads/
https://www.kaggle.com/datasets/arnavjain1/glaucoma-datasets?select=REFUGE
https://www.kaggle.com/datasets/arnavjain1/glaucoma-datasets?select=REFUGE
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the convolution and pooling layers. The image is upsampled using the decoder, which
reconstructs an image from the low dimensional representation. It too consists of the
convolution block but has deconvolution layers to increase image dimensionality. The
skip connections are the connections between the encoder and decoder that pass earlier
features to the decoder. This helps the network capture the input an image’s low-level
and high-level features. The skip connections are achieved by concatenating the encoder’s
feature maps with the decoder’s corresponding feature maps at the same spatial resolution
after the deconvolution [3]. After the initial convolution, the number of channels increases
to 64. After the transposed convolution, the image is upsized from 28 × 28 × 1024 to
56 × 56 × 512 and concatenated with the contraction path skip connection image. The final
layer is a 1 × 1 convolution to decrease the number of channels without affecting the image
resolution (Figure 1). We limit the number of kernels to three for each layer convolution
and implement a few pre-processing resizings to downsample the image and improve
processing time.
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Figure 1. The network architecture of U-Net [3], including the input layer and convolution layer. Due
to the size of the figure, the feature dimension is not scaled.

3.3. Evaluation Criteria

Two widely used performance metrics were used for evaluating the segmentation
results of the proposed model: (a) Dice Coefficient/F1 Score; (b) Jaccard Score/Intersection
over union. The IoU represents the overlapping ratio between the segmentation results
and ground truth mask. Both (a) and (b) are positively correlated.

(a) Dice Coefficient: Twice the area of the overlap divided by the total number of the
pixels in both images (A and B).

DC =
2TP

2TP + FP + FN
=

2|A∩ B|
2|A∩ B|+|B\A|+|A\B| (1)

where a true positive is represented by TP, a false positive by FP, and a false negative by
FN [27].

(b) Jaccard Score: The area of overlap between the predicted image and the ground truth
is divided by the area of union between the predicted image (A) and ground truth
image (B).

JAC =
TP

TP + FP + FN
=

|A∩ B|
|A|+|B|−|A∩ B| (2)

where a true positive is represented by TP, a false positive is represented by FP, and a false
negative is represented by FN [27].
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3.4. Edge Detection

Canny is an edge detection operator that uses a multistage algorithm. It is composed
of five steps: noise reduction, gradient calculation, non-maximum suppression, double
threshold, and edge tracking by hysteresis. Noise is removed from the image by applying
Gaussian blur via Gaussian kernels. Edges correspond to pixel intensity changes, which
are detected by applying filters that highlight intensity changes in different directions
(x,y). Non-max suppression is used to thin out the edges by going through all the points
in the matrix ((i, j − 1), (i, j + 1), (i + 1,j), and (i − 1,j)) and suppressing (zeroing) non-
max pixels. Double thresholding categorizes pixels into strong, weak, and other using a
bounding threshold. The hysteresis will then transform weakly categorized pixels into
strong ones [47] (Figure 2). Our method then applies a dilation on the resultant image to
brighten the Canny generated edge. This entails convolving an image with a kernel that
has a defined center. The max overlap pixel overlapped by the kernel is added to the image
pixel at the kernel center position, thereby increasing the brightness [47].
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Figure 2. Sample result of Canny without dilation.

4. Experimental Results

In this section, we present the various pre-processing steps and final output results
from the different datasets. We carry out the experiments on an Intel California, USA
manufactured Intel Xeon Platinum 8268 CPU @ 2.90 GHz running CentOS Stream 8 system
with four Nvidia RTX 3090 GPUs having 24 GB of RAM. Each model is run for 300 epochs
with a batch size of 4 using an Adam optimizer with a learning rate of 1 × 10−4.

4.1. Pre-Processing

Datasets of various image dimensions are first resized to 256 × 256 for faster GPU
processing. The ORIGA and REFUGE fundus images contained masks that have the cup
and disc represented together. Since we are applying segmentation separately without
having the cup segmentation hinder the disc or vice versa, the images are separated by
changing the pixel values. White pixels are given the gray pixels’ values to form the disc
images, and vice versa, to generate the cup images (Figure 3). This process was performed
with the training, validation, and testing having an 80–10–10% data split, respectively.

Data masks consist of RGB pixel values [0, 0, 0] for the background, and since we have
white as cup and grey as disc, the model treats pixels greater than or equal to [128, 128, 128]
as object labels (Figure 3).

To avoid overfitting on all datasets, training images were augmented with a random
crop generated using the window width and height generated from a normal distribution,
Gaussian blur, and random flip. All training, validation, and testing images were then
normalized with pixel values between [−1, 1] after first resizing the image to 128 × 128 for
model input.

4.2. Segmentation Results

We visualize the loss decrease over the training epochs and the accuracy (Jaccard
Score) function curves for each dataset (Figures 4 and 5, respectively). The loss steadily
decreases except for the RIM-ONE-V3 dataset, which only consists of 74 images. This is the
same result for the accuracy measure over 300 epochs.
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Table 2 presents the Dice and IoU scores for each dataset using our model consisting of
training parameters. Our model has 5,680,865 trainable parameters with 0 untrainable pa-
rameters and no frozen/dropped network nodes. On the Drishti-GS dataset, our approach
achieves 0.058 and 0.117 for the best validation loss for the disc and cup, respectively. On
the RIM-One-V3, it achieves 0.093 and 0.249 for the disc and cup, respectively. ORIGA
achieves 0.037 and 0.137 for the disc and cup, respectively. Lastly, on the REFUGE dataset,
validation loss achieves a minimal of 0.035 and 0.102 for disc and cup, respectively.

With the Drishti-GS dataset, our approach achieves a 0.943 Dice and 0.893 IoU for OD
segmentation. For OC segmentation, it achieves 0.889 Dice and 0.801 IoU. Using the RIM-
One-V3 dataset, it obtains 0.910, 0.838 for Dice and IoU, respectively for OD segmentation,
and it obtains 0.649, 0.77 for OC segmentation. With the ORIGA dataset, it achieves 0.962
and 0.928 for Dice and IoU, respectively for OD segmentation, and it obtains 0.871, 0.773
for OC segmentation. Lastly, with the REFUGE dataset, it acquires the scores of 0.965 and
0.933 (Dice and IoU respectively) for OD segmentation. This is followed by 0.902 and 0.824
for OC segmentation.

For visualizing the segmentation results, we randomly select images for all testing
outputs from Drishti-GS, RIM-One-V3, ORIGA, and REFUGE. Refer to Figures 6 and 7.
Figure 6 shows the raw segmentation results without Canny and dilation applied. The
first column is the prediction, followed by the ground truth, and the original image is to
the right. The optic cup and disc segmentations have separate visualizations. Figure 7
shows the same results from Figure 6 with Canny and dilation applied to the resultant raw
segmentation from our model output.
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Figure 4. Loss function curves on various datasets (epoch vs. log Dice loss). Orange is the training
loss and yellow is the validation loss.
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Figure 5. Accuracy (Jaccard Score) function curves on various datasets (epoch vs. Dice coefficient).
Cyan is the train accuracy and blue is the validation accuracy.
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Table 2. Dice and Jaccard evaluation metrics for various datasets.

Dataset Optic Disc Segmentation Optic Cup Segmentation

Dice/F1 Score Jaccard
Score/IoU Dice/F1 Score Jaccard

Score/IoU

Drishti-GS 0.943 0.893 0.889 0.801

RIM-ONE-V3 0.910 0.838 0.649 0.770

ORIGA 0.962 0.928 0.871 0.773

REFUGE 0.965 0.933 0.902 0.824
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From Table 3, we achieved a ~94% Dice in OD segmentation and an 89% Dice in OC
segmentation. In addition, we achieved a 0.89 Jaccard score in OD segmentation and a
0.8 Jaccard score in OC segmentation with the Drishti-GS dataset. Using the RIM-ONE-V3
dataset, we achieved a 91% Dice in OD segmentation and a 64% Dice in OC segmentation.
Additionally, we achieved a 0.83 Jaccard for OD segmentation and a 0.77 Jaccard for OC
segmentation. Our model achieved an approximate 97% Dice in OD segmentation and a
90% Dice in OC segmentation with the REFUGE dataset. The model also had a 0.93 Jaccard
score OD segmentation and a 0.82 Jaccard score in OC segmentation with the REFUGE
dataset. Lastly, using the ORIGA dataset, the model delivered a ~96% Dice and an ~87%
Dice for OD and OC segmentation, respectively. Additionally, it delivered a 0.928 Jaccard
and 0.773 Jaccard for OD and OC segmentation, respectively.
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Table 3. OD and OC segmentation results on Drishti-GS and REFUGE datasets.

Datasets Methods OD Segmentation OC Segmentation

DC JAC DC JAC

REFUGE M-Net [12] 0.943 - 0.831 -

M-Ada [25] 0.958 - 0.882 -

EARDS [27] 0.954 0.914 0.887 0.801

pOSAL [48] 0.946 - 0.875 -

Multi-Model [49] - 0.922 - 0.790

CFEA [50] 0.941 - 0.862 -

Two-Stage Mask R-CNN [51] 0.947 - 0.854 -

Ours 0.965 0.933 0.902 0.824

ORIGA Deep object detection
Network [7] 0.845 - 0.845 -

JointRCNN [19] 0.937 - 0.794 -

SS-DCGAN [38] 0.901 - - -

Ours 0.962 0.928 0.871 0.773

Drishti-GS U-Net [3] 0.950 - 0.800 -

[11] 0.973 0.949 0.887 0.804

FC-DenseNet [12] 0.949 0.904 0.828 0.711

M-Net [14] 0.959 - 0.866 -
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Table 3. Cont.

Datasets Methods OD Segmentation OC Segmentation

DC JAC DC JAC

M-Ada [25] 0.971 - 0.910 -

EARDS [27] 0.974 0.949 0.915 0.849

ResFPN-Net [29] 0.976 - 0.896 -

WRoIM [52] 0.960 - 0.890 -

WGAN [53] 0.954 - 0.840 -

pOSAL [48] 0.965 - 0.858 -

GL-Net [54] 0.971 - 0.905 -

Multi-Model [49] 0.960 0.924 0.902 0.822

Ours 0.943 0.893 0.889 0.801

RIM-ONE
-V3 Hybrid [8] 0.930 0.910 0.910 0.880

Modified U-Net [9] 0.950 0.890 0.820 0.690

ECSD [32] 0.860 0.760 0.800 0.680

EE-U-Net [34] 0.950 0.880 0.860 0.760

pOSAL [48] 0.860 - 0.787 -

Ours 0.910 0.830 0.640 0.770

5. Discussion

In this section, we start by comparing our U-Net model evaluation to those state-of-
the-art approaches referenced in Table 3. While simple, our model performs on par with the
presented models in the same datasets and performs slightly worse given Drishti-GS and
RIM-ONE-V3 datasets due to the lack of image data. This is true for both the OD and OC
segmentation results. On the other hand, our method performs slightly better than the other
state-of-the-art models when run over the REFUGE and ORIGA datasets. Table 3 shows the
related Dice and Jaccard metrics for both OD and OC segmentation, although most of the
models do not run Jaccard for either OD or OC segmentation. Figures 6 and 7 show results
that are correlated with the model evaluation in Tables 2 and 3. With the model performance
being competitive, our representation of the edge detection and dilation deliver optimal
results for CDR analysis for glaucoma. Concerning the results from the Drishti-GS dataset,
FC-DenseNet [12] has a similar performance to our model for OD segmentation when we
consider the Dice (0.949) and Jaccard (0.904) scores. For the OC segmentation, the multi-
model [52] is also very similar in performance in terms of Dice (0.902) and Jaccard (0.822)
scores. The results using the RIM-ONE-V3 dataset were comparable for OD segmentations.
Both Drishit-GS and RIM-ONE-V3 have very small datasets. Our results for the ORIGA
and REFUGE datasets are much higher with none of the existing models being comparable.
We speculate that the reason for this is twofold: (1) both the REFUGE and ORIGA datasets
have many images (650 and 1200, respectively) to scatter across training, validation and
testing; (2) there is a clear color boundary that helps define the optic cup and optic disc,
clearly helping the model better distinguish between them. The consistency in the sizes of
masks in both datasets is indicative of this.

6. Conclusions

The work outlined herein displayed an end-to-end separative OD and OC segmenta-
tion approach. We first employ a modified U-Net encoder to find the features map and then
a decoder to upsample the image back. The output is fed into an edge detector that gives a
thin boundary around the edge. Dilation is next applied to thicken the edge boundary for a
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better visual representation. These results indicate that the boundary is accurate and can
be subsequently used for analyzing CDR in instances of glaucoma. Based on these results,
our model is as competent as the existing state-of-the-art models and performs better using
both the ORIGA and REFUGE datasets even with a simple network architecture.

Further work should be directed towards having a CDR detector that optimizes (fixes)
our segmentation results according to the correct ratio requirement. Although our model
achieves robust results even with a slightly modified U-Net pipeline, it remains to be seen
how changing the model and using various backbone training methods would impact
performance. This includes the ensemble models that would average pixel classifications
for the most accurate detection. It is also possible to first apply object detection to crop the
data prior to segmentation. Note that the current studies are limited by the use of 2D data;
the prospect of processing 3D fundus images would be an extension that provides spatial
data for segmentation, potentially yielding better results because of the greater definition
between disc and cup pixels. In summary, we have developed a simple novel architecture
that performs as well as, and sometimes better than, existing methods that automate the
processing of fundus images for assisting the analysis of CDR in instances of glaucoma.
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