Skip to main content
. 2023 May 11;23(10):4668. doi: 10.3390/s23104668

Table 3.

OD and OC segmentation results on Drishti-GS and REFUGE datasets.

Datasets Methods OD Segmentation OC Segmentation
DC JAC DC JAC
REFUGE M-Net [12] 0.943 - 0.831 -
M-Ada [25] 0.958 - 0.882 -
EARDS [27] 0.954 0.914 0.887 0.801
pOSAL [48] 0.946 - 0.875 -
Multi-Model [49] - 0.922 - 0.790
CFEA [50] 0.941 - 0.862 -
Two-Stage Mask R-CNN [51] 0.947 - 0.854 -
Ours 0.965 0.933 0.902 0.824
ORIGA Deep object detection
Network [7]
0.845 - 0.845 -
JointRCNN [19] 0.937 - 0.794 -
SS-DCGAN [38] 0.901 - - -
Ours 0.962 0.928 0.871 0.773
Drishti-GS U-Net [3] 0.950 - 0.800 -
[11] 0.973 0.949 0.887 0.804
FC-DenseNet [12] 0.949 0.904 0.828 0.711
M-Net [14] 0.959 - 0.866 -
M-Ada [25] 0.971 - 0.910 -
EARDS [27] 0.974 0.949 0.915 0.849
ResFPN-Net [29] 0.976 - 0.896 -
WRoIM [52] 0.960 - 0.890 -
WGAN [53] 0.954 - 0.840 -
pOSAL [48] 0.965 - 0.858 -
GL-Net [54] 0.971 - 0.905 -
Multi-Model [49] 0.960 0.924 0.902 0.822
Ours 0.943 0.893 0.889 0.801
RIM-ONE
-V3
Hybrid [8] 0.930 0.910 0.910 0.880
Modified U-Net [9] 0.950 0.890 0.820 0.690
ECSD [32] 0.860 0.760 0.800 0.680
EE-U-Net [34] 0.950 0.880 0.860 0.760
pOSAL [48] 0.860 - 0.787 -
Ours 0.910 0.830 0.640 0.770