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Abstract: The maintenance of a high delivery efficiency by traditional nanomedicines during cancer
treatment is a challenging task. As a natural mediator for short-distance intercellular communication,
extracellular vesicles (EVs) have garnered significant attention owing to their low immunogenicity
and high targeting ability. They can load a variety of major drugs, thus offering immense potential.
In order to overcome the limitations of EVs and establish them as an ideal drug delivery system,
polymer-engineered extracellular vesicle mimics (EVMs) have been developed and applied in cancer
therapy. In this review, we discuss the current status of polymer-based extracellular vesicle mimics in
drug delivery, and analyze their structural and functional properties based on the design of an ideal
drug carrier. We anticipate that this review will facilitate a deeper understanding of the extracellular
vesicular mimetic drug delivery system, and stimulate the progress and advancement of this field.

Keywords: extracellular vesicle mimetics; extracellular vesicles; semi-synthetic; drug delivery systems;
polymer modification; zwitterionic biomaterials; delivery efficiency; cancer treatment

1. Introduction

Cancer, ranking second only to heart disease as a leading cause of death worldwide,
currently faces significant limitations in terms of effective treatment [1]. One promising
avenue for improvement is using nanomedicines, which undergo a five-step process known
as the “CAPIR” (Circulation, Accumulation, Penetration, Internalization, and Release)
cascade to reach and treat tumor sites. During their blood circulation, nanomedicines
must remain structurally stable in the physiological environment while avoiding detection
by the immune system as they travel through the bloodstream to the tumor site. The
next step is accumulation, wherein nanomedicines aggregate at the tumor tissue. This
is caused by the enhanced permeability and retention (EPR) effect, taking advantage of
the increased vascular permeability and absence of a lymphatic drainage system in tumor
tissues. Nanopharmaceuticals with a particle size of 100 nm have been shown to be more
efficient in earlier studies. The third step requires nanomedicines to penetrate tumor
tissue. After accumulating in the tumor tissue, nanomedicines must penetrate through the
extracellular matrix between tumor cells to attack distant and deep tumor cells. Smaller
nanoparticles are generally believed to have an advantage in this process, with those over
100 nm exhibiting relatively weak penetration. In the fourth step, nanomedicines need to
bind to the surface of tumor cells and be internalized to achieve better efficiency in killing
them. This can be achieved by immobilizing ligands targeting tumor-specific targets on the
nanoparticles or by utilizing differences in tumor tissue pH and redox conditions compared
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to healthy cells. Finally, the fifth step involves releasing chemotherapeutic drugs inside
tumor cells. The nanomedicine’s stability needs to be destroyed to achieve this release.

However, the five cascades are filled with conflicting performance requirements
for nanomedicines. In blood circulation, for example, nanomedicines need to remain
superficially inert to avoid recognition by the immune system, but need to be actively de-
inert to bind to cells in the process of internalization; 100 nm nanomedicines can accumulate
efficiently in tumor tissue, but cannot penetrate the extracellular matrix. These contradictory
characteristics make it seem impossible to realize delivery efficiency maximization in every
link at the same time, even if complex intelligent structures have been designed [2].

Natural extracellular vesicles (EVs) are a crucial means of short-distance communica-
tion between cells and possess organotropism abilities. For instance, tumor cell-secreted
EVs tend to accumulate within the same tumor tissue after entering the bloodstream.
Organotropism is driven by the diverse surface proteins expressed by EVs that prevent
their recognition by the immune system as carriers of foreign antigens, enabling them to
achieve short-distance delivery and target specific cells before eventually being internalized
and decomposed [3–5]. Thus, natural EVs can intelligently regulate the conflicting needs of
CAPIR cascades, making them an exciting prospect for cancer treatment. Consequently,
some EV-based therapies are currently under clinical trials [6].

Although extracellular vesicles (EVs) are cell secretions, they undergo specific metabolic
pathways that lead to their enrichment in metabolic organs such as the liver, kidney, and
spleen. This enrichment is not conducive to long blood circulation, which is necessary
for EVs to function effectively as a nano-drug delivery system. Furthermore, the diverse
ligand proteins expressed on the surface of natural EVs make them susceptible to capture
by non-target cells with corresponding receptors, leading to inefficient drug delivery [7–9].
While local injection of EVs around the lesion site or their sustained release via hydrogel
entrapment can mitigate the effects of blood circulation, local administration requires
invasive means near the tumor tissue and provides limited effect in patients with distal
metastatic symptoms [10,11]. Therefore, the use of a nano-drug delivery system through
the bloodstream remains the preferred choice for drug targeting. Recent advances in design-
ing nano-drug carriers with natural and synthetic polymers have led to the development
of functional polymer-based extracellular vesicle mimics (EVMs) [12,13]. These EVMs
preserve the advantages of both natural EVs and polymers, such as improved targeting
and extended blood circulation time [14,15]. In this review, we focus on recent advances in
polymer-based EVMs based on their structural characteristics. Note that unless otherwise
specified, the EVMs discussed in this paper have a particle size of 40–100 nm (Figure 1).
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2. Structure Design of Extracellular Vesicle Mimetics
2.1. Structure of Nanosized Drug-Loaded EVs

Exosomes containing nanomedicine have a three-part structure that includes cargo [16,17],
lipid membrane [18–20], and surface ligands [21,22] (Table 1). These extracellular vesicles
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(EVs) are capable of transporting a variety of drugs, with hydrophilic drugs embedded in
the hydrophilic core and hydrophobic drugs anchored in the lipid bilayer. This makes EVs
an ideal vehicle for delivering most drugs, including nucleic acids, lipids, and proteins.
While the lipid types in EVs are determined by their source, the proportions of differ-
ent lipids can vary significantly from those found in their source cells (e.g., glycolipids,
phosphatidylserine). Importantly, studies have shown that all EVs originating from five
different cell types (B16BL6 murine melanoma cells, C2C12 murine myoblast cells, NIH3T3
murine fibroblast cells, MAEC murine aortic endothelial cells, and RAW264.7 murine
macrophage-like cells) are rapidly cleared from systemic circulation within minutes due to
liver clearance [23]. This suggests that there must be universal components present in all
EVs that lead to rapid identification and clearance. Indeed, when the phosphatidylserine
(PS)-binding sites on macrophages were blocked using PS-rich liposomes, the clearance rate
of EVs in the blood decreased significantly. Therefore, the presence of PS is an important
factor influencing the clearance of EVs [24,25].

Table 1. Components and characteristics of EVs from different cell origins.

Cells Origin Components Characteristics Ref.

erythrocytes

Cargo: ALIX, HSP-70, TSG101, syntenin, hemoglobin,
acetylcholinesterase, etc.;
Lipid: phosphatidylserine, phosphatidylethanolamine,
phosphatidylinositides, sphingomyelin,
Surface display: CD47, flotillin, CD63, CD235a, CR1,
CD59, etc.

no nuclear and mitochondrial DNA;
preventing immune clearance pathways;
prolonged circulation time;
conveniently accessing from human blood;
low cost for expansion

[26–30]

macrophages

Cargo: syntenin
1© produced from activated macrophages:

CXCL2, IL-17, TNF-α, CCL3, CXCL10, miR-155;
2© produced from nonclassical macrophages:

miR-21-5p, miR-155-5p
Surface display: CD63, CD9, CD81, etc.

induced inflammatory conditions;
inhibiting migration;
regulated tumor cells’ proliferation, invasion, and
angiogenesis

[31–33]

natural killer cells
Cargo: perforin, granulysin, etc.;
Surface display: CD63, FasL, granzyme A, granzyme B,
etc.

immuno-surveillance, host defense against cancer and
pathogen infections;
increased the proliferation rate of NK cells

[34–37]

dendritic cells

Cargo: Hsp70, Mart-1 peptides, annexins, RAB
proteins, TSG101, etc.;
Surface display:
1© MHC class I- and class II-peptide complexes;
2© CD40, CD80, CD86, CD8, ICAM, TNF-α, TRAIL,

NKG2D ligands, etc.

Secreted from immature DC failed to induce potent
T-cell responses;
modulating the antigen-specific response;
activating NK cells;
induced Treg cell differentiation;
boosting strategies of immunotherapy

[38–40]

T lymphocytes
Cargo: miR-298-5p, miR-150, syntenin, etc.;
Surface display: CD3, CD2, CD4, CD8, CD11c, CD25,
CD69, LFA-1, CXCR4, FasL, GITR, TNF-α, PD-1, etc.

mediating depletion of MSCs and CAFs;
killing tumor-derived MSCs;
decreased tumor cells’ metastasis;
restored the tumor microenvironment.

[41–43]

mesenchymal
stem cells

Cargo: PLP2, TIMP-1, TIMP-2, miR-21, miR-34a,
syntenin, etc.
Lipid: acyl carnitines, lysophosphatidylcholines,
cholesterol esters, cardiolipins, phosphatidylserine,
phosphatidylglycerols, phosphatidylinositols,
phosphatidylethanolamines, etc.;
Surface display: CD63, CD81, CD9, CD29, CD44, CD73,
CD47, CD90, PDGFR, LAMP2, etc.

alleviated inflammatory response [44–47]

tumor cells

Cargo: Hsp90, Hsp70, annexin, MMPs, etc.;
Lipid: cholesterol esters, sphingomyelin,
phosphatidylserine, cardiolipins,
phosphatidylglycerols, phosphatidylinositols,
phatidylethanolamines, etc.;
Surface display:
1© MHC class I- and class II-peptide complexes,

intra-exosomal and membrane-bound antigens;
2© CD9, CD63, CD37, CD81, CD82, CD53, LFA1,

MFGE8, TIM1/4, PD-L1, integrins, etc.

inhibition of tumor proliferation [47–51]
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Table 1. Cont.

Cells Origin Components Characteristics Ref.

plant cells

Cargo: miR-168c, ath-miR167a, etc.;
Lipid: phosphatidic acids, phosphatidylethanolamine,
phosphatidylcholine, phosphatydilinositol phosphate,
digalactoyldiacylglycerol, shogaol, etc.;
Surface display: CD63, CD9, CD81, etc.

grape-derived EVs: accelerating organoid structure
formation;
ginger-derived EVs: a reduced sign of inflammation
and local lymphocytic infiltration;
broccoli-derived EVs: protecting against the
development of colitis

[52]

Diverse surface ligands on extracellular vesicles (EVs) offer a myriad of possibilities
for drug delivery. A broad range of proteins, including lysosomal-associated membrane
proteins (LAMP), integrins, proteoglycans, and tetraspanin proteins, may be integrated
into or attached to the membranes of EVs, thereby altering their functionality. Highly
expressed surface proteins such as CD47, CD55, and CD59 can prolong the circulation time
of EVs by evading the immune system [53]. Binding integrins, tetrapeptides (CD151, CD63,
Tspan8, etc.), and other proteins (fibronectin, Wnt4, etc.) to EV surfaces can modulate their
accumulation in specific organs [53]. For instance, the presence of α6β4 and α6β1 integrins
has been linked to lung metastasis, while αvβ5 is related to liver metastasis [54]. EVs
containing Tspan8 tend to accumulate in the pancreas, and those expressing CD9, CD63,
CD81, and Alix can cross the blood–brain barrier in transwell experiments [55]. Moreover,
polymer-engineered EV membrane-derived vesicles (EVMs) can express desirable ligands
based on the application scenarios, further enhancing the efficiency of drug delivery.

2.2. Preparation of Polymer Engineering EVMs

EVMs can be broadly categorized into three groups. The first group is surface-modified
EVMs (Sur-EVMs), which retain the natural membrane structure of EVs but undergo further
modifications through synthetic biology or chemical methods, enhancing their long blood
circulation and targeting ability towards specific cells. The second group is composed of
natural EV-inspired fully synthesized EVMs (Syn-EVMs), featuring a clear physicochemical
structure and properties with a greater controllable surface modification degree and indus-
trial production stability. The third group consists of hybrid EVMs (Hyb-EVMs), which
combine the advantages of Syn-EVMs and Sur-EVMs through membrane fusion.

2.2.1. Surface-Modified EVs (Sur-EVMs)

The surface modification of Sur-EVMs primarily employs synthetic biological meth-
ods [56] and chemical methods [57,58] (Figure 2a). Through genetic engineering, donor
cells are transfected with plasmids expressing peptides or proteins to alter the surface
characteristics of EVs (Figure 2b). For instance, CD47-modified EVs (ExosCD47), generated
by transfecting donor cells with the corresponding plasmid [59], can effectively evade
phagocytosis by the mononuclear phagocyte system (MPS) and prolong their blood circula-
tion time [59]. Streptavidin-lactadherin-expressing Sur-EVMs (SAV-LA) can be prepared by
transfecting donor cells with a plasmid vector encoding a fusion SAV-LA protein [60]. By
combining EVMs with biotinylated immunostimulatory CpG DNA, CpG DNA-modified
EVMs can be delivered effectively to DC cells with enhanced tumor antigen presentation
capacity. Lydia et al. [61] engineered dendritic cells to express Lamp2b and fused them
to the neuron-specific RVG peptide through transfection with Lamp-2b modified pEGFP-
C1 vector. RVG-targeted EVMs delivered siRNA specifically to neurons, microglia, and
oligodendrocytes in the brain, resulting in specific gene knockdown.

Biomolecules, including targeted peptides, proteins, and aptamers, as well as syn-
thetic polymers such as nonionic polymers (e.g., PEG) and zwitterionic polymers (e.g.,
pCBMA), can be immobilized on the surface of EVs through chemical methods such as
thiol-maleimide coupling chemistry, EDC/NHS coupling chemistry, azide-alkyne cycload-
dition chemistry, and amidation chemistry [57] (Figure 2c). Gai et al. [62] utilized functional
modified lipids and performed antibody coupling via bio-orthogonal copper-free click
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chemistry. They successfully coupled azide-modified anti-mouse CD11c-antibodies to
the surfaces of EVMs, which strongly bound to DC cells. Lathwal et al. [63] engineered
DNA tethers embedded in EVMs using atom transfer radical polymerization (ATRP) to
achieve rapid and on-demand functionalization. Poly(oligo(ethylene oxide) methacrylate)
(p(OEOMA)) and poly(carboxybetaine meth-acrylate) (pCBMA) were engineered onto
the EVM membranes by ATRP to achieve lower immune recognition. Natural EVs were
quickly cleared from the blood in about three hours, while 10% of Exo-pOEOMA and
24% of Exo-pCBMA hybrids remained in circulation even after 12 h. It is important to
note that zwitterionic polymers, which are also electrically neutral, provide not only a
more reliable adsorption barrier against nonspecific proteins but also excellent stability
in the physiological environment. Therefore, zwitterions will be a key candidate in drug
carrier designs [64,65]. The ionic hydration layer of the zwitterionic polymer is stronger
than the hydrogen-bonded hydration layer of the nonionic polymer, and the enthalpy
change required for nonspecific adsorption of proteins is much higher [66–68]. This inhibits
the spontaneous adsorption of proteins on the material surface and decreases recognition
by the reticular endothelial system, which avoids rapid clearance by the mononuclear
phagocyte system from the blood.

Despite the advantages of natural EVs, Sur-EVMs face challenges in achieving high-
quality preparation due to the heterogeneity caused by size, components, and cellular
origin. Uneven invagination of the limiting membrane can result in size inequality and
distinct total contents of fluid and solids. Additionally, different cell types and biological
origins can lead to variations in surface proteins and inner cargoes [69–71].

2.2.2. Synthetic EV-Inspired Mimics (Syn-EVMs)

Syn-EVMs have a clear structure that can be customized for specific drugs and target
cells, as illustrated in Figure 2d. There are various methods available to prepare EV-inspired
mimics, such as semi-bionic liposomes and fully bionic polymer vesicles. These EVMs
mainly consist of lipids and amphiphilic block copolymers, which mimic the amphiphilicity
of natural phospholipids and self-assemble into vesicles in solution.

Polymersomes offer higher chemical and physical stability than lipid-based liposomes
due to the low entropy of mixing of polymers. This makes them an advantageous choice
for creating stable EV-inspired mimics with improved blood circulation efficacy. The
commonly used amphiphilic copolymers typically have hydrophilic blocks such as PEG,
poly(ethylene oxide) (PEO), poly(2-methyl oxazoline) (PMOXA), poly(acrylic acid) (PAA),
or poly[l-isocyanoalanine(2-thiophen-3-yl-ethyl)amide] (PIAT), and a hydrophobic block
such as polystyrene(PS), poly(butadiene) (PB), or poly(lactic-co-glycolic acid) (PLGA) [72].
Membrane thickness plays a crucial role in the assembly’s stability, as shown in Figure 2e.
The mechanical properties of polymersomes depend largely on the copolymer type and
the length of the hydrophobic block. However, the metabolic pathway of polymersomes
in vivo requires further study, which introduces uncertainties and risks in the clinical
drug approval process for drugs using polymersomes as a delivery system. Additionally,
while polymersomes have clear surface modification sites and controllable modification
advantages, their main structure lacks flexibility. Therefore, replacing certain components
often necessitates redesigning the overall structure.

Liposomes, which are self-assembled by lipid bilayer layers, offer a clear metabolic
pathway and greater flexibility of local structural adjustment, making them more suitable
for clinical drug development. Liposomes consist of amphiphilic lipids that form bilayers
cocooning an aqueous interior from the external bulk aqueous phase [73] (Figure 2f).
The non-polar hydrophobic lipid tails are stabilized by van der Waals forces, while the
hydrophilic head groups interact with the aqueous phase. Semi-bionic liposomes can be
prepared using the “top-down” method, which involves downsizing cell membranes or
EVs through a filter membrane of appropriate size. Alternatively, the “bottom-up” method
can be used to create liposomes by selecting specific lipids and gradually fusing them
into a particular size [74]. Compared to the top-down approach, the bottom-up method
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enables more precise control of the liposome structure and produces a more definite
surface modification effect, making it more conducive to the industrialization of liposome
drugs [75–77]. However, liposome instability is a crucial issue when preparing clinical
drugs. Due to the fluidity of the phospholipid membrane, liposomes tend to aggregate and
fuse. Polysaccharide-coated liposomes have been found to reduce phospholipid fluidity,
improve membrane bending rigidity, and enhance liposome stability. Chitosan and its
derivatives are the most commonly used polysaccharides. Chitosan binds to the head
molecule of the phospholipid membrane through electrostatic action via two methods:
(1) incubating the liposome in chitosan solution; and (2) the inverse phase method by
mixing the phospholipid molecule with chitosan. The former results in chitosan coating
only on the outer layer of the liposome, while in the latter, the coating is present in both
inner and outer layers [78]. Results indicate that the chitosan coated by incubation is highly
heterogeneous, while those prepared by the inverse phase method have better distribution
and higher bending rigidity [78,79]. Additionally, polysaccharides such as hyaluronic acid,
sodium alginate, pectin, etc., have been used to coat liposomes, significantly improving
their intestinal adhesion or tumor targeting [80].

Like Sur-EVMs, semi-bionic liposomes and full-bionic polymersomes also require
surface modification with antifouling polymers (such as PEG or zwitterionic polymers)
or target units (such as stimulating sensitive units and target proteins). Despite having a
more well-defined structure and better physicochemical properties, achieving a delivery
efficiency equivalent to that of natural EVs remains challenging for Syn-EVMs. For instance,
nucleic acids encapsulated in liposomes may not be transcribed as efficiently as natural
EVs after their delivery into targeted cells [73,81]. Hence, further exploration is necessary
in the design of synthetic EV-inspired mimics.

2.2.3. Hybrid EVMs (Hyb-EVMs)

Despite the advantages exhibited by Sur-EVMs and Syn-EVMs as drug-delivery car-
riers, both types of EVMs still have limitations that hinder their application. A new
generation of delivery system, termed hybrid EVs, has been developed to overcome these
limitations, including modification efficiency, structural stability, and delivery efficacy.
Currently, three main membrane fusion methods, namely incubation, freeze–thaw, and
extrusion, are used to prepare hybrid EVs (as shown in Figure 2g,h).

The simple incubation of liposomes with EVs may be sufficient to induce fusion, but
this method is slow and dependent on temperature due to its direct impact on fusion
kinetics [82]. Piffoux et al. [83] developed a faster temperature-dependent method using
PEG to facilitate membrane fusion of EVs with synthetic cargo-carrying liposomes, enabling
the transfer of lipophilic drugs with minimal loss (<10%) and significant yet imperfect
transfer of hydrophilic drugs (approximately 50%). Cheng et al. [84] designed hGLV,
a hybrid therapeutic nanovesicle, by fusing gene-engineered EVs overexpressing CD47
with drug-loaded thermosensitive liposomes, using a freeze–thaw method. The resulting
hGLV exhibited long blood circulation from the CD47-overexpressing EVs and excellent
photothermal therapy under laser irradiation from the thermosensitive liposomes [84]. Sun
et al. [85] designed a clodronate (CLD)-loaded liposome and fibroblast-derived EV hybrid
drug delivery system using the extrusion method. The CLD-loaded liposome depleted
macrophages via apoptosis once they were recognized and engulfed by Kupffer cells in
the liver, diminishing hepatic uptake and improving target delivery with the capacity for
natural EV organotropism to fibroblasts.

Several other membrane fusion methods have been developed. Virus-simulating
vesicles can fuse with macrophage-derived EVs to form hybrid EVs that have been used
to deliver the CRISPR-Cas9 system for targeted gene editing [86]. These hybrid EVs
were synthesized using a simple thin-film hydration followed by a membrane extrusion
method, overcoming the limitations of poor yield and functional property loss in EV
isolation. During EV and liposome fusions, EV-EV and liposome-liposome fusion are not
expected. Ducrot et al. [87] developed an elegant process that uses electrostatic interactions
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to favor directed EV-liposome interactions using pH-sensitive lipids. At low pH, the pH-
sensitive liposomes become positively charged, inducing specific EV-liposome electrostatic
interactions, while EVs are still repulsed from one another (both negatively charged) and
liposomes (both positively charged). Once fused, the hybrids become neutral and do
not interact with each other, thereby controlling the number of fusion events per EV or
liposome. Finally, the pH returns to neutral, and the hybrids regain a slightly negative zeta
potential suitable for intravenous injection.

Hybrid EVs bearing both the natural characteristics of EVs and the designable struc-
tures and properties of synthetic materials show great promise for disease treatment.
However, research on Hyb-EVMs in disease treatment is still in its infancy. Further un-
derstanding is required on how the incorporation of synthetic materials or processing
procedures would alter the properties of EVs. Additionally, the potential toxicity and risk
of immunogenicity of these Hyb-EVM systems should be thoroughly investigated [88].
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Figure 2. (a) Schematic of engineered EVMs by surface modification. (b) Illustration of the bio-
logical functionalization strategy by genetically engineering. Reproduced with permission from
ref. [56]. Copyright 2019, AAAS. (c) Schematic showing different facile chemistries for surface func-
tionalization of EVs. Reproduced with permission from ref. [57]. Copyright 2020, Royal Society
of Chemistry. (d) Schematic of EV-inspired vesicles by full synthesis. (e) Schematic of liposome
self-assembly from lipids. The composition of lipids can be engineered (charge, pH-sensitive) and/or
prefunctionalized with different molecules (antibodies, proteins, carbohydrates, PEG, and other
ones) to confer new properties (specific targeting, etc.). Reproduced with permission from ref. [89].
Copyright 2020, John Wiley and Sons. (f) Schematic representation of polymersome self-assembly
from a representative PEG-b-PMA copolymer. The polymersomes can be modified at their surface
(biomolecules, fluorophores, and charged groups by physi-/chemisorption), at the inner layer of the
membrane (cross-linking, pH- and redox-sensitive moieties, indicated as X), in terms of loading in
the aqueous core and in the hydrophobic part of the multilayer. Reproduced with permission from
ref. [89]. Copyright 2020, John Wiley and Sons. (g) Schematic of hybrid EVs by membrane fusion.
(h) Illustration of advantages and limitations of hybrid EVs.
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2.3. Cargos and Cargo Loading Methods

Loading endogenous and exogenous cargo is a crucial process in engineering EVs for
drug delivery. Due to their relatively high capacity for loading small molecules, proteins,
and nucleic acids, EVMs provide an opportunity for efficient delivery of cargo to target
cells. However, delivering bioactive macromolecules such as nucleic acids and proteins
requires a safe and efficient drug delivery system due to their large molecular weight and
complex active conformation [61,90]. The ability of EVMs to transport biological macro-
molecules mimicking natural EVs makes them an alternative to synthetic nanoparticles
based on cationic lipids or polymers. To achieve better effectiveness in cancer treatment, it
is important to improve the loading efficiency of cargo. Cargo loading can be performed
either pre- or post-production of EVMs. Using appropriate agents or genetic-engineering-
edited producers to secrete EVMs with target cargos in one step maintains the integrity
and natural characteristics of the membrane [91–93]. Sinoporphyrin sodium [94], mCherry
proteins [91], and RNA [92] can be loaded into EVs using this “pre-loading” approach;
however, it presents challenges for sorting and separating EVMs due to uncontrollable drug
loading. Post-loading is an efficient strategy for unambiguous cargo loading of EVMs. In ad-
dition to the simple method of incubating drugs with EVMs [93,95], electroporation [61,96],
sonication [59,97], freeze and thaw cycles [98], and chemical transfection [99,100] can by-
pass the membrane for loading. Catalase was loaded into EVMs (exoCAT) ex vivo using
the following approaches separately: incubation at room temperature, freeze–thaw cycles,
and sonication [101]. The amount of catalase loaded into EVMs increased in the following
order: incubation at RT < freeze/thaw cycle < sonication. ExoCAT obtained by sonication
showed the highest catalytic activity, followed by exoCAT obtained by freeze–thaw cycles,
and then incubation at room temperature. For gene loading, CRISPR-Cas9 was loaded into
EVs using electroporation [102] and chemical transfection [82].

Chemically coupled EVMs can be loaded with various functional cargos using “lipid
chemical reactions” or “membrane protein chemical reactions.” This technology enables
controllable and adjustable multifunctional transformation of EVMs. Chemical coupling
allows for the control of both the “loading quantity” and “loading site” of functional
molecules on EVs, which makes it possible to achieve the “multiple loading” of multiple
functional molecules for targeted delivery, drug tracing, and more. Nie et al. [103] devel-
oped a universal responsive EV-nano-bioconjugate platform. They used azide-modified
exosomes from M1 polarized macrophages to conjugate with dibenzocyclooctyne-modified
anti-CD47 antibodies and anti-signal regulatory protein alpha antibodies linked with pH-
sensitive benzoic-imine bonds. In the tumor microenvironment, both antibodies were
released and inhibited the CD47-SIRPα pathway of tumor cells, eliminating their immune
escape under macrophage recognition. Additionally, EVs from M1 macrophages promoted
the M1 polarization of macrophages and enabled them to attack tumor cells. The perfect
synergism of M1 EVs and antibodies resulted in potent anticancer efficacy with minor
side effects. In addition to delivering antibodies, researchers have found that EVs can
modify the efficacy of antibody-drug conjugates (ADCs) by delivering them to both local
and distant cancerous and non-cancerous cells. Based on antibody-antigen interactions,
ADCs can bind to EVs secreted by cancer cells expressing the ADC target proteins [104].

3. Recent Advances of EVMs-Based Nanomedicines for Cancer Therapy

Due to the diversity of cargoes and inherent targetability of extracellular vesicles
(EVs), their potential in drug delivery has garnered significant attention. Drug-loaded EVs
have been extensively studied for cancer treatment after being engineered to meet delivery
requirements. As previously mentioned, polymers such as PEG, proteins, peptides, and
aptamers have been employed to engineer EVs and enhance therapeutic efficiency while
meeting delivery requirements for cancer treatment (see Table 2). Depending on the active
pharmaceutical ingredient, the use of EVs as a drug delivery carrier can be classified into
small molecule chemotherapeutics, nucleic acids, and proteins.
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3.1. EVM Delivery of Small Molecule Chemotherapeutics

Chemotherapeutic drugs are commonly used in clinical settings. However, since
chemotherapeutic drugs vary in their hydrophobicity, the design of drug carriers must
be tailored to their specific characteristics. Extracellular vesicles (EVs), on the other hand,
can serve as a universal delivery platform for small-molecule chemotherapeutic drugs due
to their ability to transport both hydrophobic and hydrophilic drugs. Negrea et al. [105]
encapsulated doxorubicin (DOX), a typical hydrophobic chemotherapeutic drug for cancer
therapy, into PEG-coated extracellular vesicles via incubation to target melanoma cells.
This resulted in a weakened invasion ability of primary melanoma. Zhao et al. [106]
developed a specific M1 macrophage-derived exosome-based drug delivery system to
encapsulate gemcitabine (GEM), a hydrophilic deoxycytidine analogue. They achieved
efficient delivery of the hydrophilic drug and sensitized GEM-resistant pancreatic cancer
cells to chemotherapy by co-delivering Deferasirox, an oral iron chelator.

Developing efficient loading methods, improving scaled production, obtaining favor-
able pharmacokinetic properties of drugs in vivo (especially enhancing targeting ability
and overcoming physiological barriers), and achieving responsive release are key objectives
for extracellular vesicle (EVs)-based chemotherapy. Several endogenous and exogenous
techniques can be used for loading cargoes, including sonication, electroporation, extrusion,
and freeze–thawing [107]. Geng et al. [108] prepared engineered EVs via hybridization
with pH-sensitive liposomes. DOX-loaded EVs prepared by simple Ca2+-mediated fusion
showed better capacity for circumventing endosome entrapment than those produced
through freeze–thaw and PEG8000-mediated fusion. Moreover, crossing the blood–brain
barrier (BBB) presents a significant challenge for drugs targeting the brain. Zhu et al. [109]
generated Angiopep-2 (Ang) and trans-activator of transcription peptides (TAT)-modified
EVs, and loaded DOX through electroporation for glioma treatment. The high affinity
between Ang and low-density lipoprotein receptor-related protein-1 enabled EVs to cross
the BBB, and the cell-penetrating ability of TAT breached the blood-brain tumor barrier
(BBTB), thus improving the efficacy of chemotherapeutic molecules for brain tumors.

Researchers have developed novel combinations of chemotherapy with extracellular
vesicles (EVs) inspired by their natural benefits. Recently, a combined “eat me/don’t eat
me” strategy was developed to achieve mononuclear phagocyte system (MPS) escape and
efficient drug delivery. Cationized mannan-modified EVs derived from DC2.4 cells were
administered to saturate the MPS (eat me strategy). Then, nanocarriers fused to CD47-
enriched EVs originating from human serum were administered to avoid phagocytosis
by the MPS (don’t eat me strategy). The nanocarriers were also loaded with DOX and
functionalized with a novel organotropism peptide to promote tumor tissue accumulation
and cancer cell uptake (eat me strategy) [110]. This study sheds light on overcoming phago-
cytic evasion and provides a strategy for significantly improving therapeutic outcomes,
potentially enabling active drug delivery via targeted nanomedicines.

3.2. EVM Delivery of Nucleic Acid

With the promotion of COVID-19 mRNA vaccines, nucleic acid drugs are expected
to become the third-largest type of drugs after small molecular drugs and antibody drugs.
Due to their ability to carry genes, natural extracellular vesicles (EVs) are considered
potential gene delivery systems for cancer therapy. Currently, lipid nanoparticles (LNPs)
and adeno-associated virus vectors (AAV vectors) are the most commonly used vectors
for nucleic acid delivery. However, non-liver tissue targeting and large-scale production
limit the application of nucleic acid delivery in LNPs, and pre-existing antibodies against
AAV capsids exclude many patients. As natural mediators in the body, EVs encapsulated
with nucleic acids can improve targeting efficiency through surface-engineered ligands and
reduce systemic toxicity due to their low immunogenicity. Murphy et al. [111] demonstrated
that EVs exhibit higher RNA delivery efficiency than synthetic RNA delivery systems.
However, the reported activation level of RNA loaded in EVs is much lower than that
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required for similar activation levels by the most advanced synthetic therapeutic RNA
delivery system.

Cationic polymers such as poly(ethyleneimine) (PEI) and chitosan can bind to neg-
atively charged nucleic acid through electrostatic interaction and condense into a small,
compact structure. Combining cationic polymers with extracellular vesicles (EVMs) can
improve the drug loading efficiency of nucleic acids [112]. A ternary complex system
consisting of pDNA, PEI, and chondroitin sulfate has low cytotoxicity and a durable high
expression efficiency, resulting in a higher number of ESAT-6 epitopes in EVs [113]. Ad-
ditionally, EV-modified PEI/siRNA complexes showed improved physical and biological
properties, inhibiting prostate carcinoma xenografts in vivo [114]. Diomede et al. [115]
compared human periodontal-ligament stem cells (hPDLSCs) enriched with EVs to PEI-
engineered EVs (PEI-EVs). The results suggested that PEI-EVs participate in the activation
of the osteogenic process. Similar results were also found in biodegradable chitosan-based
EVM systems [116,117]. Furthermore, Alshamsan et al. [118] found that hydrophobically
modified PEI increased gene condensation compared to parent PEI, providing a more
productive strategy for loading RNA cargo onto extracellular vesicles. This idea can also be
applied to EVM-based gene delivery because the hydrophobically modified gene could
improve stability and promote cellular internalization, efficiently loading into EVs upon
co-incubation without altering vesicle size distribution or integrity [119–121].

In addition to cationic polymers, peptides binding to EVMs are also important in
nucleic acid drug delivery research. Cell-penetrating peptides (CPP) are rich in cationic
amino acids such as arginine (R) and lysine (K), which are frequently used in gene de-
livery [122,123]. Some peptide motifs can bind with nucleic acids to facilitate highly
efficient loading into EVMs. Ghulam et al. [124] observed that fusing the glycolytic enzyme
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-derived G58 peptide to dsRNA-
binding motifs enabled the highly efficient loading of small interfering RNA (siRNA) onto
the EV surface, resulting in efficient delivery of siRNA to multiple anatomical regions of the
brain. Shabanali et al. [125] transduced a lentiviral vector bearing the LAMP2b-DARPin G3
chimeric gene into HEK293T cells and successfully delivered siRNA against the TPD52 gene
into HER2-positive breast cancer cells through targeted EVs bearing the Lamp2B-DARPin
chimeric protein, modulating TPD52 gene expression. These approaches have the potential
to facilitate gene transfer to target cells, providing an additional option for gene therapy
and drug delivery.

3.3. EVM Delivery of Proteins/Peptides

The use of biological functional enzymes and therapeutic proteins in clinical and
pre-clinical treatments can help inhibit the occurrence and progression of tumors. How-
ever, there are still several challenges in the process of systemic protein administration to
treat tumor diseases, including easy degradation, low bioavailability, poor targeting, and
short half-life. Engineered EVs are ideal candidates for delivering therapeutic proteins,
receptors, ligands, cytokines, and monoclonal antibodies as they can be effectively used for
tumor targeting. Hao et al. [126] reported that lentiviruses expressing Tet-sFlt-1 infected
HEK293 cells to obtain soluble fms-like tyrosine kinase-1 (sFlt-1)-enriched EVs. The EVMs
suppressed the growth of small-cell lung cancer by inhibiting endothelial cell migration.

Recently, the crucial advantages of EVs have been investigated as a delivery system
for membrane protein therapeutics. Compared with ferritin nanocages, signal regulatory
protein α (an antagonist of CD47 on tumor cells) expressed on EVMs is more conducive
to the spatial arrangement of binding with CD47 on the surface of tumor cells. This
makes the protein-loaded EVMs capable of further enhancing the phagocytosis of bone
marrow-derived macrophages to tumor cells and subsequently inhibiting tumor growth
in vivo [127].

In addition to pre-loading proteins into EVs, other post-loading methods such as
sonication, freeze–thaw, and saponin have been studied. Haney et al. [101] found that EVs
prepared by sonication and saponin had the highest loading efficiency and release of active
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catalase. Lysosome-associated membrane protein 2 specifically binds to the acetylcholine
receptor, allowing for the targeting of neurons, oligodendrocytes, and microglia [61]. Ye
et al. [128] reported a simple and versatile approach to functionalizing drug-loaded EVs
with the pro-apoptotic peptide KLA and the targeted peptide, low-density lipoprotein
(LDL), which selectively binds to the LDL receptor (LDLR) overexpressed on the blood–
brain barrier (BBB) and the glioblastoma multiforme (GBM) cell lines. This resulted in an
increased survival rate in mouse models of glioma.

Table 2. Most recent advances of polymers in engineering EVMs for cancer treatment.

Type of Drugs Type of EVM Cargo Polymer Application Conclusion Ref.

small molecule
chemotherapeutics

hybrid EVs ICG, R837 CD47
Drug delivery: long
circulation and excellent
photothermal therapy

CD47-overexpressed hybrid
therapeutic nanovesicles
exhibited long blood
circulation and improved the
macrophage-mediated
phagocytosis of tumor cells.

[84]

Sur-EVMs doxorubicin Ang and TAT Delivery efficiency:
targeting

Cross the BBB, reach the
glioma, and penetrate the
tumor.

[109]

Syn-EVMs gemcitabine PEG
Drug delivery for
endosomal escape and
long circulation

Accelerate drug release at
endosomal level, and without
significantly compromising
their stealth abilities.

[129]

nucleic acid

hybrid EVs CRISPR/Cas9 Lipofectamine
2000

CRISPR/Cas9 system
delivery for in vivo gene
editing

Systems require delivery of
both Cas9 and sgRNA into the
same cell, which remains a
challenge in vivo where
delivery and editing efficiency
remain low.

[82]

Sur-EVMs siRNA G58 peptide Gene delivery: siRNA
loading

GAPDH-derived G58 peptide
enables highly efficient
loading of siRNA onto the EV
surface

[124]

Syn-EVMs siRNA PEI Gene delivery: loading
and responsive release

Photoactivatable polymer
permitted the efficient loading
and ROS-responsive release of
siRNA.

[130]

proteins/
peptides

hybrid EVs
CRISPR
associated
protein 9

dioctadecyl-
amido-glycyl-
spermine

Protein delivery: a simple
and quick method for
loading proteins in EVs

EV-mediated delivery is
compatible with various
molecular weight proteins and
improved uptake compared to
electroporation.

[131]

Sur-EVMs sgRNA and
Cas9 protein GFP antibody

A method to deliver
sgRNA: Cas9
ribonucleoprotein

This engineered a modified
exosome-fused CD63 with
GFP, which can bind to the
GFP antibody fused with Cas9
protein. Cas9 proteins were
captured and efficiently
loaded into exosomes rather
than a random package.

[132]

Sur-EVMs
proapoptotic
peptide and
methotrexate

low-density
lipoprotein,
KLA peptides

Peptide delivery: for brain
tumor treatment

Functionalizing
chemotherapeutics-loaded
EVs with peptides in a facile
and controllable way
facilitates them targeting BBB
and brain tumor cells with
highly efficient anticancer
properties.

[128]
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4. The Challenges and Perspectives of EVMs for Drug Delivery

Since the discovery of EVs as natural mediators for intercellular communication, these
nanoscale vesicles have been extensively researched as a potential solution to mitigate
problems faced by conventional drug delivery systems. However, current studies on EVM-
based drug delivery systems are still in their infancy. A deeper understanding of the key
surface cues on EVs responsible for intrinsic targeting and pharmacological effects, as well
as advanced technologies to isolate EVs in good yield and high purity, are necessary before
these systems can be extensively applied as nanomedicines for cancer treatment. Better
drug delivery strategies should also be developed to optimize the therapeutic efficacy of
EVM-based drug delivery systems.

Natural polymers, such as proteins and aptamers, have been widely used to better
imitate [133,134] and optimize targeting functions [135,136]. Synthetic polymers such as
PEG, PEI, and pCBMA can be utilized for more efficient delivery [91,116,117,137]. These
applications for improved drug delivery strategies are described in Sections 2 and 3.
However, production and purification methods also restrict the application and translation
of EVMs. Therefore, strategies for further improvement should be considered.

Improving the efficiency of production. Various approaches have been developed to
increase EV secretion rates and improve production yield [138]. EV mass quantification
revealed a several-fold increase in EV secretion using 3D cultivation methods compared to
2D monolayers [139–141]. The hypoxia, cell density, and non-adherent cell morphology
within the 3D spheroids may be causative factors affecting cell viability, thereby altering
EV synthesis and secretion [142–145]. Studies have demonstrated the superior cytocompat-
ibility of zwitterionic biomaterials compared to other commonly used biomaterials for the
preparation of hydrogels, such as poly(hydroxyethyl methacrylate) [146–148]. Zwitterionic
hydrogels significantly outperformed other culture systems for embryonic cells, cancer cells,
and stem cells due to their hydrophilicity and resistance to nonspecific protein adsorption,
resulting in prolonged cell longevity and sustained stem cell multipotency [149,150]. The
capacity for maintaining cell viability based on zwitterionic hydrogels may provide a better
platform for EV production by a top-down approach.

Improving the efficiency of purification. Several methods, such as centrifuga-
tion [151–153], ultrafiltration [154,155], size exclusion chromatography [131,155,156], and
microfluidics [157–159], can be used to isolate EVs, which determine the sample yield
and purity for further application. Precipitation is a feasible approach to separate target
EVMs with a less damaging effect on EVs, which can maintain more natural EV charac-
teristics [160]. Hydrophilic polymers, such as PEG, can wrap dozens or hundreds of EVs
together by reducing solubility, forming extracellular vesicle aggregates that can be easily
precipitated by low-speed centrifugation [161–163]. Various commercial kits based on
polymer precipitation methods are now available, such as ExoQuick™ (System Bioscience,
Palo Alto, CA, USA) and Exo-spin™ (Cell Guidance Systems, Cambridge, UK) [160,164]. In
addition, polymers, especially polyelectrolytes such as cationic poly(L-lysine) (PLL), can ag-
gregate anionic EVs due to charge interaction, thereby facilitating separation and providing
a new idea for EVM separation [165]. Furthermore, zwitterionic biomaterials could be de-
veloped for diagnostic applications on EVs due to their ability to resist nonspecific protein
adsorption. As early as 2012, researchers developed polymer-coated immunoaffinity beads
modified with sulfobetaine moieties to capture EVs in serum [166]. Yoshida et al. [167]
synthesized an EpCAM-affinity coating agent consisting of a peptide aptamer for EpCAM
and a zwitterionic poly-2-methacryloyloxyethyl phosphorylcholine polymer, allowing the
concentration of cancer-related EVs from heterogeneous EV mixtures. Some studies found
that materials based on zwitterionic polymers captured amounts of exosomal protein com-
parable to a commercial EV isolation kit [168]. These studies have proved that zwitterionic
biomaterials can be used for the capture or isolation of extracellular vesicles, which is a key
process for understanding and applying extracellular vesicle mimetics (Figure 3).
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Further development of clinical trials. Compared to liposomes, which have been
widely used in cancer therapy and clinical trials [169], natural-EV based EVMs are still
in the preliminary stages of clinical research. Codiak’s exoSTING (engineered exosomes
containing small-molecule stimulator of interferon genes (STING) agonist) and exoIL-
12 (engineered exosomes containing IL-12) were launched in phase I clinical trials for
immune activation in cancer. MD Anderson has initiated a phase I clinical trial of Kalluri’s
RASG12D siRNA-containing exosomes for improving survival in pancreatic cancer [170]. If
Codiak’s EV-based therapy proves safe and reliable, the next question is whether EV-based
drug delivery systems have a greater advantage than existing systems. To this end, more
characterization and efficacy evaluation methods need to be updated and iterated. For
example, 3D printing technology could be used to establish 3D tumor models for drug
evaluation [171].

5. Conclusions

Extracellular vesicle mimetics offer new insights into the utilization of biomimetic
nanotechnology to potentiate the treatment of cancers by small molecule chemotherapeutics,
nucleic acids, and proteins. This review has summarized the characteristics of extracellular
vesicles based on their structure, and introduced structure engineering by polymers to meet
the requirements of drug delivery based on different preparations. We have highlighted the
application of polymers in EV-based cancer therapy mainly for prolonging circulation and
improving targetability. Although the emergence of EVMs can overcome some obstacles
set by natural EVs properties, there are still challenges that need to be investigated, such as
a deeper understanding of biological systems, more advanced biomimetic nanotechnology,
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and more efficient production. Lastly, we look forward to the development prospects of
EVMs in cancer drug delivery, especially for polymer-based strategies on production and
purification. As more attention is paid to the application of EVMs in various fields, we
believe that more effective strengthening strategies will be developed, ultimately moving
towards practical applications.
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