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Abstract: Epstein–Barr Virus (EBV) is a human gamma-herpesvirus that is widespread worldwide.
To this day, about 200,000 cancer cases per year are attributed to EBV infection. EBV is capable of
infecting both B cells and epithelial cells. Upon entry, viral DNA reaches the nucleus and undergoes a
process of circularization and chromatinization and establishes a latent lifelong infection in host cells.
There are different types of latency all characterized by different expressions of latent viral genes
correlated with a different three-dimensional architecture of the viral genome. There are multiple
factors involved in the regulation and maintenance of this three-dimensional organization, such as
CTCF, PARP1, MYC and Nuclear Lamina, emphasizing its central role in latency maintenance.
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1. Introduction

Epstein–Barr Virus, or EBV, is a human gammaherpesvirus that infects 95% of the
population worldwide [1–3]. EBV infects both epithelial and B cells and subsequently estab-
lishes a lifelong persistent infection in B cells, where it remains as a chromatinized episome
with multiple copies per cell [4]. Usually, EBV persistent infection is asymptomatic, yet
nearly 140,000 people die annually from untreatable malignancies caused by EBV infection
of lymphoid or epithelial cells [5,6]. Indeed, EBV infection is causally associated with
several malignancies, including post-transplant lymphoproliferative disorders (PTLD) [7],
Burkitt’s Lymphoma (BL) [1], Diffuse Large B-cell Lymphoma (DLBCL), gastric carcinomas
(GC), and nasopharyngeal carcinoma (NPC) [8–10]. In EBV-associated malignancies, viral
gene expression is limited to a few viral genes that encode for viral proteins without pro-
ducing viral particles [11–13]. This type of infection is referred to as latent infection. Latent
infection represents an oncogenic force in establishing and maintaining the transformed
phenotype of infected cells, although seminal studies have highlighted the importance of
lytic reactivation, or abortive lytic reactivation, as a factor in transformation [14–17].

In latently infected cells, EBV expresses a limited set of viral proteins: six Epstein–Barr
Nuclear Antigens (EBNAs); three integral membrane proteins called Latency Membrane
Protein (LMP1 and LMP2a and b); two small non-polyadenylated RNAs (EBERs); and
several miRNAs generated from the BamHI-A Rightwards Transcripts (BARTs) (Figure 1).
EBV expresses these latent viral transcripts in different transcriptional programs, which
are referred to as latency types [18–20]. The different latency types observed in vitro,
and characteristic of each EBV-associated tumor, mirror transcriptional changes occurring
in viral gene expression while EBV is transitioning in either the lymphoid or epithelial
compartment [21–23]. Thus, during latency, EBV gene expression is quite dynamic, and the
switching between different latency programs is a critical event for the establishment and
maintenance of EBV latency and for triggering and sustaining the proliferation of either B
or epithelial cells [24,25].
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Figure 1. Circular view of the EBV genome. The EBV genome is represented as a circle. For better
visualization, only the viral genes and promoters that will be mentioned and discussed in this review
are listed.

2. EBV Latency

EBV can adopt at least three different latency types in latently infected cells (Figure 2).
In Type I latency, EBV expresses only the non-coding RNAs EBERs and EBNA1, the
transcription of which is initiated from the Qp viral promoter [26–28]. Interestingly, the
3′ region to the Transcription Start Site (TSS) of the Qp promoter contains two EBNA1-
binding sites which, when bound by EBNA1, repress Qp activity, providing a self-regulating
mechanism to control EBNA1 expression in Type I latency [27,29,30]. Type I latency
is observed in EBV+ BL tumors, in BL cell lines and in memory B cells from healthy
individuals. In Type II latency, EBV expresses the two LMPs, the non-coding RNAs EBERs
and BARTs in addition to EBNA1 from the Qp promoter. Type II latency is observed in vivo
in nasopharyngeal carcinoma and Hodgkin disease (HD) cells [31]. However, in the B cells
from patients with EBV Infectious Mononucleosis (IM), it has been observed that the EBV
expresses the EBERs and the EBNAs at high levels while the LMPs genes are expressed
at low levels or not expressed at all. This type of latency with partiality has been referred
as Type IIb latency [32]. In Type III latency, EBV expresses all the latent viral transcripts,
consisting of the six EBNAs, the two LMPs, and the EBER and BART non-coding RNAs [33].
The transcription of the EBNAs, including EBNA-1, is initiated by the Cp promoter during
Type III latency [23]. The Cp promoter contains an EBNA-2 responsive element upstream
of the 5’ of TSS, and the binding of EBNA-2 and EBNA-LP upregulates Cp activity, leading
to positive autoregulation of EBNA transcripts [26,34–37]. Type III latency is observed
in vitro in proliferating primary B cells after EBV infection and in vivo in PTLD and DLBC
lymphoma cells [23,32,38,39].
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Figure 2. Schematic view of the different latency types. Upon infection, EBV is able to establish latent
infection in the host cell. The three main types of latency are depicted in this image. From the left:
Type I latency is characterized by the expression of only the viral nuclear protein EBNA1 and the
noncoding microRNAs EBERs; Type II latency involves the expression of EBNA1, EBERs, BARTs and
the three transmembrane proteins LMP1, 2a, 2b. Type III latency is characterized by the expression of
all the previously mentioned genes and the viral transcription factors EBNA2, EBNA3A, EBNA3B,
EBNA3C, and EBNA-LP. Created with BioRender.com (accessed on 2 April 2023).

Epigenetic regulation of EBV latency programs. Changes in the viral promoter that the
virus uses determine which latency state the EBV-infected B cells adopt [26,40]. EBNA-2,
EBNA-LP and EBNA-1 viral proteins contribute to regulating the activity of Cp and Qp,
respectively. Moreover, EBNA-2 and EBNA-LP contribute to upregulating the LMP pro-
moter’s activity [36,37]. However, cellular factors, including epigenetic regulators, control
the two promoters [20,41,42]. The importance of epigenetic modifications for regulating
EBV gene expression emerged from early studies, showing that treating EBV+ B cells with
hypomethylating agents induced EBV viral replication [43–46].

Further studies determined that the EBV genome was highly methylated, restrict-
ing viral genes expression in both B and epithelial cells [46]. Subsequent studies also
determined that treatment of EBV-infected cells with inhibitors of histone deacetylases
induced the reactivation of EBV replication, indicating that DNA methylation and het-
erochromatinization of the viral genome represent an important repressive mechanism
for viral replication [47,48]. Interestingly, analysis of CpG methylation across the EBV
genome during in vitro infection of primary B cells demonstrated that methylation of the
viral genomes is a slow process that requires several weeks post-infection for completion,
suggesting that other epigenetic and cellular factors may be fundamental to the early
regulation of viral gene expression [49–52]. In contrast, DNA methylation may be essential
in controlling and maintaining viral gene expression later during EBV infection. Consistent
with these observations, the extent and the distribution of DNA methylation across the
EBV genome differs between latency types, with high levels of methylation observed in
Type I infected cells, indicating that DNA methylation is an essential epigenetic mechanism
for maintaining latency programs [53–55].

The notion that each latency type is characterized by a specific epigenetic landscape
across the EBV genome is further supported by early studies demonstrating that the
deposition of different patterns of histone modifications correlates with different EBV
latency types [53,56,57]. These studies showed that in Type III latency, the most permissive
type of latency concerning latent viral genes expressed, the EBV genome was enriched
with histone marks associated with open chromatin and active gene expression, including
H3K27ac and H3K4me3 [53,56]. In Type I latency, where the EBV gene expression is
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limited to only EBNA-1, the viral epigenetic landscape is characterized by the deposition
of repressive histone marks such as H3K9me3 and H3K27me3 [53,56], the latter being
deposited on the chromatin by EZH2, the catalytic subunit of the Polycomb Repressive
Complex 2 [58]. Interestingly, during latency EZH2 complex binds the EBV genome at
the promoter region of lytic genes, but upon reactivation of EBV, the association of EZH2
with the viral genome is lost, and H3K27me3 mark is erased around lytic genes [59–61].
Moreover, recent studies revealed that the TRIM28/KRAB-ZFP/SZF1 complex plays an
essential role in repressing EBV lytic gene expression by promoting the deposition of the
heterochromatin mark at the promoter of lytic genes, facilitating the establishment of EBV
latent infection [62–65]. Thus, the stable EBV gene expression patterns observed during
latency depend on histone deposition and DNA methylation across the viral genome.

3. EBV and CTCF

Systemic mapping of chromatin has shown that the epigenome is organized into dis-
tinct domains of transcriptionally active and inactive regions [56]. These distinct domains
are maintained by protein factors that prevent the spread of one domain to the next. CTCF
(CCCTC-binding factor) is a highly conserved zinc finger protein that plays an essential
role in chromatin organization and gene regulation [66–68]. CTCF plays a critical role in
organizing chromatin domains by binding to specific DNA sequences known as insulator
elements which prevent the spread of epigenetic modifications and maintain the integrity
of gene expression programs [68].

In recent years, several studies showed the role of CTCF in the context of EBV infection.
CTCF has been shown to bind to the EBV genome during latency [53,55,69,70]. Extensive
mapping of CTCF occupancy identified at least 17 CTCF binding sites across the EBV
genome [24,56,57,71,72]. In particular, CTCF has been shown to bind to the latent promoters
Cp, Qp and LMPs, as well as the promoter of the BZLF1 gene, which encodes for the lytic
transactivator Zta [56]. Surprisingly, no differences in CTCF binding across the viral
genome were found between latency types [24], although between Type III and Type I
latency, a difference in the CTCF binding strength at Cp promoter was observed [69].
However, EBV genomes that carry mutations disrupting the CTCF binding either at Cp,
Qp, or LMPs show impaired activity of those promoters and altered chromatin composition
of the neighboring regions [53,69,73]. In particular, the disruption of CTCF binding at the
Qp promoter in Type I latently infected epithelial cells resulted in the spread of H3K9me3
repressive heterochromatin mark and the accumulation of DNA methylation at the Qp
region over time, leading to promoter silencing and inhibition of EBNA-1 expression [53].
Accordingly, it can be suggested that CTCF binding across the EBV genome physically
acts as a barrier that prevents the unregulated spreading of epigenetic modifications into
viral promoter regions, maintaining the integrity of latency gene expression programs.
Contrary to what was observed for the latent viral promoter, disruption of CTCF binding
to the BZLF1 promoter failed to reactivate lytic infection of EBV and no significant changes
in CTCF binding across the viral genome were observed during the early phase of EBV
reactivation, suggesting that CTCF binding per se is not sufficient to completely reverse the
epigenetic silencing of lytic promoters [72].

Furthermore, several studies have revealed that CTCF can regulate viral gene ex-
pression in other double-stranded DNA viruses. For instance, in Kaposi’s sarcoma her-
pesvirus (KSHV) [74–82], herpes simplex virus (HSV) [83–89] and human cytomegalovirus
(CMV) [90], CTCF has been shown to bind to the viral genome and regulate viral gene
expression by modulating the accessibility of the viral genome to transcription factors.
Finally, it has also been suggested that viruses can modulate CTCF activity to promote viral
replication. For example, it has been proven that human papillomavirus (HPV) can induce
changes in CTCF binding that promote viral replication and transcription [91–93]. Overall,
the role of CTCF in the context of viral infections is an area of active research, and further
studies are needed to fully understand the mechanisms by which CTCF regulates viral
gene expression and how viruses modulate CTCF activity.
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4. CTCF and Cohesin

CTCF also plays a critical role in regulating gene expression by influencing the three-
dimensional structure of chromatin and promoting or inhibiting interactions between enhancer
and promoter gene regions [68]. Recently, it has been discovered that CTCF often works
together with Cohesin to regulate gene expression and chromosome architecture [94–96].
Cohesin also plays a role in regulating gene expression by promoting the formation of
chromatin loops and facilitating interactions between regulatory elements. Cohesin is
a protein complex critical to chromosome segregation during cell division [97]. The co-
hesin complex is responsible for holding sister chromatids together and then releasing
them at the onset of mitosis [98]. Cohesin can bind to CTCF at specific sites to form chro-
matin loops that bring enhancers and promoters into proximity, leading to increased gene
expression [94,99]. In addition, CTCF binding can act as a barrier to prevent Cohesin from
spreading along the chromatin fiber, limiting its effects to specific regions [100]. Overall,
CTCF and Cohesin are critical components of the regulatory network that governs gene
expression and chromosome architecture in eukaryotic cells. Consistent with these observa-
tions, in latently infected cells, extensive mapping of EBV epigenome revealed that Cohesin
occupancy overlaps with CTCF binding to specific regions of the viral genome, including
the Cp, Qp, BZLF1, and LMP1 promoters [24,56,57].

The role of CTCF and Cohesin in regulating the chromatin architecture of the genome
in higher eukaryotes prompted similar studies to determine the 3D structure of the EBV
genome in latently infected cells. Earlier studies focusing on the 3D structure of the Cp
and Qp regions of the EBV genome demonstrated that these regions adopt alternative 3D
chromatin structures between latency types [25] (Figure 1). For example, in Type III latency,
the active Cp promoter forms a chromatin loop with the Ori P region, the origin of DNA
viral replication during latency, which also serves as a transcriptional enhancer [25,101].
On the contrary, in Type I latency, where Cp is repressed and transcription of EBNA-1 is
initiated from the Qp promoter, a chromatin loop between Qp and Ori P was observed [25].
In addition, a chromatin loop that brings Ori P close to the LMP1 promoter was observed
in Type III latency, indicating that chromatin loop formation is implicated in regulating
viral gene expression during EBV latency [56,73]. All these chromatin loops connecting
Ori P with the viral promoters Cp, Qp, and LMPs occur at regions of the EBV genome
where CTCF and Cohesin bind, indicating that CTCF and Cohesin actively participate in
the formation of chromatin loops across the viral genome. Indeed, in EBV genome carrying
mutations that ablate CTCF and Cohesin binding at either Cp, Qp, or LMP promoters, no
chromatin loops occur between these regions and Ori P [25,73], indicating that CTCF and
Cohesin binding is essential for chromatin loop formation between viral genomic regions.

Most recently, studies employing EBV-specific Capture-HiC assay revealed the chro-
matin architecture of the EBV genome in Type I and Type III EBV+ B cells (Figure 3) [24].
These studies showed several chromatin loops across the viral genome, connecting regu-
latory DNA elements to viral promoters. Notably, chromatin loops occur between viral
regions that contain at least one CTCF binding site [24]. In Type III cells, more EBV genomic
regions are connected through chromatin loops than in Type I cells, in which instead, very
few prolonged distant interactions occur, indicating that the frequency of chromatin loop
and complexity of 3D structure in EBV latency correlates to the level of transcriptional
permissiveness of latent viral genome [24]. However, several viral regions are engaged in
similar chromatin loops in both Type I and Type III EBV+ cells. For example, the region
upstream of the LMP2 promoter is connected to the regions encoding for the EBERs in both
latency types. Similarly, in both Type I and Type III EBV+ cells, a chromatin loop connects
the origin of lytic replication OriLyt Left to the CTCF site positioned at the 3′ of W repeats,
suggesting a potential role of 3D structure in restricting lytic reactivation [24]. Consistent
with a possible role for chromatin looping in controlling lytic replication, work from the
Gewurz group (discussed later in this manuscript) recently demonstrated that OriLyt Left
connects to the Zp promoter through a chromatin loop upon lytic reactivation [102].
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Figure 3. Schematic view on the 3D structure of the EBV genome. (Top) PARP1 PARylates CTCF, thus
stabilizing its binding on the viral genome. CTCF, together with Cohesin, forms loops in close prox-
imity with viral promoters with enhancers, promoting viral latent gene expression. (Bottom) PARP1
inhibition determines a reduction in CTCF binding, therefore causing a disruption of loops and a
consequent decrease in viral gene expression. Created with BioRender.com (accessed on 2 April 2023).

5. Regulation of EBV 3D Structure

Between latency types, the EBV genome can therefore assume alternative 3D struc-
tures, indicating that the chromatin architecture provides an additional layer of epigenetic
regulation for EBV gene expression during latency. Genetic studies show that CTCF is es-
sential for forming chromatin loops, and EBV chromatin loops occur between viral regions
occupied by CTCF. Yet, the CTCF binding profile across the EBV genome is similar between
Type I and Type III EBV+ cells [24]. Most recently, this discrepancy between similar CTCF
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binding and different 3D chromatin structures in Type I and Type III EBV+ cells has been
attributed, at least in part, to the effect of Poly (ADP-ribose)polymerase 1 (PARP1) on
CTCF [24,103]. PARP1 is a protein that catalyzes the apposition of ADP ribose polymers
to acceptor proteins, including histones and CTCF [104–106]. PARP1 physically interacts
with CTCF, and PARylation of CTCF facilitates its functions, including chromatin loop
formation [105]. EBV infection can activate PARP1, in part through the signaling cascade
initiated by LMP1 [107]. PARP1 binds to CTCF at specific regions of the EBV genome,
and pharmacological inhibition of PARP1 destabilizes CTCF binding to some (but not
all) regions of the EBV genome [103]. In latency III EBV+ B cells, the inhibition of PARP1
ablates viral chromatin architecture, causing heterochromatinization of the viral episome
and repression of EBV viral genes [24,103] (Figure 3). For example, in Type III EBV+ cells,
PARP inhibition significantly decreases CTCF occupancy at the Cp promoter and alters the
3D chromatin structure of this promoter region, reducing the expression of EBNA2 [24,103].
However, it is worth noting that the effect of PARP1 inhibition is limited to only a subset
of chromatin loops present across the EBV genome, indicating that other mechanisms,
besides PARP1 activity, regulate the organization of the EBV tridimensional chromatin
structure. Interestingly, PARP1 plays a role in the infection of other DNA viruses, including
HSV-1 [108,109] and KSHV [110–112], which are also epigenetically regulated by CTCF,
thus suggesting that PARP1 and CTCF interaction might be a common regulatory axis of
viral infection.

6. EBV and Nuclear Lamina

In eukaryotes, an additional level of epigenetic regulation that can influence the
chromatin structure is the interaction of genomic regions with the Nuclear Lamina (NL).
The Nuclear Lamina is formed by proteins named lamins. They are grouped into two
different families (type A and B lamins) that are located at the nuclear peripheral space. The
nuclear lamina–genome interactions occur at chromatin regions called Lamin-Associated
Domains (LADs) that when located at the nuclear periphery are associated with different
repressive histone marks, such as H3K9me2/3 and H3K27me3 [113–115], and have low
transcription levels.

In the context of herpesvirus biology, the nuclear lamina has been reported to play many
different roles in regulating different stages of viral infection. To be specific, the nuclear
lamina can control viral replication by acting as a physical barrier that prevents the viral
capsid egress by inducing the expression of lytic genes that target the nuclear lamina itself.
For example, EBV lytic gene BGLF4 encodes a viral kinase that phosphorylates lamina A
causing its degradation [116]. Alternatively, the nuclear lamina can also be involved in the
formation of viral replication compartments [117–121]. EBV latent infection of B cells induces
Lamin A/C expression, and Type III but not Type I EBV+ B cells express Lamin A/C [122].

The nuclear lamina has been also reported to play a role in EBV latency [122]. LADs
were found across the EBV genome, with differences in binding patterns for both lamin
B1 and lamin A/C depending on the EBV latency types. To be specific, in Type I, a
prevalence in lamin B1 binding to the EBV genome was found, while in Type III, lamin
A/C was the one mostly binding to the EBV genome [122]. These differences in binding
profile correlate with differences in the transcriptional profile in the two latent programs.
Remarkably, in EBV+ gastric cancer cells, in which viral gene expression is limited, genome-
wide associations between the EBV and the host genomes tend to occur at DNA regions
associated with the nuclear lamina [123].

Lamin B1 binding is conserved in both latency types at both the origins of lytic repli-
cation OriLyt Left and RMPS1-OriLyt, which are regions inactive during latency [122],
indicating an ulterior way by which the nuclear lamina can regulate the viral lytic repli-
cation. Consistently, it was found that during EBV lytic reactivation, when both OriLyt
regions are active, the interactions between EBV and human LADs decrease [124].
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The expression of Lamin A/C was also involved in the modulation of expression
of both latent and lytic genes, suggesting a role of lamin A/C in fine tuning EBV gene
expression during latency [122].

Furthermore, the nuclear lamina–genome interactions regulate gene expression by
modifying the chromatin composition without affecting its 3D structure. In Type III latency,
the lamin A/C depletion resulted in reduced H3K9me2 deposition at viral loci bound
by both lamin A/C and lamin B1 [122]. The H3K9me2 histone mark associates with
heterochromatin regions localized at the nuclear periphery, and reduced levels of this mark
at LADs impair the association of these regions with the nuclear lamina [125,126].

7. EBV and MYC

Besides the central role of CTCF/Cohesin complex in regulating the 3D structure of
EBV, another transcription factor involved in this process is Myc. The Myc protooncogenes
are upregulated in a wide variety of cancers and their expression is induced upon EBV
infection [127]. The work mentioned [102] has demonstrated how its levels are used by
EBV as a sensor of the B cell state and its binding to the viral genome helps maintain latency
by restricting the expression of lytic genes.

Depletion of Myc promotes the reactivation of the lytic cycle through the formation
of loops between the promoter of the early lytic gene BZLF1 and the OriLyt enhancer and
Terminal Repeats (TR) regions.

8. EBV-Associated Enhancers

As discussed above, Cohesin and CTCF are essential to the regulation of gene expres-
sion, placing distal enhancers and promoters in close proximity. The enhancers are enriched
in two histone modifications, H3K4me1 and H3K27ac, which, respectively, characterize
poised and active enhancers. Extensive mapping of the H3K27ac histone mark revealed
that the EBV genome is enriched for this histone mark at key latent promoters such as Ori
P, Cp, Qp, LMP and some newly discovered regions such as the BILF2 promoter [128]. In
accordance with the central role of CTCF in the 3D organization of the viral genome and
its role in regulating viral gene expression, all H3K27ac-enriched regions are near CTCF
binding sites.

With newly developed techniques such as HiChIP that combine chromatin immuno-
precipitation with HiC, it has been possible to map the intragenomic interactions that
are enriched for H3K27ac in B cells harboring all three latency types [128]. In this study,
Type I latency genomes showed few strong enhancers and enhancer–promoter interac-
tions, whereas Type II and III latencies exhibited multiple strong enhancers throughout the
viral genome.

9. Conclusions

The three-dimensional structure of EBV is closely associated with the latency program
and, therefore, with the regulation of viral gene expression. The central role of viral
chromatin architecture is underscored by the fact that multiple factors are exploited by the
virus to maintain it, including CTCF, Cohesin, PARP1, MYC, and Lamins. However, our
present understanding of the role of chromatin structure in EBV gene expression is still
incomplete due to technological limitations. For example, multiple copies of EBV episomes
exist in each infected cell, yet HiC technologies only provide the viral 3D genome structure
obtained from a cell population. Therefore, it is unclear whether all EBV episomes within an
infected cell adopt the same chromatin structure or whether sub-populations of episomes
exist, each adopting a specific 3D chromatin structure consisting of just a sub-set of loops.
Overall, shedding light on these regulatory layers can be of considerable importance in the
treatment of EBV-associated malignances.

In recent years, numerous drugs targeting epigenetic mechanisms have been de-
veloped and utilized to improve the efficacy of chemotherapy. Considering the signif-
icant role of epigenetics in regulating both EBV infection and the development of EBV-
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associated malignancies, leveraging epigenetic drugs may offer a promising and innovative
therapeutic strategy for treating EBV-positive malignancies.
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