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Abstract: It has been experimentally reported that not only oxidation reactions but also reduction
reactions occur in aqueous solutions under ultrasound without any additives. According to the
numerical simulations of chemical reactions inside an air or argon bubble in water without any
additives under ultrasound, reducing agents produced from the bubbles are H, H2, HO2 (which
becomes superoxide anion (O−2 ) in liquid water), NO, and HNO2 (which becomes NO−2 in liquid
water). In addition, H2O2 sometimes works as a reducing agent. As the reduction potentials of H and
H2 (in strongly alkaline solutions for H2) are higher than those of RCHOH radicals, which are usually
used to reduce metal ions, H and H2 generated from cavitation bubbles are expected to reduce metal
ions to produce metal nanoparticles (in strongly alkaline solutions for H2 to work). It is possible that
the superoxide anion (O−2 ) also plays some role in the sonochemical reduction of some solutes. In
strongly alkaline solutions, hydrated electrons (e−(aq)) formed from H atoms in liquid water may
play an important role in the sonochemical reduction of solutes because the reduction potential is
extremely high. The influence of ultrasonic frequency on the amount of H atoms produced from a
cavitation bubble is also discussed.

Keywords: sonochemistry; reducing agents; an air or argon bubble; ultrasound; numerical simula-
tions; bubble collapse; chemical reactions; water vapor; H atoms

1. Introduction

An ultrasonic bath is widely used for cleaning glass, medical equipment, etc. [1,2]. Fur-
thermore, an ultrasonic bath is widely used in laboratories for the dispersion of nanoparticles
in various liquids [3–6]. An ultrasonic horn is also widely used in the dispersion of nanoparti-
cles as well as in the dissolution of gels [3–11]. The physical and chemical effects of strong
ultrasound are mostly caused by acoustic cavitation, which is the formation of gas bubbles
and the violent collapse of the bubbles under ultrasound [2]. When the acoustic pressure
amplitude is larger than the cavitation threshold, many tiny bubbles of a few micrometers
in diameter are created [2,12–16]. During the rarefaction phase of ultrasound, the bubbles
expand. At the compression phase of ultrasound, some of the bubbles violently collapse,
which is called the Rayleigh collapse [2,17,18]. The reasons for the violent bubble collapse
are as follows [2,18]. One is the inertia of the inflowing liquid toward the bubble during
the bubble collapse. The other is the nearly spherical geometry of the bubble collapse, as
the continuity of the liquid requires an increase in the inward liquid velocity as the distance
from the bubble center decreases because the surface area decreases. The violent collapse
stops when the gas density inside the bubble increases nearly to the density of liquid (the
condensed phase) because the internal pressure of the bubble significantly increases [2,19].
At the final moment of the violent bubble collapse, the temperature and pressure inside the
bubble increase to several thousand Kelvin and several hundred of atmospheric pressure or
more because the work performed on a collapsing bubble by the surrounding liquid heats
up the bubble [2,12,19–22]. In other words, it is a quasi-adiabatic collapse, where “quasi-”
means that appreciable thermal conduction takes place between the heated interior of a
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bubble and the surrounding liquid [12]. As a result, water vapor and oxygen, if present, are
thermally dissociated inside a heated bubble, and oxidants such as OH radicals, H2O2, and
O radicals are formed [2,23–25]. In addition, faint light is emitted from the heated bubbles,
which is called sonoluminescence, partly because gases inside heated bubbles are weakly
ionized [2,12,17,20,26–32]. The oxidants diffuse into the liquid and react with solutes, which
are called sonochemical reactions [2,23,33–39]. Sonochemical reactions in aqueous solutions
are mostly the oxidation of solutes, as easily confirmed by the chemiluminescence of lumi-
nol, which is called sonochemiluminescence [2,23,40–50]. The oxidation of potassium iodide
(Reaction (1)) is widely used as a dosimeter to calibrate sonochemical efficiency [2,51,52].

2OH + 3I− → 2OH− + I−3 (1)

The chemical products from cavitation bubbles under ultrasound are mostly oxidants
because H atoms, which are reducing agents, formed inside a bubble by the dissociation of
water vapor hardly penetrate into the liquid phase due to the chemical reactions with O2
and OH inside a bubble as follows [53].

H + O2 → O + OH (2)

H + O2 + M→ HO2 + M (3)

H + OH→ H2 + O (4)

On the other hand, the sonochemical reduction of metal ions to produce metal
nanoparticles has been experimentally reported [54–73]. In most of the experiments, an
organic material such as alcohol (RCH2OH, where R = H or alkyl group), ascorbic acid,
formic acid, etc., was added to the aqueous solution to produce a reducing agent by
the chemical reaction with OH radicals generated from cavitation bubbles as follows for
alcohol [54–61,65,66,68,71–73].

RCH2OH + OH→ RCHOH + H2O (5)

where RCHOH is a reducing agent (radical) and reduces metal ions as follows [57,61,68].

3RCHOH + AuCl−4 → 3RCHO + 3H+ + Au + 4Cl− (6)

Citric acid and EDTA also produce reducing agents by reacting with OH radicals [74,75].
In 2020, Okitsu et al. [76] reported that in the experiment of sonochemical reduction

of AuCl−4 in aqueous butanol (CH3(CH2)3OH) solution under Ar at 200 kHz, the main
reducing agents were CO, CH3, and other products of pyrolysis of butanol by acoustic
cavitation. It has been known that volatile solutes such as low-molecular-weight alcohols
enter cavitation bubbles and are dissociated in the heated bubbles at the violent bubble
collapse [2,77]. Kamali et al. [78] suggested that zero-valent copper was formed by the
thermal decomposition of copper (II) acetate monohydrate (Cu(CO2CH3)2·H2O) inside
heated cavitation bubbles at the violent bubble collapse. However, in their experiment [78],
an ethylene glycol-ethanol solution (1:1) was used, and reducing agents might be formed by
the thermal decomposition of ethylene glycol and/or ethanol. Further studies are required
on this topic.

On the other hand, there are a few experimental reports that metal ions are reduced
in sonochemical reactions without any additives such as organic materials, as discussed
in more detail in the following section [68–70]. In the present review, reducing agents in
sonochemical reactions without any additives are discussed based on numerical simula-
tions of chemical reactions inside an air or argon bubble [24,53]. One of the aims of the
present review is to stress that not only oxidation reactions but also reduction reactions
occur in sonochemical reactions without any additives. Another aim is to discuss the
chall-enges faced in this field and the outlook for research direction. The other aim is to
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provide information to enhance the reduction reactions in sonochemical reactions without
adding any additives.

2. Sonochemical Reduction without Any Additives

In 2009, Sakai et al. [69] experimentally reported the sonochemical reduction of AuCl−4
ions in an aqueous HAuCl4 solution in the concentration range of 0.01–0.1 mM without
any additives. The solution was irradiated with ultrasound in an ultrasonic bath, which
enabled it to generate 28, 200, and 950 kHz ultrasound. The liquid temperature ranged
from 4 to 60 ◦C. Ultra-pure water used in the experiment was purged by argon gas to
promote radical (H and OH) formation from water. The proposed chemical reactions in the
solution under ultrasound are as follows [69].

2AuIIICl−4 + H→ 2AuIICl−3 + Cl + HCl (7)

2AuIICl−3 → AuIIICl−4 + AuICl−2 (8)

AuICl−2 + H→ Au0 + HCl + Cl− (9)

nAu0 →
(

Au0
)

n
(10)(

2AuI, Aun

)
→

(
AuII, Aun+1

)
(11)

AuIIICl−4 + 2Au0 + 2Cl− ↔ 3AuICl−2 (12)

In the experiment of Sakai et al. [69], the reduction of AuCl−4 was monitored by the
decrease of the AuCl−4 concentration (

[
AuIII]) in solutions with an inductively coupled

plasma spectrometer (ICPS) (ICPS-7500, SHIMADZU, Kyoto, Japan). The formation of gold
nanoparticles was confirmed by observing the absorption spectra at ~530 nm originating
from the surface plasmon resonance of the gold nanoparticles using a UV-visible spectrom-
eter. The size and shape of the produced gold nanoparticles were observed by transmission
electron microscopy (TEM) (H-7650, Hitachi High Technologies Co., Tokyo, Japan).

Experimental evidence for the sonochemical reduction of AuCl−4 without any addi-
tive is the decrease of AuCl−4 concentration with time measured with ICPS, as shown in
Figure 1 [69]. The concentration of AuCl−4 ions in the solution decreased with sonication
time and became zero at ~6 min in the case of 200 and 950 kHz sonication (Figure 1). In
the case of 28 kHz sonication, the decrease in AuCl−4 concentration was not significant.
They indicate that higher-frequency ultrasound is more effective at reducing AuCl−4 than
lower-frequency ultrasound. In the case of 200 and 950 kHz sonication, an absorption band
centered at ~530 nm originated from the surface plasmon resonance of the gold nanoparti-
cles was observed using a UV-visible spectrometer [69]. In the case of 28 kHz, there was
no noticeable peak in the absorption spectrum. The facts also indicate that appreciable
amounts of gold nanoparticles were produced for the cases of 200 and 950 kHz sonication,
while much less gold nanoparticles were produced for the case of 28 kHz sonication.

According to the TEM observation of the produced gold nanoparticles formed from
aqueous 0.1 mM AuCl−4 solutions by 950 kHz sonication for 8 min, there were spherical
nanoparticles with a diameter of 20–60 nm and triangular and/or hexagonal plates with a
size of 20–200 nm, as shown in Figure 2 [69]. As seen in Figure 2, the size and shape of the
produced gold nanoparticles depend on the liquid temperature during the sonication. For
the temperature range of 4–40 ◦C, triangular and hexagonal plates were formed along with
the spherical nanoparticles. On the other hand, for the cases of 50 and 60 ◦C, only spherical
gold nanoparticles were formed, as shown in Figure 2 [69]. Sakai et al. [69] suggested
that under relatively high liquid temperatures, dissolution of triangular and hexagonal
plates would be accelerated because, 30 days after the preparation of gold nanoparticles
at 25 ◦C, triangular and hexagonal plates disappeared. With regard to the mechanism for
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the formation of triangular and hexagonal plates, Sakai et al. [69,70] suggested that Cl−

ions are adsorbed on a certain crystal facet and reduction of AuCl−4 ions occurs on other
crystal facets. Indeed, the formation of triangular and/or hexagonal plates was promoted
with the addition of NaCl, and the size of the plate increased as the NaCl concentration
increased [69]. The larger size of triangular and hexagonal plates compared to spherical
nanoparticles may be due to the accelerated reduction of AuCl−4 ions on the crystal facets
of the plates. Further studies are required on this topic.
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Figure 1. The concentration of AuCl−4 ([AuIII]) as a function of sonication time, using different
frequencies of ultrasound: 28 kHz (�), 200 kHz (#), and 950 kHz (•) at 25 ◦C. The initial concentration
of AuCl−4 was 0.1 mM. Reprinted with permission from Ref. [69]. Copyright 2009, Elsevier.

In 2014, Sakai et al. [70] experimentally reported the influence of gas species on the
sonochemical reduction of AuCl−4 without any additives (Figures 3 and 4). The gas species
studied were Ar, N2, O2, and H2. Aqueous 0.1 mM AuCl−4 solutions were purged with
each gas for 30 min before sonication [70]. The solutions were sonicated in an ultrasonic
bath at 950 kHz for 8 min at 25 ◦C [70]. For an Ar-purged solution, spherical and plate-like
gold nanoparticles were produced (Figure 3a). Indeed, bimodal absorption bands centered
at ~520 and ~720 nm originated from the surface plasmon resonance of the spherical and
plate-like gold nanoparticles, respectively, were observed (Figure 4a). For a N2-purged
solution, the gold nanoparticles produced were similar to those for the Ar-purged solution
(Figure 3b). However, the size of plate-like gold nanoparticles produced from the N2-
purged solution seems to be larger than those from the Ar-purged solution because the
absorption band was shifted to a longer wavelength (Figure 4b) [70,79]. For an O2-purged
solution, larger gold nanoparticles were produced compared to those for the Ar-purged
and N2-purged solutions (Figures 3c and 4c) [70]. On the other hand, for a H2-purged
solution, spherical gold nanoparticles of ~20 nm were selectively produced (Figures 3d
and 4d) [70]. It should be noted that gas purging alone without sonication did not reduce
AuCl−4 in aqueous solutions [70]. Sakai et al. [70] suggested that the formation of smaller
spherical gold nanoparticles in the H2-purged solution is due to the increase in the number
of nanoparticle nucleation sites caused by the increase in the amount of the reducing agent
(H atoms) by the following reaction.

OH + H2 → H2O + H (13)

where OH radicals are produced by the thermal dissociation of water vapor in the heated
hydrogen bubbles at the violent bubble collapse [80,81]. Although Sakai et al. [70] did not
comment on the site where the reaction (13) occurs, it seems that the reaction (13) occurs at
the gas-liquid interface region shown in Figure 5 [82]. Sakai et al. [70] discussed that the
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reducing agent (H atoms) produced inside oxygen bubbles from water vapor at the violent
bubble collapse is consumed by the following reaction in an O2-purged solution.

H + O2 → HO2 (14)

Indeed, according to the numerical simulations of chemical reactions inside an oxygen
(O2) bubble in water irradiated by 22 kHz and 1.68 bar ultrasound [83], the main chemical
products are H and HO2, along with H2, H2O2, and OH radicals. It seems that H atoms are
consumed in the gas-liquid interface region by the reaction (14). Accordingly, the number
of nanoparticle nucleation sites is decreased in an O2-purged solution, and the particle size
is increased due to the smaller number of particles generated. Although Sakai et al. [70]
also discussed the reason for the similarity in gold nanoparticle production in Ar-purged
and N2-purged solutions, it seems to be unclear at present.
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In 2020, Yasuda et al. [84] experimentally reported the sonochemical reduction of
AuCl−4 without any additives such as organic materials with and without ultrafine bub-
bles (UFBs, which are also called bulk nanobubbles). In the experiment [84], UFBs were
generated by a pressurized dissolution method using ultrapure water and a commercially
available UFB generator. Air, argon, oxygen, and nitrogen were used as gases to generate
UFBs [84]. During the generation of UFBs, the liquid becomes milky due to the generation
of a huge number of microbubbles, mostly using hydrodynamic cavitation [85,86]. After
stopping cavitation, the liquid returns to being transparent as most of the microbubbles
disappear at the liquid surface due to buoyancy. In the transparent liquid water, UFBs are
present, which can be confirmed by particle tracking analysis (PTA) to estimate the number
concentration and size distribution of nano and submicron particles suspended in a liquid
by observing the Brownian motion of the particles with a video camera [85,87]. The size
distribution of micro and ultrafine bubbles in the initial milky water is continuous, and
only ultrafine bubbles of about 100 nm in diameter remain in the transparent liquid [87,88].
In the experiment of Yasuda et al. [84], the modal diameters of UFBs for all the gases were
approximately 120 nm. The concentration of air-UFBs before ultrasonic irradiation was
5× 109 mL−1 [84]. It should be noted that UFBs are generally very stable, and the lifetime
could be more than 200 days with a slight change in size distribution [88,89]. With regard
to the mechanism of stability of a UFB against dissolution, the dynamic equilibrium model
that a UFB is partly covered with hydrophobic materials (impurities) seems promising
because there is evidence in the TEM images of UFBs partly covered with hydrophobic
materials [90–96]. In the experiment of Yasuda et al. [84], water containing UFBs was
used as solvent for aqueous 0.1 mM AuCl−4 solutions. The solution was irradiated with
495 kHz ultrasound using the apparatus shown in Figure 6i [84]. As is usually the case in
experiments in sonochemistry [2,97], a sinusoidal electric signal is amplified with a power
amplifier and supplied to an ultrasonic transducer, which is attached to the bottom of
an ultrasonic bath. A vessel that contained the solution was immersed in the ultrasonic
bath filled with water, as shown in Figure 6i. The comparison between sonochemically
produced gold nanoparticles with and without air-UFBs is shown in Figure 6ii,iii. Without
UFBs, the produced gold nanoparticles were not only spherical nanoparticles but also
plate-like particles (Figure 6ii(a)). The mean diameter of the particles without UFBs was
119 nm [84]. On the other hand, with air-UFBs, mostly spherical gold nanoparticles were
produced. Furthermore, the gold nanoparticles produced were much smaller than those
without UFBs. The mean diameter of gold nanoparticles with air-UFBs was 22 nm [84].
This is confirmed by the absorption spectra because the absorption peak became sharper
and was shifted to a shorter wavelength with air-UFBs compared to that without UFBs
(Figure 6iii) [79,84]. For all the gases for UFBs studied by Yasuda et al. [84], the produced
gold nanoparticles were mostly spherical nanoparticles, in contrast to the case without
UFBs. The mean diameter of the produced gold nanoparticles depended on the gas species:
49 nm for Ar-UFBs, 43 nm for O2-UFBs, 73 nm for N2-UFBs, and 22 nm for air-UFBs [84].
Yasuda et al. [84] suggested that acoustic cavitation could be enhanced in the presence
of UFBs, and accordingly, the concentration of reducing species could be increased. It
may result in an increase in nucleation sites in nanoparticles and a decrease in particle
size [84]. On the other hand, according to the dynamic equilibrium model of UFBs [90], a
UFB is stabilized against dissolution by being partly covered with hydrophobic impurities
such as oils, carbon particles, etc. The hydrophobic impurities could be produced from
a UFB generator, such as abrasion powder from the mechanical seal or lubrication oil in
a water pump, even if ultrapure water is used [98,99]. It suggests that sonication of the
hydrophobic impurities may result in the production of reducing agents such as CO, CH3,
etc. It may also cause an increase in the nucleation sites of gold nanoparticles. With regard
to the smallest nanoparticle size with air-UFBs, sonochemically produced NO and/or NO−2
might play some role [24,53]. Further studies are required on these topics.
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Figure 6. Sonochemical reduction of aqueous 0.1 mM AuCl−4 solutions by 495 kHz sonication for 10 min
at 10 ◦C to produce gold nanoparticles with and without ultrafine bubbles. (i) Experimental apparatus.
(ii) (a) SEM images of gold nanoparticles. (b) The size distribution of spherical gold nanoparticles.
(iii) Absorption spectra. Reprinted with permission from Ref. [84]. Copyright 2020, Elsevier.

In 2002, Caruso et al. [68] recognized that sonochemical reduction of AuCl−4 occurred
in 0.2 mM aqueous AuCl−4 solutions without any additives at 20 ◦C purged with argon
for 15 min before sonication. In the experiment of Caruso et al. [68], an ultrasonic horn
was used for sonication at 20 kHz for 2.5 min. Gold nanoparticles were produced without
any additives such as alcohol, although not as much as when alcohol was added to the
solution [68]. It can be seen from Figure 7 that the amount of reduced AuCl−4 was non-zero
even in the absence of alcohols (at an alcohol concentration of zero) [68].



Molecules 2023, 28, 4198 9 of 24

Molecules 2023, 28, x FOR PEER REVIEW 10 of 26 
 

 

 
Figure 7. The amount of AuClସି   reduced by sonication for 2.5 min as a function of the alcohol 
concentration for (a) methanol and ethanol, (b) 1-propanol and 1-butanol, and (c) 1-pentanol. The 
initial concentration of AuClସି  was 0.2 mM. The pH of the solutions before and after sonication was 
between 3.1 and 3.5. The liquid temperature was maintained at 21 ±  3 °C. Reprinted with 
permission from Ref. [68]. Copyright 2002, the American Chemical Society. 

3. Results of Numerical Simulations and Discussion 
There are various theoretical models of bubble dynamics for numerical simulations 

of chemical reactions inside a cavitation bubble [2,16,19,24,53,77,80,100–117]. The first 
paper on numerical simulations of sonochemical reactions was probably by Kamath, 
Prosperetti, and Egolfopoulos in 1993 [100]. The model used in the numerical simulations 
discussed in the present paper is schematically shown in Figure 8 [116]. Temperature and 
pressure are assumed to be spatially uniform inside a bubble except at the thermal 
boundary layer near the bubble wall [2,16,19,24,53,77,80,111–117]. Non-equilibrium 
evaporation and condensation of water vapor take place at the bubble wall [115]. Thermal 
conduction takes place both inside and outside a bubble [19]. The temporal variation of 
liquid temperature at the bubble wall is numerically calculated using a rather simple 
model [112]. Non-equilibrium chemical reactions are taken into account by numerically 
calculating chemical reaction rates using Arrhenius-type rate constants [19,114]. For an air 
bubble, rates of 93 chemical reactions and their backward reactions are numerically 
calculated as a function of time involving Nଶ, Oଶ, HଶO, OH, H, O, HOଶ, HଶOଶ, Oଷ, N, HNOଶ, HNO , HNOଷ , NO , NOଶ , and NଶO  [114,118–
120]. Kalmar et al. [105] pointed out that the results of numerical simulations strongly 
depend on the chemical kinetics model employed in the simulations. In the present model, 
the ionization of gases and vapor inside a heated bubble is taken into account, considering 
the ionization-potential lowering due to high density inside a bubble at the end of the 
violent bubble collapse [16,113]. The model has been validated through the study of 
single-bubble sonochemistry [24]. The single-bubble system is as follows. A single stably 
pulsating bubble is trapped near the pressure antinode of a standing ultrasonic wave due 
to the acoustic radiation force called the primary Bjerknes force in degassed water 
[17,32,121,122]. If the liquid water is not sufficiently degassed, many cavitation bubbles 
appear under the irradiation of strong ultrasound, and a single-bubble system cannot be 
obtained. Single-bubble sonoluminescence (SBSL) is the light emission phenomenon from 
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concentration for (a) methanol and ethanol, (b) 1-propanol and 1-butanol, and (c) 1-pentanol. The
initial concentration of AuCl−4 was 0.2 mM. The pH of the solutions before and after sonication was
between 3.1 and 3.5. The liquid temperature was maintained at 21 ± 3 ◦C. Reprinted with permission
from Ref. [68]. Copyright 2002, the American Chemical Society.

3. Results of Numerical Simulations and Discussion

There are various theoretical models of bubble dynamics for numerical simulations of
chemical reactions inside a cavitation bubble [2,16,19,24,53,77,80,100–117]. The first paper
on numerical simulations of sonochemical reactions was probably by Kamath, Prosperetti,
and Egolfopoulos in 1993 [100]. The model used in the numerical simulations discussed
in the present paper is schematically shown in Figure 8 [116]. Temperature and pressure
are assumed to be spatially uniform inside a bubble except at the thermal boundary layer
near the bubble wall [2,16,19,24,53,77,80,111–117]. Non-equilibrium evaporation and con-
densation of water vapor take place at the bubble wall [115]. Thermal conduction takes
place both inside and outside a bubble [19]. The temporal variation of liquid temperature
at the bubble wall is numerically calculated using a rather simple model [112]. Non-
equilibrium chemical reactions are taken into account by numerically calculating chemical
reaction rates using Arrhenius-type rate constants [19,114]. For an air bubble, rates of
93 chemical reactions and their backward reactions are numerically calculated as a func-
tion of time involving N2, O2, H2O, OH, H, O, HO2, H2O2, O3, N, HNO2, HNO,HNO3, NO,
NO2, and N2O [114,118–120]. Kalmar et al. [105] pointed out that the results of numerical
simulations strongly depend on the chemical kinetics model employed in the simulations.
In the present model, the ionization of gases and vapor inside a heated bubble is taken
into account, considering the ionization-potential lowering due to high density inside a
bubble at the end of the violent bubble collapse [16,113]. The model has been validated
through the study of single-bubble sonochemistry [24]. The single-bubble system is as
follows. A single stably pulsating bubble is trapped near the pressure antinode of a stand-
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ing ultrasonic wave due to the acoustic radiation force called the primary Bjerknes force
in degassed water [17,32,121,122]. If the liquid water is not sufficiently degassed, many
cavitation bubbles appear under the irradiation of strong ultrasound, and a single-bubble
system cannot be obtained. Single-bubble sonoluminescence (SBSL) is the light emis-
sion phenomenon from the single-bubble system [2,17,27,32,111,122] and was a popular
topic in scientific research soon after the report by Barber and Putterman in 1991 [123]
on the extremely short pulse-width of SBSL. In 2002, Didenko and Suslick [124] experi-
mentally reported the production rate of OH radicals from a SBSL bubble, which is called
single-bubble sonochemistry.
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Figure 8. The model of bubble dynamics. The abscissa axis is spatial position. Reprinted with
permission from Ref. [116]. Copyright 2004, Elsevier.

The results of numerical simulations under the condition of single-bubble sonochem-
istry are shown in Figures 9 and 10 [24]. During the rarefaction phase of ultrasound, a
bubble expands to a maximum radius of 30.5 µm (Figure 9a) [24,124]. At the compres-
sion phase of ultrasound, a bubble violently collapses, which is the Rayleigh collapse. At
the end of the violent collapse, the temperature and pressure inside a bubble increase to
10,900 K and 7.9× 109 Pa, respectively (Figure 10a for temperature) [24]. As a result, al-
most all water vapor molecules inside a bubble are dissociated at the end of the violent
bubble collapse, and an appreciable amount of OH radicals are produced inside the bubble
(Figure 10b). It should be noted that the main content of a SBSL bubble is argon because
nitrogen and oxygen chemically react inside a heated air bubble and change to HNOx and
NOx, which gradually dissolve into the surrounding liquid water [17,125]. After about
one hundred acoustic cycles, which corresponds to one hundred violent collapses, only
chemically inactive argon remains inside a bubble, as 1% of the air in the molar fraction
is argon [126]. This argon rectification hypothesis has been validated both theoretically
and experimentally [17]. The chemical species present inside a SBSL bubble just before
the end of the violent collapse in Figure 10b were produced at the previous violent col-
lapse [24]. The OH flux from the SBSL bubble and its time integral are shown in Figure 9b
as a function of time for one acoustic cycle [24]. About 1/3 of the total amount of OH
radicals that diffuse into the surrounding liquid water in one acoustic cycle diffuse out of
a bubble at around the end of the violent collapse. The other 2/3 of OH radicals diffuse
into the surrounding liquid during bubble expansion and the bouncing motion shown
in Figure 9a. The total amount of OH radicals that diffuse into the liquid is 6.6× 105 in
number of molecules according to the present numerical simulation, which almost agrees
with the experimental data of 8.2× 105 by Didenko and Suslick [124]. It means that the
present model has been validated by comparison with the experimental data. It should be
noted that an ODE (ordinary differential equations) model like the present model needs to
be validated through comparison with experimental data or the results of first-principle
calculations because an ODE model is not fully based on the first principles [127].
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permission from Ref. [24]. Copyright 2005, AIP Publishing.
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The amounts of chemical products that dissolve into the surrounding liquid from a SBSL
bubble (mostly an argon bubble) in one acoustic cycle are shown in Table 1, according to
the results of the numerical simulation [24]. In order to discuss reducing agents produced
from a SBSL bubble, the reduction potentials of reducing agents are listed in Table 2 [128–130].
Among the reducing agents produced from a SBSL bubble in Table 1, the reduction potential
of the H atom is extremely high, as listed in Table 2. In other words, the main reducing agent
produced by a SBSL bubble is the H atom. For an air bubble, the amount of H atoms produced
from a bubble is much smaller than that from an argon bubble (a SBSL bubble), as listed in
Table 3. Nevertheless, as the reduction potential of H atoms is extremely high compared to
other reducing agents, the main reducing agent produced from an air bubble would also be H
atoms. Experimentally, H atoms produced from argon-saturated aqueous solutions irradiated
with ultrasound (which are multi-bubble systems) have been detected by spin trapping and
electron spin resonance along with OH radicals [131–133].

Table 1. The amounts of chemical products that dissolve into the liquid water from the interior of a SBSL
bubble (mostly an argon bubble) in one acoustic cycle according to the numerical simulation. The liquid
volume in the experiment [124] was about 15 mL. Reprinted with permission from Ref. [24]. Copyright
2005, AIP Publishing.

Chemical Species Number of Molecules per Acoustic Cycle

H2 3.1× 107

O 1.3× 107

H2O2 6.3× 106

H 4.1× 106

HNO2 2.3× 106

HO2 1.1× 106

HNO3 8.4× 105

OH 6.6× 105

NO 2.5× 105

HNO 9.5× 104

NO2 4.4× 104

O3 3.4× 104

N 2.9× 104

NO3 3.1× 103

N2O 3.1× 102
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Table 2. The reduction potentials of reducing agents [128–130].

Reducing Agent Reaction Reduction Potential (V)

e−(aq) e−(aq)→ e− 2.88 [128]
H(aq) H(aq)→ H+ + e− 2.31 [128]

H2 H2 + 2OH− → 2H2O + 2e− 0.83 [129] 1

CH2OH CH2OH→ CHOH + H+ + e− 0.73 [130]
CH3CHOH CH3CHOH→ CH3COH + H+ + e− 0.69 [130]

O−2 O−2 → O2(aq) + e− 0.18 [128]
CO CO + H2O→ CO2 + 2H+ + 2e− 0.11 [129]

HO2 HO2 → O2 + H+ + e− 0.05 [129]
H2 H2 → 2H+ + 2e− 0.00 [129]

NO−2 NO−2 + 2OH− → NO−3 + H2O + 2e− −0.01 [129] 1

NO NO + 2OH− → NO−2 + H2O + e− −0.46 [129] 1

HNO2 2HNO2 → NO + NO−3 + 2H+ + e− −0.52 [129]
I− 3I− → I−3 + 2e− −0.54 [129]

H2O2 H2O2 → O2 + 2H+ + 2e− −0.70 [129]
NO NO + H2O→ NO2 + 2H+ + 2e− −1.05 [129]

1 [
OH−

]
≈ 1 mol L−1.

Table 3. The amounts of chemical products that dissolve into the liquid water from the interior of
an initial air bubble in one acoustic cycle according to the numerical simulation. Reprinted with
permission from Ref. [24]. Copyright 2005, AIP Publishing.

Chemical Species Number of Molecules per Acoustic Cycle

HNO2 4.0× 107

HNO3 3.7× 107

O 1.6× 107

H2O2 5.1× 106

O3 2.7× 106

HO2 2.3× 106

NO3 1.1× 106

H2 1.0× 106

OH 9.9× 105

NO2 3.9× 105

N2O 3.0× 105

NO 1.3× 105

H 1.1× 105

HNO 2.8× 104

N 2.7× 103

N2O5 6.8× 102

For a SBSL bubble (mostly an argon bubble), the main chemical product produced from
a bubble is H2 as shown in Table 1 [24]. Indeed, H2 produced from cavitation bubbles in
water under argon irradiated with 300 kHz and 12 W of ultrasound (which was a multi-
bubble system) was experimentally detected by using a mass spectrometer, and the rate of H2
formation was 10 µM min−1 [134]. There are also other experimental reports that H2 produced
from cavitation bubbles in water in which O2, air, N2, or argon were dissolved and irradiated
with ultrasound was detected [23,70,135–137]. There have also been some numerical studies on
the hydrogen production from cavitation bubbles in recent years [138–141]. In the experiment
of Sakai et al. [70], H2-gas purging alone did not reduce AuCl−4 in aqueous solutions. Thus,
the reducing power of H2 is insufficient for the reduction of AuCl−4 as the reduction potential
of H2 in acidic solutions, which was the case in the experiments of Sakai et al. [69,70], is only
0.00 V (the standard condition) (Table 2). On the other hand, in strongly alkaline solutions, the
reduction potential of H2 could be larger than that of CH2OH and CH3CHOH, which easily
reduce AuCl−4 (Table 2). It suggests that H2 produced from cavitation bubbles could work as a
reducing agent in strongly alkaline solutions. H2 is also produced from an air bubble, as listed
in Table 3.
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For an air bubble, the main chemical product is HNO2 under the conditions listed in
Table 3 [24]. Indeed, HNO2 produced from air bubbles in water at 25 ◦C irradiated with
447 kHz and 50 W ultrasound (which was a multi-bubble system) was detected by a dia-
zotization method, and the rate of HNO2 formation was 22 µM min−1 [142]. There have also
been other experimental reports that NO−2 , which is mainly formed by HNO2 → H+ + NO−2
(pK = 3.3 [143]), produced from cavitation bubbles in water irradiated with ultrasound, is
detected [23,124,136,144,145]. Although the reduction potential of HNO2 in acidic solutions
is rather low, as listed in Table 2, that of NO−2 in strongly alkaline solutions is comparable
to that of H2 in acidic solutions. Further studies are required to determine whether HNO2
and NO−2 play some role in the sonochemical reduction of solutes. It should be noted
that HNO2 and NO−2 not only work as reducing agents but also as oxidants, as listed in
Table 4 [129,146].

Table 4. The oxidation potentials of oxidants [129,146].

Oxidant Reaction Oxidation Potential (V)

OH OH + H+ + e− → H2O 2.81 [126]
O O + 2H+ + 2e− → H2O 2.42 [126]
O3 O3 + 2H+ + 2e− → O2 + H2O 2.07 [126]

H2O2 H2O2 + 2H+ + 2e− → 2H2O 1.78 [126]
NO−2 2NO−2 + 6H+ + 4e− → N2O + 3H2O 1.40 [116]

HNO2 2HNO2 + 4H+ + 4e− → N2O + H2O 1.30 [116]
NO−2 NO−2 + 2H+ + e− → NO + H2O 1.20 [116]

HNO2 HNO2 + H+ + e− → NO + H2O 1.00 [116]
AuCl−4 AuCl−4 + 3e− → Au + 4Cl− 1.00 [116]

Both for an argon bubble (a SBSL bubble) and an air bubble, one of the main chem-
ical products is H2O2, as listed in Tables 1 and 3 [24]. Indeed, H2O2 produced from air
bubbles in water at 25 ◦C irradiated with 447 kHz and 50 W ultrasound was detected
by the oxidation reaction of potassium iodide (KI), and the rate of H2O2 formation was
21 µM min−1 [142]. A similar rate of H2O2 formation from argon bubbles was also ex-
perimentally reported [23]. Although H2O2 plays an important role in the sonochemical
oxidation of solutes [23,51,52], Okitsu et al. [147] experimentally reported that H2O2 some-
times works as a reducing agent, such as in the following reaction.

2MnO−4 + 3H2O2 → 2MnO2 + 3O2 + 2OH− + 2H2O (15)

The chemical reaction (15) was confirmed to occur by the addition of H2O2 to a
0.1 mM KMnO4 aqueous solution without ultrasonic irradiation [147]. As the reduction
potential of H2O2 is the lowest among the reducing agents listed in Table 2 except NO in
acidic solutions, almost all the reducing agents produced from cavitation bubbles, such as
H2, HO2 (which becomes superoxide anion (O−2 ) in liquid water), HNO2 (which becomes
NO−2 in liquid water), and NO (in strongly alkaline solutions), could possibly play some
role in the sonochemical reduction of some solutes. It should be noted, however, that NO
in acidic solutions does not reduce AuCl−4 because the reduction potential is even lower
than (−1) times the oxidation potential of AuCl−4 , as listed in Tables 2 and 4 [128–130,146].

The hydroperoxyl radical (HO2) becomes a superoxide anion (O−2 ) in liquid water as
follows [148].

HO2 ↔ O−2 + H+ pK = 4.8 (16)

Kondo et al. [149] experimentally reported that HO2 was detected in oxygen-saturated
aqueous solutions irradiated by 50 kHz ultrasound and that there was evidence of O−2
formation. There have been a few other experimental reports on the formation of superoxide
anion (O−2 ) in liquid water irradiated by ultrasound [150,151]. However, the role of the
superoxide anion (O−2 ) in the sonochemical reduction of solutes is still unclear, and further
studies are required on this topic. As the reduction potential of O−2 is higher than that
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of CO, which has been reported to reduce metal ions [76] (Table 2), it is possible that the
superoxide anion (O−2 ) plays some role in the sonochemical reduction of some solutes.

Finally, the role of hydrated electrons (e−(aq)) produced from cavitation bubbles is
discussed. In strongly alkaline solutions, hydrated electrons (e−(aq)) are formed from H
atoms as follows [23,81,152].

H + OH− ↔ H2O + e−(aq) pK = 9.8 (17)

As the reduction potential of hydrated electrons is very high (Table 2), the reduction of
thallium ions was experimentally reported in strongly alkaline solutions in which an argon-
hydrogen mixture was dissolved and irradiated with 1 MHz ultrasound as follows [23,81].

Tl+ + e−(aq)→ Tl0 (18)

As a result, colloidal thallium was formed. Thallium ions were not reduced in neutral
or weakly alkaline solutions [23,81]. On the other hand, hydrated electrons (e−(aq)) are
possibly produced from plasma formed inside heated cavitation bubbles as there are free
electrons in the plasma [2,12,16,17,20,24,26–32,103,109,113,153–155]. At present, however,
hydrated electrons (e−(aq)) have been experimentally detected only from a moving SBSL
bubble in neutral or acidic solutions [29,156]. In a multi-bubble system at neutral pH, no
detectable yield of hydrated electrons in argon-saturated aqueous solutions irradiated with
50 kHz ultrasound at 20 ◦C was found experimentally [157]. Further studies are required
on the role of hydrated electrons in the sonochemical reduction of solutes.

Next, the dependence of amounts of chemical species produced from a cavitation
bubble on ultrasonic frequency is discussed based on numerical simulations of chemical
reactions inside an air bubble [53]. For relatively low ultrasonic frequencies (20 and
100 kHz), there is a peak in bubble temperature at the violent bubble collapse as a function of
the pressure amplitude of ultrasound (acoustic amplitude), as shown in Figure 11a [53]. The
reason is that for relatively low ultrasonic frequencies, the bubble content becomes mostly
water vapor at the end of the violent bubble collapse at a relatively high acoustic amplitude
because a bubble dramatically expands during the rarefaction phase of ultrasound and
intense evaporation of water vapor occurs during the bubble expansion. When the bubble
content is mostly water vapor, which is called a vaporous bubble, the bubble temperature
at the violent collapse does not increase much because the endothermic dissociation of
water vapor cools the bubble considerably [19,113,158,159]. Although the bubble collapse
becomes more violent as the acoustic amplitude increases, the bubble temperature decreases
for relatively high acoustic amplitudes due to the increase in the amount of water vapor
trapped inside a collapsing bubble, as shown in Figure 11b [53]. This is the reason for
the appearance of the peak in bubble temperature as a function of acoustic amplitude at
relatively low ultrasonic frequencies. For relatively high ultrasonic frequencies (300 kHz
and 1 MHz), on the other hand, the amount of water vapor trapped inside a bubble at the
end of the bubble collapse is much smaller than that at relatively low ultrasonic frequencies,
and thus the bubble temperature increases as the acoustic amplitude increases until it
reaches a plateau as shown in Figure 11a,b [53].

When the bubble temperature is higher than about 7000 K, oxidants such as OH, O, H2O2,
and O3 are strongly consumed inside an air bubble by oxidizing nitrogen [2,53,111,116]. In
addition, H atoms are also strongly consumed inside an air bubble at such a high temper-
ature by the following chemical reactions; H + O2 → O + OH, H + O2 + M→ HO2 + M,
H + OH→ H2 + O, H + HNO2 → H2 + NO2 , and H + NO2 → NO + OH [53]. As a re-
sult, the main chemical products at such a high temperature are HNO2, NO, HNO3, H2, and
NO2, as seen in Figure 12 [53].
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In an ultrasonic bath, a standing wave of ultrasound is formed because ultrasound
is strongly reflected by the liquid surface [2,160]. In a standing wave field, bubbles are
repelled from high-acoustic-amplitude regions due to the acoustic radiation force called the
primary Bjerknes force [2,121]. For example, at 20 kHz, bubbles are repelled from regions
with a higher acoustic amplitude than about 1.75 bar [121,161]. In regions with a smaller
acoustic amplitude than about 1.75 bar, bubbles are attracted toward the higher-acoustic-
amplitude regions. Accordingly, many bubbles gather around the region with an acoustic
amplitude of about 1.75 bar. Indeed, the structure of bubbles has been experimentally
observed, which is sometimes called the jellyfish structure [162,163]. At about 1.75 bar at
20 kHz, the bubble temperature is higher than about 7000 K, according to Figure 11 [53]. It
means that the amount of H atoms produced in an ultrasonic bath at 20 kHz is extremely
small, as seen in Figure 12a [53]. It may be the reason why the rate of sonochemical
reduction of AuCl−4 at 28 kHz is much lower than those at 200 and 950 kHz (Figure 1),
according to Sakai et al. [69]. On the other hand, if an ultrasonic horn is used at 20 kHz,
it is predicted that the amount of H atoms produced from an air bubble is much larger
because the acoustic amplitude is much higher, according to Figure 12a [53,159]. However,
it should be noted that under an ultrasonic horn, the bubble-bubble interaction, which is
the influence of acoustic emissions of surrounding bubbles on bubble pulsation, is very
strong and that the effect of the bubble-bubble interaction should be taken into account in
the numerical simulations of chemical reactions inside cavitation bubbles [164,165]. Further
studies are required on this topic.
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Finally, the challenges faced in this field are summarized, and the outlook for the
research direction is discussed. The roles of H2, NO−2 , HNO2, H2O2, O−2 , HO2, and hydrated
electrons (e−(aq)) in the sonochemical reduction of solutes without any additives need to
be studied in more detail. The mechanism of sonochemical reduction of carbon dioxide
experimentally reported recently [166] needs to be studied in more detail. Based on the
detailed mechanism, conditions to enhance the sonochemical reduction of solutes need to
be clarified, such as ultrasonic frequency, acoustic amplitude, type of sonochemical reactor
(bath or horn), pH, etc. It will hopefully lead to industrial applications of sonochemical
reduction as well as oxidation because it is a green process [167–169]. The same is true
for chemical reactions induced by hydrodynamic cavitation (sometimes called fine-bubble
technology) [170–174].

4. Conclusions

It is experimentally reported that reduction of AuCl−4 occurs in aqueous solutions
without any additives such as organic materials irradiated with strong ultrasound, although
oxidation reactions occur in most sonochemical reactions. Considering the high reduction
potential of H atoms, the main reducing agent produced from cavitation bubbles under
ultrasound in water without any additives is a H atom, according to the numerical simu-
lations of chemical reactions inside an air or argon bubble under ultrasound. In strongly
alkaline solutions, H2 produced from cavitation bubbles could also work as a reducing
agent. Hydrated electrons (e−(aq)), which could be formed from H atoms in strongly alka-
line solutions, may also work as a reducing agent. Superoxide anion (O−2 ), which is formed
from HO2 produced from cavitation bubbles in aqueous solutions, could possibly work as
a reducing agent. Further studies are required on the role of HNO2 in the sonochemical
reduction of some solutes. The outlook for research direction is also discussed.
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