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Abstract: Magnesium (Mg2+) has many physiological functions within the body. These include
important roles in maintaining cardiovascular functioning, where it contributes to the regulation of
cardiac excitation–contraction coupling, endothelial functioning and haemostasis. The haemostatic
roles of Mg2+ impact upon both the protein and cellular arms of coagulation. In this review, we
examine how Mg2+ homeostasis is maintained within the body and highlight the various molecular
roles attributed to Mg2+ in the cardiovascular system. In addition, we describe how nutritional and/or
disease-associated magnesium deficiency, seen in some metabolic conditions, has the potential to
influence cardiac and vascular outcomes. Finally, we also examine the potential for magnesium
supplements to be employed in the prevention and treatment of cardiovascular disorders and in the
management of cardiometabolic health.

Keywords: cardiovascular disease; magnesium; metal ion dyshomeostasis; nutrient deficiency;
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1. Introduction

Magnesium is an essential nutrient required by all forms of life [1]. In mammalian
cells, Mg2+ is an abundant cation present at concentrations ranging from 5 to 20 mmol/L [2].
In the plasma, the magnesium concentration is a little lower at around 1 mmol/L. Many
different reference values for serum magnesium have been proposed (as reviewed in [3]),
which collectively suggest that the concentration ranges somewhere between ~0.6 and
~1.2 mmol/L in healthy humans. The Canadian Health Measure Survey Cycle 3, conducted
in 2012–2013, measured serum magnesium in subjects aged 3–79 years. They reported
that 9.5% to 16.6% of adults and 15.8% to 21.8% of adolescents (12–19 years) had serum
magnesium concentrations < 0.75 mmol/L [4], which is a level currently accepted as an
indication of magnesium deficiency. However, it has recently been suggested that this
indicative value is likely to be too low and should be raised to <0.85, as values in this range
are associated with increased health risks [3,5].

Mg2+ has many physiological functions, such as maintaining DNA and RNA sta-
bility, as well as regulating cellular proliferation, bone metabolism, and neuromuscular
functioning [6,7], regulating inflammation [8], and maintaining haemostasis (Figure 1).
Mg2+ is a co-factor for many enzymes [9]. These include protein kinases which are com-
monly utilised to regulate gene transcription in response to extracellular stimuli [10]. Mg2+

is also required for the structure and functioning of DNA and RNA polymerases [11,12].
These polymerases are not only involved in nucleic acid synthesis, but some are also
involved in DNA repair and genome maintenance. Virtually all enzymes taking part in
mismatch repair, nucleotide repair, and base excision repair use Mg2+ as a co-factor. Given
that defects in genome maintenance pathways are considered a hallmark of many cancers,
magnesium deficiency might contribute to oncogenesis [1]. Moreover, magnesium defi-
ciency has been shown to be associated with diverse pathologies including (pre)diabetes
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mellitus, platelet hyper-reactivity, pre-eclampsia, acute myocardial infarction and even
some therapies [13,14].

Figure 1. Magnesium has roles in many physiological processes (created using BioRender).

The scope of this narrative review extends to examine the importance of magnesium
in cardiovascular and metabolic functioning and the influence of both dietary intake and
supplementation on these systems. Here, we will consider how magnesium homeostasis is
maintained and how an individuals’ magnesium status is assessed. We will also examine
dietary magnesium deficiency in obesity and diabetes and review the roles magnesium
plays in cardiovascular functioning and how pathologies caused by deficiencies may be
alleviated through supplementation.

2. Magnesium Homeostasis

Magnesium homeostasis in the body largely depends on the collective actions of the
intestine, skeleton and kidneys. The intestine is responsible for dietary uptake, the skeleton
storage of ~50–60% of total Mg2+ in the form of hydroxyapatite, while the kidneys regulate
its urinary excretion [1]. Magnesium can be found in all cells in the body [15,16], and it
is particularly prevalent within mitochondria, the nucleus, and the endo/(sarco)-plasmic
reticulum. The binding of Mg2+ by phospholipids, proteins, nucleic acids, chromatin, and
nucleotides is thought to explain the presence of such high Mg2+ concentrations in these
organelles [17].

Magnesium is naturally present in many foods; major sources include those of plant
origin such as grains, vegetables, and pulses. In addition, magnesium is often added to
food products and is available in various forms as a dietary supplement [18]. It has been
known for some time that dietary magnesium intake is lower in Western populations due to
industrial food processing that reduces the content of magnesium and other nutrients [19].
Reports also suggest that organic foods contain higher levels of magnesium than non-
organic equivalents [20]. The United States Food and Nutrition Board recommends a daily
Mg2+ intake of 420 mg for men and 320 mg for women [21]. When consumed as part of a
meal, Mg2+ absorption is dependent on the overall composition of the meal. Some nutrients
have an inhibitory effect (e.g., partly fermentable fibres or non-fermentable fibres), whilst
others may increase Mg2+ absorption (e.g., low- or indigestible carbohydrates) [22].

Mg2+ absorption in the gut occurs via two separate pathways. Firstly, bulk absorption
through the small intestine is thought to be regulated in a paracellular manner, since
absorption correlates linearly with luminal Mg2+ concentrations [23,24]. Secondly, fine-
tuning in the cecum and colon occurs transcellularly and involves the transient receptor
potential (TRPM)-6 and 7 channels on the luminal enterocyte membrane for cell uptake [25]
and the cyclin M4 transporter/exchanger on the basolateral membrane for Na+-dependent
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Mg2+ extrusion [26]. In contrast to other minerals, intestinal Mg2+ absorption is poorly
regulated and depends mainly on intake [27,28]. Thus, overall Mg2+ maintenance and
homeostasis are most likely regulated through excretion.

Sixty percent of the body’s total magnesium is stored in bones where it plays a
structural role [29]. Two-thirds of this are stored within hydroxyapatite crystals. This
portion is not readily available but is likely released following bone resorption [30]. Mg2+

binds at the surface of crystalline hydroxyapatite and aids in modulating crystal size
and formation [31]. The quantity of magnesium present in the surface of the crystals is
correlated with the plasma magnesium concentration, as demonstrated in studies with
kidney disease patients [32]. This surface magnesium is a reservoir of readily exchangeable
Mg2+ ions. Mg2+ deficiency affects the structure of bone, causing large hydroxyapatite
crystals. It affects the cells involved in bone turnover, osteoblasts, and osteoclasts. Dietary
magnesium intake has been linked to bone mineral density [33], and serum magnesium
levels are strongly associated with an increased risk of fractures [33] and osteoporosis [34].

The excretion of Mg2+ is essentially regulated by filtration and reabsorption in the
kidney [1]. Urinary Mg2+ excretion increases when magnesium intake is in excess, whereas
the kidney conserves Mg2+ in the case of magnesium deprivation. Approximately one-tenth
of total body magnesium is filtered by the kidney in a 24 h period [35]. A total of 10–15%
of the filtered Mg2+ is reabsorbed in the proximal tubule by a passive process [36]. The
majority of filtered Mg2+ (65%) is reabsorbed in the thick ascending loop of Henle [37],
which is mediated by a paracellular mechanism dependent on the transepithelial potential
generated by NaCl absorption. Thus, factors that impair NaCl reabsorption, such as
diuretics and extracellular fluid volume expansion, increase Mg2+ excretion [38]. Around
10–15% of the filtered Mg is reabsorbed in the distal tubule [39]. The reabsorption occurs
via an active transcellular mechanism and is regulated by divalent cation-sensing receptors.

The magnesium status of an individual is often determined by measuring the total
serum or plasma magnesium concentration [40]. Plasma magnesium concentrations are
closely related to bone metabolism, as there is continuous exchange between the skeleton
and blood [41]. Since plasma/serum magnesium only represents 1% of the total magnesium
in the body [42], it is possible that an individual can be in a Mg2+-depleted state but have
plasma/serum values within the “normal” range. Consequently, the clinical impact of
magnesium deficiency may be underestimated. In plasma, the concentration of free Mg2+ is
reported to be ~0.6 mmol/L (~14 mg/L) [43], with ~30% complexed by proteins [44]. The
major Mg2+-binding protein in plasma is serum albumin [45]. There are three structurally
characterised Ca2+-binding sites on albumin [46], which are thought to also serve as Mg2+

sites. Mg2+ has also been shown to readily form complexes with globulin proteins in
plasma [43].

3. Magnesium Concentration Measurement and Supplementation

Magnesium deficiency/insufficiency can present a diagnostic challenge, as patients
may have a “normal” serum magnesium concentration but have relatively low levels of
skeletal or cellular magnesium [33]. An indicator of intracellular magnesium status is the
measurement of magnesium retention after acute magnesium loading. This is also known
as the magnesium retention test. A magnesium deficiency is indicated if a patient has <80%
excretion (over 24 h) of an infused magnesium load (2.4 mg/kg of lean body weight given
over the initial 4 h) [47,48]. Additional tests for magnesium deficiency involve measuring
the magnesium/creatinine ratio in spot urine or in 24 h urine collections [33]. It is also
possible to directly measure magnesium in the urine; this can be used to gain insight into
kidney functioning and magnesium wasting. A 24 h urinary magnesium level of > 24 mg is
indicative of magnesium wasting [49].

Several studies have linked magnesium intake with the presence of certain car-
diometabolic conditions [50–57]. However, it is important to consider the bioavailability of
magnesium when analysing food intake, as it can vary greatly depending on the overall
composition of the food as well as the quantity of magnesium present [58]. Low magnesium
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intake is particularly concerning in Western countries. For instance, about 75% of the Span-
ish population declared a dietary magnesium intake of less than 80% the recommended
level [59,60]. Furthermore, a 2020 randomised controlled trial suggests the use of ionised
Mg2+ as a preferred measurement for magnesium status rather than total magnesium, as
the ionised form is the active form [61]. However, more studies are warranted to assess the
usefulness of such measurements in a clinical setting.

Magnesium deficiency is commonly associated with other conditions including dia-
betes, obesity, infection, and malnutrition, while some commonly used therapies, such as
proton pump inhibitors, can also cause significant magnesium deficiency [62]. Different
magnesium salts have been used via multiple administration routes to treat some of the
conditions linked to magnesium deficiency. However, single studies comparing the effect
of different salts are rare. A recent randomised controlled trial by Schutten and colleagues
compared the effect of magnesium citrate, oxide, and sulfate on arterial stiffness, measured
as carotid-to-femoral pulse wave velocity, in 164 slightly obese or overweight but otherwise
healthy patients over a period of 24 weeks [63]. Compared to placebo, they did not observe
any significant effect with all three magnesium salts on carotid-to-femoral pulse wave ve-
locity or blood pressure at 24 weeks compared with placebo. However, a subgroup analysis
showed an amelioration in people with a higher baseline value, although the low number
of participants in this subgroup did not allow a firm conclusion related to the different salts
administered to be drawn. Effects on plasma magnesium were similar with each of the
magnesium supplementation groups, but magnesium citrate led to a more pronounced
increase in 24 h urinary excretion than magnesium oxide or magnesium sulfate. The study
also recorded side effects related to the treatments and found that magnesium citrate and
sulfate salts were more likely to lead to gastrointestinal complaints, which was not the case
with magnesium oxide [63]. During supplementation, magnesium levels can take 20 to
40 weeks to reach a steady state; therefore, longer term studies with a higher number of
participants are needed to fully establish the effects of magnesium supplementation [33].
Magnesium aspartate is also commonly given as a supplement to improve muscle weak-
ness or cramps and displays high oral bioavailability and water solubility [64]. Other
magnesium salts that are commonly used as supplements include magnesium orotate [65],
magnesium pidolate [66], magnesium bisglycinate [67], magnesium malate [68] and mag-
nesium acetyl taurate [68]. It is also important that plasma/serum magnesium levels are
measured following supplementation to ensure compliance and avoidance of overdosing.

4. Magnesium Deficiency in Obesity and Diabetes

Diabetes mellitus is often associated with hypomagnesaemia. Patients with either
type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM) are more likely to have
a low serum magnesium (<1.6 mg/dL or <0.66 mmol/L) than control patients without
diabetes [69–71].

4.1. Type 1 Diabetes

T1DM is an autoimmune condition which leads to the destruction of β cells in the pan-
creas, resulting in a reduction in insulin production [71]. Exogenous insulin is required to
treat people with T1DM to maintain normal serum glucose levels and magnesium deficiency
(serum magnesium < 0.66 mmol/L has been reported in 4–38% of T1DM patients) [55].
When compared with age-matched controls, the mean plasma magnesium concentration
was significantly lower in patients with T1DM [72]. The correlation between low magne-
sium and T1DM was particularly evident in female patients [72]. There is no evidence to
suggest a direct mechanistic link between insulin and hypomagnesemia, although insulin
might have an indirect role in the renal clearance of Mg2+.

Poorly controlled T1DM can lead to severe damage to the kidneys, eyes, and blood
vessels [71]. Glycaemic control over the previous three months can be indicated by an
HbA1c (glycated haemoglobin) test. HbA1c levels have been shown to negatively corre-
late with serum magnesium concentration in people with T1DM, suggesting that poor
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glycaemic control leads to hypomagnesaemia [71,72]. Other recent studies have found the
incidence of hypomagnesaemia (<0.7 mmol/L) in patients with T1DM to be comparable to
the general population [73]. Although the cohort was small, 207 participants were included,
of which only nine had hypomagnesemia (4.3%). This finding was largely supported by
a more recent study showing a hypomagnesaemia (<0.7 mmol/L) prevalence of 2.9% in
people with T1DM [74]. However, markers of oxidative stress exhibited a negative corre-
lation with magnesium levels, indicating that even a small reduction in magnesium level
may have negative consequences. For reference, the prevalence of magnesium deficiency
(<0.7 mmol/L) in the general population (i.e., without any known hypomagnesaemia risk
factors) has been estimated to be around 2% [75]. A possible factor to consider is the success
of treatment strategies for people with T1DM. Oost et al. noted that hypomagnesaemia
seemed to be linked to glycaemia control only in patients who required high levels of
insulin and displayed biochemical markers of insulin resistance, which is a population of
patients with increased risk of diabetes complications [74].

4.2. Type 2 Diabetes and Obesity

T2DM is a condition characterised by a combination of defective insulin secretion and
increased resistance to insulin by peripheral tissues [75,76]. Once T2DM has developed,
individuals require treatment to reduce their serum blood glucose levels, including lifestyle
advice and medications [77]. T2DM can develop more slowly than T1DM and can progress
through a pre-diabetic phase. Metabolic syndrome refers to a collective of conditions
including hypertension, insulin resistance, central obesity and atherogenic dyslipidaemia
is a risk factor for T2DM [78,79]. Lifestyle factors such as diet and exercise are associated
with metabolic syndrome as well as genetic and other environmental factors [80–82].

It has been suggested that hypomagnesaemia is caused by diabetes rather than con-
tributing to T2DM onset, which is based on the findings of a cohort study reporting
hypomagnesaemia (<0.7 mmol/L) being more common in patients with T2DM but not
pre-diabetes [83]. However, other cohort studies challenge this. Indeed, the 2015 dose–
response meta-analysis of prospective cohort studies published by Fang and colleagues
found an inverse correlation between magnesium intake and T2DM [84]. The number of
pooled participants totalled about 26,300 cases of T2DM with follow-ups ranging from
4 to 30 years, and the dietary magnesium intake was self-reported using a validated food
frequency questionnaire. Moreover, in a 2017 metanalysis, which included 11 studies, Wu
and colleagues found an inverse correlation between circulating magnesium concentration
and T2DM as well as chronic heart disease and hypertension [85]. Finally, other cohort
studies in both Western and non-Western populations have reported associations between
magnesium and T2DM development [86,87].

Further evidence comes from intervention studies in individuals with poor metabolic
health. A recent cost–benefit analysis study showed that 22.3% fewer men with pre-diabetes
taking a magnesium supplement develop T2DM compared to placebo and supported such
supplementation as a cost-effective preventative measure [88]. In addition, in a study of
obese patients, serum magnesium levels increased by 13.2% and HbA1c decreased nine
months post-bariatric surgery. This is likely to be due to a combination of weight loss,
lifestyle changes and recommendation to take over the counter multi-vitamin tablets for
four weeks [89].

It is also salient to highlight in this context genetic conditions in which individuals
have an autosomal recessive genetic loss of function in TRPM-6 or 7, which contribute to
magnesium homeostasis. These ion channels are found in the intestine and renal tubules
and are important for magnesium exchange [90]. Importantly, people with these genetic
conditions are more susceptible to hypomagnesaemia, and a possible association with
T2DM has been documented, but large-scale studies are required to fully investigate this
possibility [90].

Once T2DM has developed, evidence suggests that magnesium deficiency is still
be treatable and may improve this condition. Magnesium deficiency has been shown to
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worsen the complications of the disease, whilst conversely, magnesium supplementation
has been shown to protect against complications [91]. In addition, a meta-analysis revealed
that magnesium supplementation on average seemed to improve levels of T2DM-associated
biomarkers in T2DM patients. Although these trends did not reach significance, this might
be attributed to the analysis including trials with a wide range of participant numbers and
follow up times, with some not passing the 4-month threshold [92]. It is also notable that
in a meta-analysis of 18 randomised controlled trials, T2DM individuals taking SGLT2
inhibitors (to reduce renal glucose absorption) had significantly higher serum magnesium
compared to those taking the placebo. The authors concluded that further investigation
is needed to understand clinical relevance, but it is tempting to speculate that SGLT2
inhibitors may confer part of their anti-T2DM effect in this way [93]. Current evidence
supports the concept that magnesium supplementation may be a cost-effective way to
decrease the risk of developing T2DM and minimise its harm post onset by improving risk
biomarkers such as hypertension and glycaemic control.

5. Cardiovascular Roles of Magnesium

This section describes the physiological roles of magnesium in the cardiovascular system;
in Section 6, we will address cardiovascular pathologies related to magnesium deficiency.

5.1. Cardiac Muscle Contraction

Mg2+ is an integral regulator of muscle contraction. Muscle contraction is a Ca2+-
dependent process. Mg2+ can compete with Ca2+ for the binding sites on proteins involved
in contraction, including the type-2 ryanodine receptor (RyR2), troponin C and myosin [94].
Before contraction, Mg2+ occupies all binding sites available in the myocyte, as its cytoplas-
mic concentration is 10,000-times higher than that of Ca2+. During excitation–contraction
coupling, Ca2+ enters the cell, and Mg2+ is displaced from RyR2, allowing the channel
to open and to release Ca2+ from the sarcoplasmic reticulum. The release of Ca2+ from
intracellular stores can displace Mg2+ from the myosin head and troponin C, enabling
contraction of the muscle [1].

Secondly, the effects of Mg2+ on the myocardium are protective against ischaemia
and arrhythmia. The anti-ischaemic effects are the results of several factors. As with its
vasodilatory properties, it prevents Ca2+ overload by competing for the same binding sites.
It lowers the heart rate and contractility as well as catecholamine-induced oxygen demand.
Moreover, it modulates ATP-dependent reactions and acts as an antioxidant to prevent
long-term damage to the myocardium [95,96]. The anti-arrhythmic properties of Mg2+ are
due to its modulation of voltage-gated Ca2+ channels and Na+ channels [97]. A protective
effect on the myocardium has been shown in many in vivo studies, and magnesium is
used as prophylaxis or treatment of myocardial complications after infarction or atrial
fibrillation [95].

5.2. Vascular Functioning

The vascular system is the collective of vessels in the body which carry blood to
and from tissues. Large blood vessels consist of three layers of tissue supported by the
extracellular matrix. These are the adventitia where innervation is found, the media where
smooth muscle cells are located, and the intima, which is lined by the endothelium and
is in contact with the blood [98]. Studies support the concept that Mg2+ is important for
several aspects of vascular functioning.

Vasodilation and vasoconstriction refer to the widening and narrowing of blood ves-
sels, respectively. These processes allow blood flow to be matched to tissue demands.
Mg2+ has been seen to improve blood flow in various vascular beds by dilating blood
vessels [99–101]. Evidence suggests that this occurs in part because Mg2+ antagonises the
transport of Ca2+ into contractile smooth muscle cells [102,103]. Multiple mechanisms may
be involved [97]. These include the direct binding of Mg2+ to ion channels to block their
activity [104] as well as the binding of Mg2+ to the plasma membrane, changing the surface
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charge and subsequently the opening of voltage-gated calcium channels [97]. In addition
to direct actions on smooth muscle, studies also indicate that Mg2+ can modulate vascular
dynamics by influencing signals from other tissues [98,105]. Firstly, Mg2+ has been docu-
mented to inhibit the release of noradrenaline, a vasoconstrictive neurohormone released
in response to sympathetic stimuli, from nerve terminals [106]. Secondly, Mg2+ can act on
the endothelium to alter its production of vasoactive compounds. Mg2+ has been shown
to increase the production of the vasodilator’s nitric oxide and prostacyclin [107–109]. No-
tably, magnesium sulfate application has been linked to a reduced placental expression of
endothelin 1, a potent vasoconstrictor [110].

There is evidence that Mg2+ is important per se for endothelial health and function.
Culturing human endothelial cells in vitro in medium containing low magnesium leads
to oxidative stress, inflammation, and the accumulation of lipids intracellularly [111,112].
Importantly, investigations indicate a vicious interplay to accelerate cell dysfunction [112].
For example, Mg2+-induced oxidative stress has been linked to the activation of NFkB [113].
NFkB is a transcription factor which induces the expression of pro-inflammatory cytokines
as well as adhesion molecules which recruit monocytes and hence further aggravate
inflammation and oxidative stress [113,114]. More recently, oxidative stress has been seen
to promote lipid accumulation by increasing the activity of EDF-1, which is a transcriptional
co-activator upstream of genes regulating lipid homeostasis [111]. In turn, intracellular
lipids cause oxidative stress [115].

Another component of the vasculature for which Mg2+ appears important is the
extracellular matrix (ECM). The make-up of the ECM depends on the blood vessel but is
generally a complex composition and arrangement of elastic versus fibrous proteins. The
ECM plays a pivotal role as a structural scaffold [116]. A matrix protein which contributes
to structural integrity is hyaluronan, and Mg2+ is needed for the activity and correct
folding of hyaluronan synthase [117]. The ECM additionally participates in a multitude of
cell processes including vessel cell migration, adhesion, proliferation, differentiation, and
survival [116]. Key proteins which allow the ECM to regulate vascular cell behaviour belong
to the integrin family of transmembrane receptors. Integrins bind to ECM components and
become activated, initiating intracellular signalling cascades [118]. Interestingly, integrins
contain a metal ion-dependent adhesion site [119], and integrin–ligand interactions are
dependent upon Mg2+ concentration [120–122]. For example, a major integrin in vascular
tissue, α5β1, binds to the matrix protein fibronectin to promote vascular smooth muscle
cell adhesion to the basal membrane. Studies suggest both that Mg2+ is needed to uncover
α5β1 ligand binding sites [122] and that higher Mg2+ concentration leads to greater stability
of α5β1–ligand interactions [121].

5.3. Haemostasis

Magnesium is involved in haemostasis as a co-factor for factor IX and membrane-
bound coagulation proteins and as a regulator of the eicosanoid synthesis pathway, which
produces inflammatory mediators including prostaglandins and thromboxane. Factor IX is
part of the intrinsic pathway of the coagulation cascade, it activates factor X and is activated
by activated factor VIII. The activation of factor IX is Ca2+-dependent [123]. Mutation of
the factor IX gene is a hallmark of haemophilia B, a blood clotting disorder which is life
threatening and shortens life expectancy [124]. Mg2+ has been shown to stabilise the native
conformation of factor IX, and consequently to increase its activity [125]. Moreover, Mg2+

appears to be important for the early key stages of coagulation by enhancing the activity of
the tissue factor-factor VIIa complex, which activates factor X [126].

Furthermore, during the initial stages of the coagulation process, when endothelial cell
membranes are exposed to the blood stream, blood coagulation proteins reversibly interact
with these membranes to trigger the coagulation cascade. Seven coagulation enzymes are
bound to the cell surface through their γ-carboxyglutamate-rich (GLA) domains. GLA
domain folding is dependent on both Ca2+ and Mg2+. The binding of these metal ions leads
to the exposure of hydrophobic residues that ultimately help integration into the membrane
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bilayer. Under physiological conditions, the metal ions binding sites of GLA domains
are occupied concurrently by Mg2+ and Ca2+, with two to three of the nine binding sites
occupied by Mg2+ [127,128].

Finally, Mg2+ has been shown to inhibit the eicosanoid synthesis pathway in platelets.
This pathway produces thromboxane which, once released, amplifies platelet aggregation.
Magnesium sulfate is thought to modify platelet membrane fluidity, which in turn interferes
with fibrinogen binding to the GPIIb/Iia complex and inhibits phosphoinositide breakdown
and the formation of thromboxane [129]. Moreover, more recent research has shown that
a similar inhibition occurs in macrophages using another magnesium salt, magnesium
isoglycyrrhizinate. They showed that Mg2+ inhibits key enzymes involved in eicosanoid
synthesis, which suggests that Mg2+ might have a direct inhibitory role on this pathway as
well as through action on membrane fluidity [130].

6. Effects of Magnesium Deficiency on the Cardiovascular System

Magnesium is an essential nutrient for cardiovascular health, acting to regulate vascu-
lar smooth muscle, cardiac conduction, vascular endothelial cell functioning, and throm-
bosis. Hypomagnesaemia and low dietary magnesium intake increase the likelihood of
developing coronary artery disease (CAD) [131]. Hypomagnesaemia has been associated
with hypertension, which can lead to congestive heart failure (CHF) or CAD (Figure 2).
However, this could be confounded by diuretic medications to treat heart failure, which
reduce serum magnesium levels in people with heart failure.

Figure 2. Magnesium deficiency leads to cardiovascular disease through multiple mechanisms. Mg
deficiency leads to hypertension through an increase in catecholamine release, sodium retention and
cholesterol, which is in turn a risk for several cardiovascular conditions. Arterial fibrillation has also
been shown to be associated with Mg deficiency as well as atherosclerosis, which is thought to be
caused by an increase in NFκB signalling, low-grade inflammation and cholesterol. Mg deficiency
has also been linked to an increase in thrombotic risk. Created using BioRender.

6.1. Hypertension

Hypertension is the term used when an individual has a systemic arterial blood
pressure above 140/90 mmHg. Hypertension is a major risk factor for serious conditions
including heart attack and stroke, peripheral arterial disease, and vascular dementia. It is
therefore concerning that the percentage of adults diagnosed with hypertension rose from
549 million in 1975 to 1.13 billion in 2015 (WHO, 2023), representing a 3% rise from 12%
to 15% of the world global population in 40 years. This increase is attributed to changing
lifestyles with a widely established causative factor being the consumption of foods high in
sodium. Less established is a link between Mg2+ intake and hypertension. Nevertheless,



Nutrients 2023, 15, 2355 9 of 19

there is growing evidence indicating that appropriate Mg2+ consumption might help to
recede hypertension prevalence.

There are several epidemiological studies which have examined the relationship be-
tween dietary magnesium and blood pressure. These include a large-scale cross-sectional
study using data from the American National Health and Nutrition Examination Survey
(NHANES). Three studies using different NHANES data sets consistently report inverse
relationships between dietary Mg2+ and blood pressure and/or hypertension [50–52]. Im-
portantly, corroborating trends have also been seen in cross-sectional analyses of European
populations [53,54].

Further support for an inverse correlation is provided by longitudinal studies. This
includes a 15-year follow-up of 4320 Americans [55], a mean nine-year follow-up of Mediter-
ranean individuals [56], and follow-ups of 6104 subjects from China [57]. Further probing
the relationship, the report by Dominguez et al. found that a dietary intake of magnesium
below 200 mg/day is associated with a higher risk of hypertension [56], whilst Jiao et al.
reported that individuals in the highest quantile of Mg2+ intake had a 20% lower risk of
developing high blood pressure than those in the lowest quantile [57].

Notably, relationships between hypertension, Mg2+ and other dietary components
have also been observed in epidemiological studies. Analysing NHANES data, it appeared
that Ca2+ is protective against hypertension but only when women are taking recommended
doses of Mg2+ and men are taking Mg2+ above recommended doses [50]. It has also been
reported that Mg2+ significantly enhances the negative association between vitamin D
and systolic blood pressure (SBP) [57]. These findings support that the magnitude of
effect of Mg2+ intake on blood pressure (BP) will depend on the overall dietary profile
of individuals.

As well as epidemiological studies, there is a sizeable repertoire of published Mg2+

supplement trials; however, currently available meta-analyses are inconsistent and may
be limited because they are highly heterogenous [132]. Nevertheless, two large meta-
analyses of randomised trials report that oral magnesium therapy significantly lowers
blood pressure. In one study, the inclusion of 1173 individuals across 22 trials gave a
median supplementation of 410 mg per day for 11 weeks and clinically relevant decreases
of 3–4 mmHg and 2–3 mmHg in SBP and diastolic blood pressure (DBP) respectively [133].
Another study analysed 2028 participants across 34 trials and reported that a 368 mg/day
dose for 12 weeks is sufficient to reduce SBP by 2 mmHg and DBP by 1.78 mmHg [134]. It
is noteworthy that in this study, significant decreases were only found amongst individuals
already taking antihypertensive or antidiabetic drugs. The authors suggest that this may
be partly explained by the magnesium-lowering side effects of medications, which is
consistent with the treated group beginning with serum Mg2+ below the clinical normal
range. Furthermore, the previously reported study by Schutten and colleagues testing the
effect of the administration of different Mg2+ salts for 24 weeks on blood pressure and
arterial stiffness did not show any significant effect unless for a subgroup of participants
with a higher baseline [63]. This lack of significant effect might be the result of a small
sample size (164 participants) and/or a period of exposure too short. Overall, it seems that
Mg2+ may help to reduce the incidence of hypertension. To better understand under which
circumstances Mg2+ might be beneficial, future meta-analyses might be carried out to better
assess heterogeneity across subgroups. It might also be interesting to explore supplement
trials where Mg2+ is combined with other dietary compounds, such as vitamin D.

Pre-eclampsia is a pregnancy-specific hypertensive disorder that affects 2 to 8% of preg-
nancies and is responsible for the death of 63,000 women worldwide every year [135,136].
The cause of pre-eclampsia is not known, but hypomagnesaemia is known to be associated
with the condition [137–139]. The usefulness of magnesium sulfate to treat pre-eclampsia
was the subject of an international randomised controlled clinical trial, named MagPie,
carried out on >10,000 women [140]. The participants were either given magnesium sulfate
(n = 5071) or placebo (n = 5070). Although the development of side effects was greater (24%)
in those given magnesium compared to placebo (5%), women allocated magnesium sulfate
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had a 58% lower risk of eclampsia (95% CI 40–71) than those allocated placebo (40, 0.8%,
vs. 96, 1.9%; 11 fewer women with eclampsia per 1000 women). Mortality was also lower
among women allocated magnesium sulfate (relative risk 0.55, 0.26–1.14) but there was no
difference in risk of the baby dying. This suggests that magnesium supplementation can
decrease the risk of eclampsia by over 50%.

6.2. Cardiac Functioning

In genome-wide association studies, high serum magnesium concentration has been
associated with six single nucleotide polymorphisms. A 2018 mendelian randomisation
study showed a causal relationship between high serum magnesium and lower risk of
CAD [141]. This approach was also used in a more recent study to look at the association
between high serum magnesium concentration, osteoporosis and cardiometabolic risks
including T2DM, CAD, atrial fibrillation (AF) and heart failure. This second study found
no association between cardiometabolic risks and serum magnesium level, whilst a strong
causal relationship was found in the case of osteoporosis [142].

AF is a common and important risk factor of ischaemic stroke; this is due to clot
formation in the atria of the heart which can embolise to the brain. People with AF are
five-times more likely to have ischaemic strokes [143]. In the general population, low
serum magnesium has been linked to an increased risk of AF. A long-term longitudinal
study published in 2013 followed 3550 people for over 20 years with no prior history of
cardiovascular disease. Over the period, 288 people developed AF, and the study shows a
moderate association between low serum magnesium level and AF diagnosis [144].

Other cardiac conduction abnormalities such as prolongation of QT interval can lead to
life-threatening cardiac arrhythmias. Hypomagnesaemia is associated with prolongation of
QT interval [145]. In animal models of magnesium deficiency, QT prolongation was present,
and cardiac myocytes were noted to have cardiac conduction abnormalities [144,146].
Inward-rectifying current and transient outward current were decreased in magnesium-
deficient cardiomyocytes; transcription factors were also noted to be abnormal. Shimaoka
et al. hypothesised that the above mechanism could be causing the increase in cardiac
arrhythmias in patients with magnesium deficiency [147].

Hypomagnesaemia has been associated with heart failure, which is a condition where
the heart fails to meet the circulatory demands of the body. A dose–response meta-analysis
of prospective cohort studies found that an increase in dietary magnesium of 100 mg per
day was associated with a 22% reduction in the risk of heart failure [84]. Magnesium is
required for the normal production of all cells through its use in cellular respiration and ATP
synthesis; therefore, magnesium deficiency could result in abnormal energy production in
cardiac myocytes [33]. Due to the role of magnesium in excitation–contraction coupling,
hypomagnesaemia could reduce the contractility of myocytes [33]. However, the number
of pooled published dataset was limited to three, and they represented a total of 701 cases
of documented heart failure. The same meta-analysis did not find a significant association
between increased magnesium intake and CVD risk, whilst the highest magnesium dose
intake (500 mg/day) category was associated with a 10% decrease in coronary heart
disease risk.

The 4th International Study of Infarct Survival (ISIS-4) was a randomised factorial
trial that assessed 58,050 patients entering 1086 hospitals up to 24 h (median 8 h) after the
onset of suspected acute myocardial infarction (MI) [148]. Those with no clear contraindica-
tions to the study treatments (no cardiogenic shock or persistent severe hypotension) were
randomised in a 2 × 2 × 2 factorial manner. Three treatment comparisons were assessed:
(i) 1 month of oral captopril (6.25 mg initial dose titrated up to 50 mg twice daily) versus
matching placebo; (ii) 1 month of oral controlled-release mononitrate (30 mg initial dose
titrated up to 60 mg once daily) versus matching placebo; and (iii) 24 h of intravenous
magnesium sulfate (8 mmol initial bolus followed by 72 mmol) versus open control. Whilst
some benefits across the cohort were observed following captopril and mononitrate treat-
ments, there was no significant reduction in 5-week mortality, either overall or in any
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subgroup examined, and further follow-up did not indicate any later survival advantage to
those treated with magnesium.

In another magnesium supplementation study, the 2nd Leicester Intravenous Mag-
nesium Intervention trial (LIMIT-2), the effect of an intravenous regimen of magnesium
sulfate in 2316 patients with suspected acute myocardial infarction was assessed [149,150].
The study utilised a double-blind randomised protocol. Treatment was started with a
loading injection, before any thrombolytic therapy, and continued with a maintenance
infusion for a further 24 h. The cause-specific mortality of randomised patients was exam-
ined over 1.0–5.5 (mean 2.7) years of follow-up. It was found that the mortality rate from
ischaemic heart disease reduced by 21% (95% CI 5–35%, p = 0.01) in magnesium-treated
patients, and the all-cause mortality rate reduced by 16% (2–29%, p = 0.03). The study team
attributed their positive results to the timing of the magnesium treatment. Such that for
such protection to occur, magnesium must be raised by the time of reperfusion since the
injury is immediate.

6.3. Vascular Disease

Hypomagnesaemia has been associated with an increase in cardiovascular mortality in
patients with chronic kidney disease (CKD). One of the cardiovascular conditions associated
with CKD is vascular calcification due to related hyperphosphatemia. Magnesium has
an inhibitory effect on vascular calcification, and animal and human trials have shown
a positive impact of supplementation [151]. Mechanistically, the preventative effect of
magnesium may be due to the passive modulation of phosphate homeostasis and active
regulation of vascular smooth muscle trans-differentiation [152].

Magnesium deficiency is associated with a chronic low-grade inflammation, including
vascular inflammation. A deficiency of magnesium (<0.75 mmol/L) has been associated
with an increased production of IL-1, IL-6, TNF-α, VCAM and PAI-1, which are proinflam-
matory molecules, and with a reduction in antioxidants such as glutathione peroxidase,
superoxide dismutase, catalase, vitamin C, vitamin E and selenium [151]. Chronic low-
level vascular inflammation has been implicated in endothelial dysfunction and vascular
remodelling [153].

Greater intima-media thickness in the carotid arteries has been associated with hy-
pomagnesaemia (<0.7 mmol/L) [33]. The measurement of intima media thickness in the
carotid artery is a method to identify the presence of atherosclerotic plaque [154]; however,
there are better methods available to detect atherosclerosis plaque, using B-mode ultra-
sound, multidetector CT (MDCT), or magnetic resonance imaging (MRI) [155]. A study
published in 2010 used echography and 5-year follow-up to link serum magnesium at
baseline and the difference in left ventricular mass. They found that lower serum Mg2+

was positively associated with higher left ventricular mass [156]. Another piece of evidence
came from one cross-sectional 2022 study which used MRI to investigate a possible link
between serum and the dietary intake of magnesium and subclinical markers of cardio-
vascular disease (left and right ventricular structure and function and carotid plaque and
carotid wall thickness). Amongst 396 participants, 311 filled the magnesium intake survey.
They did not find a correlation between all three variables, which was possibly due to the
lack of correlation between serum magnesium and magnesium intake; however, serum
magnesium was correlated with a higher risk of carotid plaque [155]. NFκB is one of the
drivers of early atherosclerotic plaque formation, and magnesium deficiency has been
shown to activate NFκB in endothelial cells in vitro [16,157]. Atherosclerosis in the carotid
arteries is a risk factor for stroke, as emboli from these plaques can cause ischaemic stroke.

Peripheral arterial disease (PAD) is a manifestation of atherosclerosis and is diagnosed
using symptoms or anatomical features as well as the measurement of the ankle-brachial
pressure index (ABPI). The ABPI is the ratio of the SBP taken at the ankle to that in the arm.
An ABPI of 1 is considered normal and an ABPI lower than 0.9 is sign of arterial/venous
disease [158]. The atherosclerosis risk in communities (ARIC) is a prospective epidemio-
logic study undertaken in four US communities which ran from 1987 to 2013. It began with
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15,792 participants aged 45 to 64 years old, who received five examinations throughout
the length of the study. After exclusion, 13,826 participants were divided into five groups
depending on their serum magnesium level as measured during the first visit. The investi-
gators found a strong correlation between magnesium serum level and the prevalence of
PAD as measured by an ABPI lower than 0.9 in subsequent visits or a hospital discharge
with a diagnosis of PAD [159].

Mg2+ plays a role in platelet and endothelial function, including regulating the expres-
sion of signalling proteins. Hypomagnesaemia could therefore lead to prothrombotic and
proatherogenic states [33]. Several mechanisms can lead to a prothrombotic state in magne-
sium deficiency, including low-grade vascular inflammation, increased platelet aggregation
and oxidative stress in the vascular endothelium [160]. Although supplementation studies
have looked at CVD risk association with hypomagnesaemia, studies are needed to assess
a potential inverse relationship between thrombosis risk and magnesium intake. Because
of the roles magnesium plays in coagulation, studies are warranted to explore a possible
association between thrombotic risk, serum magnesium levels and/or magnesium intake.

Hypomagnesemia (<0.75 mmol/L) has been found by several independent studies to
be a risk factor for cardiometabolic diseases, and many trials over the years have assessed
the effect of magnesium supplementation on cardiometabolic risk [74,88,157]. Joris and
colleagues published the results of a randomised controlled trial in 2016 in obese and
overweight adults, looking at arterial stiffness, which is a marker of cardiovascular risk.
Fifty-two male and female participants (age 62 ± 6 years) were randomised into two groups
to receive either three daily doses of 117 mg of magnesium (total 350 mg per day) or placebo
capsules for 24 weeks [161]. They measured arterial stiffness using carotid-to-femoral pulse
wave velocity and found no significant improvement after 12 weeks, although they did
not observe an increase in serum magnesium at that time. However, after 24 weeks,
magnesium serum levels were increased, and they showed an improvement of the measure
of arterial stiffness by 1.0 m/s (95% CI: 0.4, 1.6 m/s; p = 0.001). Unfortunately, they did
not detect improvements in endothelial function and cardiometabolic risk markers in a
subsequent report of the same study and concluded that some other factors might explain
the previously observed improvement in arterial stiffness [162]. More recently, a 2020 small
double-blind trial, which included 64 participants, studied the effect of magnesium sulfate
supplementation daily for 3 months and showed improvement of some of the major risk
factor for atherosclerosis, including HbA1c and oxidised low-density lipoprotein [163].

7. Conclusions and Future Perspectives

Magnesium plays a role in virtually all biological processes; it is a co-factor for many
enzymes and competes with Ca2+ for binding to transporters. A deficiency of magnesium
is associated with an increased risk of developing diseases such as cardiovascular and
metabolic conditions. Consequently, studies looking at a wide range of common conditions
(diabetes, hypertension, atrial fibrillation) suggest that supplementing the diet with Mg2+

may be beneficial. However, studies have often employed a limited period for magnesium
supplementation and/or analysed small cohorts, making it difficult to draw definitive
conclusions. Moreover, it seems that the choice of magnesium salt used might have an
impact on the efficacy of such supplementation regimens. In addition, some disorders
where magnesium deficiency may be of relevance and supplementation may be useful
have not yet been fully examined: for instance, thrombotic conditions linked to aberrant
haemostasis. Further well-designed and adequately powered studies are therefore urgently
needed to fully understand the impact of magnesium deficiency and the potential benefits of
magnesium supplementation on vascular pathology, cardiac function and the haemostatic
process, particularly in higher-risk groups such as individuals with diabetes.

Author Contributions: Conceptualisation, A.J.S. and R.A.A.; writing, all authors; reviewing and
editing, all authors. All authors have read and agreed to the published version of the manuscript.



Nutrients 2023, 15, 2355 13 of 19

Funding: R.F. is supported by the Biological and Biotechnological Sciences Research Council (grant
no. BB/V014684/1). To meet institutional and research funder open access requirements, this work
shall be open access under a Creative Commons Attribution (CC BY) reuse license with zero embargo.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ABPI ankle-brachial pressure index
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BP blood pressure
CAD coronary artery disease
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ECM extracellular matrix
GABAAR γ-aminobutyric acid A receptor
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IL-n interleukin-n
LVH left ventricular hypertrophy
NFκB nuclear factor-kappa B
NMDA N-methyl-D-aspartate
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PAD peripheral arterial disease
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ROS reactive oxygen species
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T1DM type-1 diabetes mellitus
T2DM type-2 diabetes mellitus
TNF tumour necrosis factor
TRPM transient receptor potential channel
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