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Abstract: Gene-modification therapies are at the forefront of HIV-1 cure strategies. Chimeric antigen
receptor (CAR)-T cells pose a potential approach to target infected cells during antiretroviral therapy
or following analytical treatment interruption (ATI). However, there are technical challenges in the
quantification of HIV-1-infected and CAR-T cells in the setting of lentiviral CAR gene delivery and
also in the identification of cells expressing target antigens. First, there is a lack of validated techniques
to identify and characterize cells expressing the hypervariable HIV gp120 in both ART-suppressed
and viremic individuals. Second, close sequence homology between lentiviral-based CAR-T gene
modification vectors and conserved regions of HIV-1 creates quantification challenges of HIV-1 and
lentiviral vector levels. Consideration needs to be taken into standardizing HIV-1 DNA/RNA assays
in the setting of CAR-T cell and other lentiviral vector-based therapies to avoid these confounding
interactions. Lastly, with the introduction of HIV-1 resistance genes in CAR-T cells, there is a need for
assays with single-cell resolution to determine the competence of the gene inserts to prevent CAR-T
cells from becoming infected in vivo. As novel therapies continue to arise in the HIV-1 cure field,
resolving these challenges in CAR-T-cell therapy will be crucial.

Keywords: CAR-T cells; HIV-1 cure; HIV-1 envelope expression; lentiviral vectors; gene modification;
eradication; immunotherapy

1. Introduction

Combination antiretroviral therapy (ART) has significantly reduced HIV-1 morbidity
and mortality. However, latent viral reservoirs persist, composed largely of cells that
do not express significant levels of viral antigens, thereby evading immune-mediated
eradication [1]. These viral reservoirs persist indefinitely through a variety of homeostatic
or other proliferative mechanisms in virally suppressed individuals, contributing to low
level inflammation associated with numerous long-term comorbidities. In light of these
ongoing comorbidities in the setting of ART and the massive global burden of HIV-1,
developing curative therapeutic approaches remains a high research priority.

Gene modification therapies are at the forefront of HIV-1 cure strategies. While
there has been success in CCR5-delta-32 mutation autologous stem cell transplants (SCT)
in curing a handful of individuals [2–5], this strategy is practical only for those who
require allogeneic stem cell transplantation for hematologic illnesses and have HIV-1 that
exclusively uses CCR5 for cell entry [6]. To reduce residual HIV-1 burden and achieve
long-term ART-free viral remission, various gene modification therapies have promise.
For example, gene modification of stem cells during autologous stem cell transplant that
disrupt one or more stages of the HIV-1 life cycle are currently being implemented. In
addition, chimeric antigen receptor (CAR) T-cell therapy, which involves lentiviral vector
delivery to autologous T cells, is a major HIV-1 cure strategy of interest due to the success of
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this approach for various hematologic malignancies [7]. This approach involves genetically
engineering patients’ T-cells to express CARs on the cell surface which can recognize and
bind to specific proteins expressed on HIV-infected cells leading to potential cell-mediated
toxicity and immune-mediated clearance of infected cells [8–10].

CAR-T-cell strategies have potential advantages for boosting immune system response
to HIV-1. This includes their ability to recognize cell surface proteins, given that they
are based on heavy and light chain regions of the neutralizing antibodies or surface CD4
protein [11–13]. CAR-T cells may also be engineered to target other macromolecules apart
from stably expressed cell surface proteins [14]. It is not entirely clear if classically designed
CAR-Ts can recognize other antigens expressed with intracellular processing and major
histocompatibility complex (MHC) presentation. As a result, novel strategies are being
developed that target MHC-peptide complexes and do not compete with endogenous TCR
for CD3 complex formation [15–19]. However, HIV-1 regulatory protein expression can
lead to the downregulation of MHC 1, a process which occurs in more actively infected
cells [20–24]. Nonetheless, prior research has demonstrated the potential for CAR-T cells
to be able to both traffic to the diverse areas of tissue that compose the latent reservoir
(e.g., lymph node, gut-associated lymphoid tissues) and play a vital role in long-term viral
surveillance [25–33].

The potential for CAR-T-cell therapy to target HIV-1-infected cells through HIV-1
envelope gp120 regions in vivo comes with numerous technical challenges. HIV-1 en-
velope protein gp120 sequences are highly variable given antibody-mediated immune
pressure [34–36], and thus, require CARs that recognize and engage a wide variety of
envelope variants. The conserved region of gp120 is within this protein trimer and is not
exposed until CD4 binding and identifying the target on latently infected cells that may
differ across tissues [37–39]. While less of an issue for original CAR-T cells that used CD4
molecules to bind to HIV-1 envelope, CARs based on neutralization antibodies are likely to
have variable binding to various viral strains. Another challenge is the identification and
quantification of target cells when using lentiviral gene delivery to create CAR-T cells. This
issue arises due to the sequence homology between HIV-1 and lentiviral vectors used to
generate CAR-T cells [40]. This is an issue in lentiviral vector CAR-T cells as well as other
non-CAR-T lentiviral gene modification strategies directed toward HIV-1 cure.

In this review, we aim to systematically describe the current challenges facing thera-
peutic development of CAR-T cells for potential use as a curative therapeutic [41] with an
emphasis on the challenges of targeting gp120 and vector-HIV-1 sequence homology on
the development and implementation of quantitative assays.

2. Materials and Methods

This systematic literature review was performed according to the Preferred Reporting
Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. PubMed literature
library was searched for articles pertaining to gene modification therapies in the context of
HIV-1 infection.

The first search was conducted for background on the topic of gene modification and
CAR-T cells. PubMed was searched for [“HIV-1”, “gene modification”, “therapies”, “CAR
T-cell”]. The second search conducted was for the technical challenges associated with
quantifying target cells. PubMed was searched for [“HIV-1”, “gp120”, “cell-surface”, “tar-
geting”], [“HIV-1”, “sequence homology”, “lentivirus”], and [“HIV-1”, “lentivirus”, “CAR
T-cell”, “resistance genes”]. The final search conducted was for gp120 targeting approaches
and difficulties. Pub-Med was searched for [“gp120 conserved” “gp120 variable” “HIV bN-
Abs” “gp120 presentation” “HLA presentation” “CD4 inhibition” “gp120 conformation”.

3. Results

Due to the heterogeneous nature of the HIV-1 latent reservoir and scarcity of infected
cells in people with HIV (PWH) on ART, there are many challenges with immune targeting
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of viral persistence. This review will address three different technical difficulties associated
with quantifying and characterizing HIV-1-infected or lentiviral vector-transduced T cells.

3.1. Challenges of Targeting HIV-1 gp120 for Infected Cell Clearance

HIV-1 is a retrovirus with the capacity to integrate into the host chromosomes. Current
treatments such as ART allow PWH to suppress a large majority of circulating plasma
HIV-1 RNA and reduce replication in tissues [42–44]. Rebound viremia occurs rapidly, how-
ever, following ART discontinuation in most people [45,46]. Despite ART-mediated viral
suppression, ongoing immune dysfunction and inflammation persist [47–54]. Identifying
and targeting the persistent reservoir is tantamount to long-term ART-free HIV remission.
While HIV-1-infected cells can express high levels of gp120 during active replication [55],
these levels are far lower in the setting of ART suppression. Expression of HIV env proteins
on a cell’s surface may occur during initial virus-cell binding and entry, viral assembly,
and budding, or to a likely much lesser extent, intracellular antigen processing and HLA-
mediated presentation [56,57]. However, immunoPET imaging has recently demonstrated
that low levels of HIV-1 or SIV gp120 protein can be identified across a range of tissues in
the setting of ART using gp120-specific antibodies [58–61]; whether or not this reflects cell
surface expression of gp120 or free viral proteins or virions in close anatomical proximity
to residual infected cells is not known. The potential paucity of gp120 expression on cell
surfaces makes CAR-T-mediated immune targeting difficult in people on suppressive ART.
Given the hypervariability of large portions of HIV-1 gp120 due to its surface location on
the virion and humoral immune mediated pressure, this glycoprotein is difficult to target
across PWH, even when using a HIV-specific broadly neutralizing antibodies (bNAbs).

Challenges in Identifying and Quantifying HIV-1 gp120 in the Setting of ART

Most PWH have increased gp120 expression after ART cessation as virus begins to
emerge and replicate in blood and tissues [58,61]. Ultimately, HIV-1 expression that is
recognizable to the human immune system remains vital in the immune targeting HIV-1
cure strategies such as CAR-T approaches.

Gp120 is a large trimeric envelope protein expressed on the surface of the HIV-1
virion and infected cells, with three glycoprotein subunits including V1, V2, and V3. These
variable loop regions protect HIV from immune recognition and assist in HIV virion
binding for invasion into CD4 cells [37,62]. During virion binding to CD4, portions of this
trimeric protein are released, and expose a conserved region of the envelope. This region
is protected from recognition due to its sequence and functional consistency. Due to the
exposure of these epitopes only in the late stages of cell infection, it is difficult to target this
region for viral integration prevention and early neutralization. While immunotherapies
have been brought into the HIV-1 cure field, the high level of immune escape has hindered
the success of targeting these infected cells. Original CAR-T cells designed to recognize HIV
envelope utilized CD4 proteins, but more recent CAR-T constructs have evolved to have
broader and longer lasting antiviral activity by presenting costimulatory molecules (i.e.,
4-1BB and CD28) combined with bNAbs as seen in Table 1 [41,63,64]. Another application
of bNAbs is through leveraging single chain variable fragments (scFv) in CAR-T constructs.
Increased success has been seen in persistence and protection in vivo of combination scFv
CAR-T cells versus monotherapy. These scFv CAR-T cells allow for the recognition of
conformationally available HIV-1 gp120 activated in an MHC-independent manner [65].
The affinity and specificity of the groups are also dependent on the positioning of the
various domains as determined by the linker. This positioning is crucial in developing
effective CAR-T therapies while preventing off-target effects or toxicities [66]. In addition,
these variable domains fall victim to the same shortcomings that their parent monoclonal
and bNAbs faced, an inability to accurately target the gp120 protein. A current study is
using lentiviral vectors to mediate CAR-modification of T cells to present these anti-HIV
CARs (i.e., duoCARs) and make cells resistant to HIV-1 [41,67]. Other novel CAR-T-cell
technologies are being developed to recognize, bind, and kill MHC–antigen complexes,
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but these methods are predominantly in the pre-clinical development stage for various
malignancies [15–19].

Table 1. Generation of CAR-T cells [10]. Each panel describes the basic construction of the four
generations of CAR-T cells and demonstrates their advancements.

First Generation Second Generation Third Generation Fourth Generation

Ligand/scFv-based scFv-based scFv-based scFv-based

One signaling domain Two signaling domains Three signaling domains Three/four signaling domains

CD3ζ signaling domain

CD3ζ signaling domain CD3ζ signaling domain CD3ζ signaling domain

CD28 or 4-1BB
costimulatory domain

CD28 costimulatory domain CD28 costimulatory domain

4-1BB costimulatory domain
4-1BB costimulatory domain

Other costimulatory domains
or ligands

There is a paucity of data regarding the frequency and density of gp120 expression on
latently infected cells. In addition, quantifying the density of gp120 expression presents a
distinct challenge as there is a major dearth of literature demonstrating surface detection of
HIV-1 gp120 in the setting of ART outside of whole body immunoPET studies [58,68]. With-
out understanding its expression or density on persistently infected cells or the dynamics
of viral envelope expression following treatment cessation, therapeutic development of
CAR-T cells will be hampered. This also holds true outside of PET imaging. The inability
to target gp120 consistently and efficiently, especially in latent tissue reservoirs, creates a
barrier for virus and infection clearance [69]. As previously mentioned, the monoclonal an-
tibodies and bNAbs developed thus far have difficulty targeting the full range of envelope
subunit diversity [1,70,71]. The conserved regions of the HIV envelope are hidden within
the tripod-like structure of gp120 and is only visible when actively bound and infecting a
CD4 cell, as depicted in Figure 1. The lack of ability to use standardized antibodies to target
the major region for HIV identification greatly reduces the ability to both identify and
quantify expression infected human cells as well as for in vivo immune targeting. Similarly,
bNAbs sometimes fail to target a conserved region across all infected cells in the human
population [72–74], even if expressed in the setting of robust latency reversal or analytical
treatment interruption. As CAR-T-cell therapeutics are commonly composed of variable
antibody heavy and light chain regions, they are likely to have similar targeting issues.
However, as a “living drug”, they have the capacity to expand in the presence of antigen
recognition and may have different tissue penetration patterns to bnAbs or native T cells
(e.g., central nervous system, lymph nodes, bone [58]). As a result, CAR-T-cell therapies
(and bnAbs) are commonly designed to be used in combination with analytical treatment
interruptions (ATI; i.e. highly monitored antiviral pauses) in which gp120 expression may
increase dramatically [75].

3.2. Sequence Homology Challenges

Another technical challenge associated with CAR-T-cell development is using vector
backbones for the integration into the host genome. While there are other ways to geneti-
cally engineer CAR-T cells, lentiviral vectors are used for the transduction efficiency and
accuracy of multi-gene integration. In cancer therapy, the genus and family of lentiviruses
do not create difficulty in quantifying and assessing therapeutic results; however, this is
not the case for HIV-1 cure therapies. Here, we detail an overview of lentiviruses and the
challenges their sequence similarities bring to therapeutic action.
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ceptors show the hypothesized self HLA-presenting receptor model, then, the CD4-presenting 
model. Figure was created with BioRender.com (accessed on 28 March 2023). 
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Figure 1. Structure of HIV envelope protein and TCR structures for CAR-T cells. (a) (Left) structure
of HIV-1 envelope gp120 and gp140 proteins alone, (middle) full trimeric structure of the closed
conformation before CD4 binding, and (right) trimeric protein in the open conformation exposing the
internal epitope after CD4 binding (for simplicity, the release of gp120 and gp140 is excluded in this
diagram). (b) Depiction of the composition of the CAR-T-cell receptor using the light and heavy chain
of the antibody, as well as the transmembrane and intracellular proteins. The proceeding receptors
show the hypothesized self HLA-presenting receptor model, then, the CD4-presenting model. Figure
was created with BioRender.com (accessed on 28 March 2023).

3.2.1. Retroviruses and Their Conserved Regions

The family Retroviridae is composed mainly of simple (gamma-retroviruses) and
complex (lentiviruses) retroviruses [76]. The main difference between simple and complex
retroviruses is the amount of polyproteins encoded that affect viral synthesis (e.g., viral
RNA replication) [76–78]. Ubiquitous polyproteins encoded for in all retroviruses are gag,
pol, env genes; while lentiviruses also are comprised of various other proteins, depending
on the specific virus and strain, and include tat, tax, rev, rex, nef, etc., [76–78]. Both
subfamilies contain gag, which maintains viral structure, pol, which encodes enzymatic
ssRNA, and env, which encodes viral envelope proteins (gp120) [79]. These three regions
are quite homologous across retroviral genomes.

Common retroviruses used as vector backbones today are HIV-1 and murine leukemia
virus (MLV) [80–84]. In this review, we will focus on the lentivirus subgroup, which
includes HIV, due to the multiple advantages of lentiviral vectors that tend to be lacking in
gamma-retroviral vectors.

In addition to proximal HIV-1 Gag [85], a conserved region that is shared by many
lentiviruses is that of the long-terminal repeat (LTR) region that acts as a promoter and
modulator of viral transcription [86]. These conserved regions of lentiviruses are shown in
Figure 2. As depicted, the conserved regions tend to be consistent across the genus with
little variation.
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Figure 2. Conserved regions of HIV-1. The conserved regions of HIV-1 are targeted in PCR assays
as well as commonly used in lentiviral vector production. Modified from [87] and created with
BioRender.com (accessed on 1 May 2023).

These conserved sequences are the core of the lentiviral backbone. This framework
proves to be useful for a few reasons. One of them being the ability to carry and integrate
large amounts of transgenes into the human genome. The size of the lentiviral vector
backbone tends to be around 3.8 kb without any gene inserts. And while with increasing
size of genes added tend to decrease transduction efficiency, each vector can hold around
9 kb in gene inserts, totaling approximately 14 kb [88,89]. This is more than the packaging
capacity of typical adeno-associated viral vectors (4.8 kb of added DNA) [90]. More gene
combination possibilities may allow a broader range of potential therapeutic effects.

Another useful ability of lentiviral vectors is that they have long-term transgene
expression and consistent transduction in replicating and non-replicating cells which is
a core reason they are widely used in the field of gene-engineering [91–93]. In the past,
viral vectors used on target cells that have had inconsistent expression of genes caused off-
target effects on non-targeted tissues [94–97]. However, there are more updated lentiviral
vector backbones that allow for the regulation of specific gene expression, such as the tet
system [98]. As lentiviral vectors continue to be researched, integrated genes have sustained
expression allowing for greater therapeutic effect in gene-modification therapies [99,100].

Due to the advances and advantages of lentiviral vector backbone usage, their use
is widespread in developing CAR-T-cell therapies, including the HIV-1 cure field. These
vectors are currently being used in human studies (ClinicalTrials.gov #NCT02797470,
#NCT04648046, #NCT02343666, #NCT00569985, #NCT05529342). For instance, AIDS Malig-
nancy Consortium 097 study (AMC097) modifies autologous stem cells of HIV-1 infected
individuals with a lentiviral vector backbone that carries a CCR5 shRNA, chimeric macaque-
human Trim5α, and a HIV-1 TAR decoy [101–103]. However, with the many lentiviral
vector backbones being created from HIV-1, this creates downstream sequence homology
issues with HIV-1.

3.2.2. Co-Quantification of HIV and Lentiviral Vector in HIV-1 Infected Individuals

In the setting of lentiviral vector or HIV-1 quantification in samples from participants
by various sequence specific PCR methods in gene therapy studies, the conserved regions
of both viral sequences are often used, as hypervariable regions are not reliable enough
to ensure accurate counts across participants [104]. For the quantification of HIV-1, the
LTR-proximal Gag region is typically used for consistency and to reliably quantitate target
copy numbers across the diverse viral strains (of note, lentiviral vector DNA and RNA is
conserved, although infecting HIV-1 strains are highly diverse). Since primers and probes
in PCR techniques are usually designed for conserved sequences, the vast majority of
highly tested assays to define the HIV-1 reservoir correspond to these conserved regions
common to lentiviral vectors [85].

To be able to quantify lentiviral vector and HIV-1 infection separately, there is a
challenge to design assays that will not have cross-reactivity between conserved regions of
HIV-1 and lentiviral vector sequences. If there is overlap in these regions, current assays
are not able to differentiate between cell-associated lentiviral vector DNA and integrated
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HIV-1. Possibilities such as adding viral genes in the backbone or targeting smaller regions
within the vector could lead to less cross-reactivity. It is also possible for viral load assays
that detect lentiviral RNAs from the proximal Gag region to detect certain lentiviral vector
transcripts. Not knowing the difference between the HIV reservoir and the presence of
a lentiviral vector can cause a multitude of issues that affect the overall knowledge of
therapeutic efficacy.

There are both clinical and research assays for quantification of HIV-1 that depend on
conserved regions of HIV-1 sequence. While there are antibody, antigen, and nucleic acid
tests in clinical use to detect and quantify virus in plasma, the HIV-1 reservoir is typically
detected via RNA and DNA PCR of peripheral mononuclear blood cells (PBMCs) [105–110].
In PWH on suppressive ART, blood plasma virus is typically undetectable by routine
viral load testing [111–113]. Cell-associated HIV infection can nearly always be detected,
however. With the sequence homology of HIV-1 and various lentiviral constructs there is no
current standard assay to distinguish between the two, prohibiting accurate monitoring of
HIV-1 reservoirs following lentiviral-based CAR-T-cell therapy. This applies to the recently
described HIV-1 Intact Proviral DNA Assay (IDPA) [114]. Furthermore, the inability to
distinguish certain regions of HIV-1 from various lentiviral vectors presents challenges in
characterizing the expansion of the dynamics of CAR-T-cell populations within the body
following infusion with or without ATI.

When conducting studies or clinical trials for gene-modification therapies, it is impor-
tant to have a method to understand how these cells are expanding and exerting therapeutic
and off-target effects on the body. There is an urgent need for standardization of quantita-
tion assays that will be used for CAR-T-cell therapies for the current and future HIV-1 cure
investigations.

3.2.3. Lentiviral Vector Uses in HIV Cure

The field of gene modification therapies is a rapidly expanding field across diseases,
and the HIV-1 cure space is currently adapting many of these techniques [115–118]. While
there are a multitude of ways to genetically modify cells, the exploration of lentiviral
vectors is being employed toward HIV cure. As previously discussed, use of lentiviral
vector backbones in these therapies has several advantages. These uses include ease in
which they can integrate large transgenes and facilitate expression within dividing target
cell types [79,119]. However, in the clinical space, they are also ideal due to the thoroughly
conducted safety and efficacy studies in humans [120].

Lentiviral-based gene modification is used to generate CAR-T cells for HIV-1 cure
in patients who are otherwise healthy and stably suppressed on ART (ClinicalTrials.gov
#NCT04648046) [41,67]. While the cells transduced with lentiviral vectors make RNA
transcripts that code for CARs or other products of interest in gene therapy studies, they are
engineered to avoid lentiviral replication [79,121]. Nonetheless, there is a possibility that
gene modified CD4+ T cells become infected with HIV-1 in vivo. Although the potential
for recombination between HIV-1 and lentiviral vector DNA is highly improbable due to
advances in lentiviral vector production, the potential is there, which could theoretically
pose safety and efficacy issues in clinical spaces [92,122–124].

3.3. Challenges of Single-Cell Resolution of CAR-T Cell Resistance Genes

Quantifying CAR-T-cell expansion and the correlative HIV-1 burden is critical to
determining therapeutic success. Several major questions remain unanswered, however.
For example, despite strategies to engineer CAR-T cells to be resistant to HIV infection
(CAR-T cells are often CD4-T cells of origin) by using C46 or non-CD4-based single chain
variable fragments (scFv) [41,67,125], it is not known if CAR-T cells or other gene modified
cells (e.g., the multiple gene-modified stem cell transplant strategy as above) become
infected in vivo, especially during potentially high levels of HIV-1 plasma viremia and
replication in studies involving ATIs.
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Limitations of Current Single-Cell Analysis Methods

Single-cell characterization of HIV-1-infected and CAR-T cells will be required in
order to determine the dynamics of CAR-T cells (or other gene modified cell strategies
that involve engineered CD4+ T cells or hematopoietic stem cells [101–103,126]) over
time in vivo with precision and accuracy as well as to determine if these modified cells
become infected in vivo. Whereas there are numerous methods to investigate host and
viral transcriptional activity on a single cell level, there are limitations associated with
them when looking specifically at lentiviral vector-mediated CAR-T cell and other cellular
therapies in PWH. The main techniques that can distinguish attributes of individual cells
are single-cell RNA sequencing, fluorescence microscopy, and flow cytometry [127–130].

Single-cell RNA sequencing surveys the sequence of individual cellular RNA transcript
expression. scRNA seq has advantages in that it can identify distinct genetic and phenotypic
cell populations. However, it is limited by cost because the relatively fewer number of
cells that can be analyzed at once adds to the difficulty in detecting non-polyadenylated
HIV-1 or lentiviral transcripts [131–133]. Fluorescence microscopy can detect the genetic
profile and protein expression in culture and tissues samples, while flow cytometry utilizes
antibody kinetics to analyze surface proteins [98]. An additional technique utilizing both
scRNA seq and flow cytometry is cellular indexing of transcriptomes and epitopes (CITE)
sequencing [99]. The application of these methodologies enables single-cell resolution for
different research targets. CAR-T cells used in oncology research were previously used in
methods to identify and track cells by using flow cytometry [67,100,134]. When there is
optimal engineering of the CAR to have a uniquely identifiable biomarker (i.e., CD19 CAR-
T cells), flow cytometry can quantify the changes in CAR-T-cell reservoir. An activated
and discrete biomarker is also needed in other lentiviral gene modification strategies when
there is no distinct surface protein that delineates modified cells. Being able to identify
modified cells infected with HIV-1 is critically important as this indicates that modifications
that are engineered to protect cells from HIV infection (e.g., C46 with CAR-T, multiple gene
modification in AMC097) are not effectively preventing de novo infection. So while these
assays provide useful information on single-cell dynamics and biology, there are limitations
to each in the context of developing lentiviral-based CAR-T-cell therapeutics.

Assays that allow for high throughput quantification of HIV-infected cells (which
can be as rare as one in a million CD4 T cells in peripheral blood) and gene-modified
lentiviral vector at a single-cell level are highly desirable to advance the development of
lentiviral CAR-T-cell therapies in the HIV field. These assays need not be sophisticated
in terms of the multiomic capabilities, but rather allow the survey of a large number
of cells for simultaneous characterization of HIV-1 and lentiviral vector insert DNA or
RNA transcripts. Single-cell encapsulation in microfluidic droplets with subsequent mul-
tiplexed PCR detection of distinct target sequences that do not overlap is one potential,
cost-effective solution.

4. Discussion

CAR-T-cell therapies are gaining traction in the HIV-1 cure field and hold some promise
to target and remove infected cells expressing HIV-1 envelope proteins. While the safety,
efficacy, and efficiency of lentiviral vector-generated CAR-T cells have been proven in other
therapeutic areas, such as oncology, there are many practical assay issues that arise with the
introduction of these modalities for HIV cure. HIV-1 envelope surface expression is likely
low and metastable in the setting of suppressive ART and it is not clear if CAR-T cells can
effectively target infected cells in vivo across a range of tissues. As a result, many studies
involve ATI following CAR-T infusion to allow for easier recognition of infected cells and
to maintain or expand the CAR-T cell pool. There are also many technical difficulties in
measuring target protein expression (e.g., Env gp120) and to quantify lentiviral vector and
HIV-1 DNA or RNAs both in bulk samples with single-cell resolution.
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