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Abstract: Colloidal photonic crystals, which are three-dimensional periodic structures of monodis-
perse submicron-sized particles, are expected to be suitable for novel photonic applications and color
materials. In particular, nonclose-packed colloidal photonic crystals immobilized in elastomers ex-
hibit significant potential for use in tunable photonic applications and strain sensors that detect strain
based on color change. This paper reports a practical method for preparing elastomer-immobilized
nonclose-packed colloidal photonic crystal films with various uniform Bragg reflection colors using
one kind of gel-immobilized nonclose-packed colloidal photonic crystal film. The degree of swelling
was controlled by the mixing ratio of the precursor solutions, which used a mixture of solutions with
high and low affinities for the gel film as the swelling solvent. This facilitated color tuning over a wide
range, enabling the facile preparation of elastomer-immobilized nonclose-packed colloidal photonic
crystal films with various uniform colors via subsequent photopolymerization. The present prepara-
tion method can contribute to the development of practical applications of elastomer-immobilized
tunable colloidal photonic crystals and sensors.

Keywords: colloidal crystals; tunable photonic crystals; elastomers; stimuli-sensitive materials;
color materials

1. Introduction

Colloidal photonic crystals are three-dimensional periodic structures of monodisperse
submicron-sized particles [1,2]. They generate optical stopbands to show Bragg reflection
colors, making them potentially useful in novel photonic applications and color materi-
als [3–5]. In particular, nonclose-packed colloidal photonic crystals immobilized in soft
polymers have received significant attention because of their high tunability. For instance,
nonclose-packed colloidal photonic crystals immobilized in stimuli-responsive hydrogels
can alter their optical stopband wavelength over a wide range in response to external stim-
uli, such as changes in pH [6,7], temperature [8–10], and swelling solvent [11–14]. This can
be attributed to the large change in the lattice spacing of loosely packed colloidal crystals
caused by the volume change of the gel. Recently, colloidal photonic crystals immobilized in
elastic polymers, i.e., elastomers [15–17], have been developed as facilely tunable colloidal
photonic crystals [18–20]. In contrast to gel-immobilized colloidal photonic crystals, they
do not contain swelling solvents and exhibit excellent elasticity and strength; hence, the
stopband wavelength can be easily altered in ambient atmosphere by applying mechanical
stress. Therefore, elastomer-immobilized colloidal photonic crystals have considerable
potential for use in tunable photonic applications and strain sensors that detect strain based
on color change [21–27]. Although the preparation of elastomer-immobilized nonclose-
packed colloidal photonic crystals with various uniform Bragg reflection colors is essential
for their application, few studies on their practical preparation have been reported.
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We previously reported that gel-immobilized nonclose-packed colloidal photonic
crystal films with uniform Bragg reflection colors over several square centimeters could be
prepared by flowing water suspensions of charged colloids and subsequently photopoly-
merizing the gelation reagent dissolved in water [28–31]. Furthermore, by replacing the
water contained in the gel-immobilized colloidal photonic crystal films with an elastomer
precursor solution and subsequent photopolymerization, nonclose-packed colloidal pho-
tonic crystals were successfully immobilized in the elastomer films while maintaining a
uniform color [32,33]. When these films were stretched, their color changed from red to blue
owing to the reduction in the lattice spacing perpendicular to the direction of the thickness,
with the maximum strain reaching 120% [32]. Such color changes during extension are
reversible and reproducible. Although elastomer-immobilized nonclose-packed colloidal
photonic crystals with various initial colors can be prepared by changing the particle size
and particle volume fraction of the colloidal suspension, this approach is impractical be-
cause of the laborious and time-consuming process of repeating the preparation from the
beginning for each color.

In this study, we report a facile preparation method for elastomer-immobilized
nonclose-packed colloidal photonic crystal films with different uniform colors using one
kind of gel-immobilized nonclose-packed colloidal photonic crystal film. Mixtures of elas-
tomer precursor solutions consisting of 4-hydroxybutyl acrylate (HBA) and poly(ethylene
glycol) phenyl ether acrylate (PEPA), which have high and low affinities for gel-immobilized
colloidal photonic crystal films, respectively, were used as swelling solvents, and the degree
of swelling was controlled by varying the mixing ratio of the precursor solutions. This
allowed for color tuning over a wide range, thereby facilitating the preparation of various
uniform colors of elastomer-immobilized nonclose-packed colloidal photonic crystal films
via subsequent photopolymerization. Furthermore, we elucidated the controllable range
of the Bragg wavelength in terms of the monomer concentration in the gel-immobilized
colloidal photonic crystal films.

2. Materials and Methods

An ion-exchange resin (AG501-X8(D), Bio-Rad, Hercules, CA, USA) was added to a
suspension of monodisperse polystyrene particles with a particle diameter of 160 nm (5016
B, Thermo Fisher Scientific, Waltham, MA, USA) and gently stirred for at least two weeks to
deionize the suspension. The obtained charge-stabilized colloidal crystals were centrifuged,
and the supernatant was removed to obtain concentrated colloidal crystals. The gelation
reagent was prepared by dissolving N-isopropylacrylamide (NIPAM, FUJIFILM Wako Pure
Chemical Corp., Tokyo, Japan) and N-methylolacrylamide (NMAM, FUJIFILM Wako Pure
Chemical Corp., Tokyo, Japan) monomers, N,N′-methylenebisacrylamide (BIS, FUJIFILM
Wako Pure Chemical Corp., Tokyo, Japan) crosslinker, and 2,2′-azobis [2-methyl-N-(2-
hydroxyethyl)propionamide] (VA, FUJIFILM Wako Pure Chemical Corp., Tokyo, Japan)
photoinitiator in ultrapure water (Milli-Q system, Merck KGaA, Darmstadt, Germany).
The gelation reagent was added to the concentrated colloidal crystals such that the con-
centrations of the monomers (NIPAM and NMAM), BIS, VA, and polystyrene particles
were 800 mM, 40 mM, 0.35 mM, and 10.7 vol.%, respectively. The mole fraction of NIPAM
in the monomers, x = nNIPAM/(nNIPAM + nNMAM), was adjusted to x = 0.3, 0.4, 0.5, 0.6,
and 0.8. Colloidal crystals containing the gelation reagent were bubbled with Ar gas for
5 min and shear-flowed into a flat quartz capillary cell (channel height: 0.1 mm; width:
9 mm; length: 50 mm) to convert the polycrystalline structure into a single crystalline
structure [28,34]. The cell was then irradiated with ultraviolet (UV) light (MBRL-CUV7530,
MORITEX Corporation, Saitama, Japan) for 90 min to photopolymerize the gelation reagent.
The reflection spectra of the colloidal crystals at normal incidence before and after UV light
irradiation were measured using a fiber spectrometer (Fastevert S-2630, Soma Optics, Ltd.,
Tokyo, Japan), and photographs were taken using a charge-coupled device (CCD) camera
(XCD-V60CR, Sony, Tokyo, Japan). The obtained gel-immobilized colloidal crystal film was
removed from the cell and cut into discs 3 mm in diameter. The discs were immersed in mix-
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tures of elastomer precursor solutions consisting of 4-hydroxybutyl acrylate (HBA, Tokyo
Chemical Industry Co., Ltd., Tokyo, Japan) and poly(ethylene glycol) phenyl ether acrylate
(PEPA, Sigma-Aldrich, Saint Louis, MO, USA) with 1 wt.% photoinitiator (DAROCUR 1173,
BASF, Ludwigshafen, Germany) for 24 h to replace the water contained in the gel network
with the precursor solutions. The discs were sandwiched between two glass slides using
two cover glasses as spacers and irradiated with UV light (MBRL-CUV7530, MORITEX
Corporation, Saitama, Japan) for 10 min to photopolymerize the precursor solutions. The
reflection spectra of the colloidal crystal film discs at normal incidence were measured
using a fiber spectrometer (Fastevert S-2630, Soma Optics, Ltd., Tokyo, Japan). The discs
were photographed using a CCD camera (XCD-V60CR, Sony, Tokyo, Japan). The refractive
indices of the elastomers were measured using an Abbe refractometer (DR-A1, ATAGO
Co., Ltd., Tokyo, Japan).

3. Results and Discussion

Figure 1A shows the reflection spectra and photographs of the gel-immobilized col-
loidal photonic crystal film with an NIPAM mole fraction of x = 0.5 before and after the
replacement of water contained in the gel film with HBA and after UV light irradiation.
Before the replacement, the gel-immobilized colloidal photonic crystal film exhibited a
strong peak at 667 nm in the reflection spectrum and a uniform dark red color. This
peak is attributed to the Bragg reflection from the face-centered cubic (FCC) (111) lattice
planes, which are parallel to the film surface [28,34]. The gel film shrank after replace-
ment, resulting in a blue shift of the Bragg peak from 667 to 649 nm, while maintaining
spectral quality. When irradiated with UV light, the elastomer precursor solution solidi-
fied to fix the nonclose-packed colloidal photonic crystals. The film size decreased after
photopolymerization, causing the Bragg wavelength to decrease to 619 nm. When the
gel film was immersed in an elastomer precursor solution with a PEPA concentration
of 20 wt.%, it shrank more than the gel film immersed in HBA (Figure 1B). The Bragg
wavelength blueshifted to 617 and 589 nm after solvent replacement and UV irradiation,
respectively. Thus, the resultant elastomer-immobilized colloidal photonic crystal film
exhibited a uniform orange color. As the PEPA concentration increased further, the gel
film shrank, resulting in drastic color changes. As shown in Figure 1C,D, yellow and
yellow-green elastomer-immobilized colloidal photonic crystal films were prepared at
PEPA concentrations of 30 and 40 wt.%, respectively. At a PEPA concentration of 60 wt.%,
the gel film shrank significantly, and the color turned dark blue (Figure 1E). The Bragg
wavelength was significantly blueshifted to 506 nm, and the Bragg peak intensity was
significantly reduced. This reduction was probably due to the decrease in refractive index
contrast [35], disordering of the particle arrangement, and slight warping of the gel film
caused by significant gel shrinkage. The elastomer-immobilized colloidal photonic crystal
film, which maintained its spectral profile and color, was prepared via subsequent pho-
topolymerization. When the PEPA concentration was increased to 70 wt.%, the gel film
shrank further, and the resulting elastomer-immobilized colloidal photonic crystal film
exhibited a blue color with significant warping (Figure 1F).

Figure 2A shows the plots of the Bragg wavelengths of the colloidal photonic crystal
films before and after solvent replacement and after photopolymerization as a function of
the PEPA concentration, which were determined from reflection spectral measurements. As
the PEPA concentration increased, the Bragg wavelength of the gel-immobilized colloidal
photonic crystal film after solvent replacement decreased because the gel film shrank as the
affinity between the gel network and the solvent decreased. Above a PEPA concentration
of 70 wt.%, the Bragg wavelength gradually changed. The Bragg wavelengths after pho-
topolymerization were consistently smaller than those before photopolymerization, and
the difference gradually decreased with increasing PEPA concentration. These saturation
behaviors suggest that the reduction in the FCC (111) lattice spacing of the colloidal crystals
almost reached its limit.
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Figure 1. Reflection spectra and photographs of the gel-immobilized colloidal photonic crystal films
with an NIPAM mole fraction of x = 0.5 immersed in elastomer precursor solutions with PEPA
concentrations of (A) 0 wt.%, (B) 20 wt.%, (C) 30 wt.%, (D) 40 wt.%, (E) 60 wt.%, and (F) 70 wt.% at
each process ((a) before and (b) after the solvent replacement and (c) after UV light irradiation). The
length of the scale bar in the photographs is 1 mm.
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crystal films before and after solvent replacement and after photopolymerization as functions of the
PEPA concentration.

The FCC (111) lattice spacing, d111, of the colloidal photonic crystal films with different
PEPA concentrations in each process can be estimated from the measured Bragg wavelength,
λ111, using the Bragg condition at normal incidence:

λ111 = 2ncd111, (1)
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where nc is the refractive index of colloidal photonic crystal films. nc can be approximated
as the volume-weighted average of the refractive indices of the components [32]:

nc = npφp + npolφpol + nsol

(
1−

(
φp + φpol

))
, (2)

where np, npol, and nsol are the refractive indices of the polystyrene particles, polymer
in the gel, and swelling solvent, respectively, and φp and φpol are the volume fractions
of the particles and polymer in the film, respectively. The values of npol and nsol were
approximated as the volume-weighted averages of the refractive indices of the components.
For the elastomer-immobilized colloidal photonic crystal film, the measured value of the
refractive index of the elastomer was used as nsol. The relation between φp and φpol was
determined from the masses of the particles and gelation reagent added to the suspen-
sion [10,14]. Based on geometrical considerations of a FCC structure, φp is determined
using the diameter of the particles, d, and d111:

φp =
2π

9
√

3

(
d

d111

)3
. (3)

Substituting the Bragg wavelengths measured for each process into Equation (1) and
using Equations (2) and (3), the FCC (111) lattice spacing was estimated, as shown in
Figure 2B. The rate of change in the lattice spacing was in good agreement with the shrink-
ing rate of the film. The lattice spacing of both the gel-immobilized colloidal photonic
crystal film after solvent replacement and the resultant elastomer-immobilized colloidal
photonic crystal film reached a low value of approximately 150 nm at high PEPA concentra-
tions. This value is significantly smaller than the particle diameter (160 nm), suggesting that
the lattice spacing almost reached saturation. The calculated particle volume fractions of
the resultant elastomer-immobilized colloidal photonic crystal films at PEPA concentrations
of 0 and 90 wt.% were 0.19 and 0.48, respectively. Because these values are much lower
than the particle volume fraction of a close-packed structure (0.74), the elastomer films can
be considered to have a nonclose-packed crystalline structure.

Figure 3 shows the reflection spectra and photographs of the gel-immobilized colloidal
photonic crystal films with an NIPAM mole fraction of x = 0.4 immersed in the elastomer
precursor solutions with different PEPA concentrations at each process. By decreasing
the NIPAM mole fraction from 0.5 to 0.4, the degree of shrinkage of the gel film and the
consequent blueshift of the Bragg wavelength increased. The final elastomer-immobilized
colloidal photonic crystal films exhibited yellow, yellow-green, dark blue, and blue colors
at PEPA concentrations of 0, 20, 33, and 36 wt.%, as shown in Figure 3A–D, respectively.
At PEPA concentrations above 50 wt.%, the resultant elastomer-immobilized colloidal
photonic crystal films exhibited a blue color; however, they were significantly warped, and
the Bragg reflection peak was considerably low (Figure 3E,F).

Similar results were obtained at NIPAM mole fractions of x = 0.6 and 0.3, as shown in
Figures S1 and S2, respectively, in the Supplementary Information.

When the gel-immobilized colloidal photonic crystal films with an NIPAM mole
fraction of x = 0.8 were immersed in the elastomer precursor solutions with PEPA concen-
trations of 0, 20, and 40 wt.%, they surprisingly swelled more than those in water, as shown
in Figure 4A–C, respectively. Thus, the Bragg peaks redshifted to more than 700 nm, and
their reflection colors disappeared. Under UV irradiation, the precursor solutions solidified
with slight shrinkage. On the other hand, the gel films shrank when they were immersed
in elastomer precursor solutions with PEPA concentrations above 60 wt.% (Figure 4D–F).
The Bragg wavelength shifted to shorter wavelengths with increasing PEPA concentration.
The colors of the resultant elastomer-immobilized colloidal photonic crystal films were red,
green, and blue at 60, 80, and 90 wt.%, respectively.



Polymers 2023, 15, 2294 6 of 9Polymers 2023, 15, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 3. Reflection spectra and photographs of the gel-immobilized colloidal photonic crystal films 
with an NIPAM mole fraction of x = 0.4 immersed in elastomer precursor solutions with PEPA con-
centrations of (A) 0 wt.%, (B) 20 wt.%, (C) 33 wt.%, (D) 36 wt.%, (E) 50 wt.%, and (F) 70 wt.% at each 
process ((a) before and (b) after the solvent replacement and (c) after UV light irradiation). The 
length of the scale bar in the photographs is 1 mm. 

Similar results were obtained at NIPAM mole fractions of x = 0.6 and 0.3, as shown 
in Figures S1 and S2, respectively, in the Supplementary Information. 

When the gel-immobilized colloidal photonic crystal films with an NIPAM mole frac-
tion of x = 0.8 were immersed in the elastomer precursor solutions with PEPA concentra-
tions of 0, 20, and 40 wt.%, they surprisingly swelled more than those in water, as shown 
in Figure 4A–C, respectively. Thus, the Bragg peaks redshifted to more than 700 nm, and 
their reflection colors disappeared. Under UV irradiation, the precursor solutions solidi-
fied with slight shrinkage. On the other hand, the gel films shrank when they were im-
mersed in elastomer precursor solutions with PEPA concentrations above 60 wt.% (Figure 
4D–F). The Bragg wavelength shifted to shorter wavelengths with increasing PEPA con-
centration. The colors of the resultant elastomer-immobilized colloidal photonic crystal 
films were red, green, and blue at 60, 80, and 90 wt.%, respectively. 

Figure 3. Reflection spectra and photographs of the gel-immobilized colloidal photonic crystal films
with an NIPAM mole fraction of x = 0.4 immersed in elastomer precursor solutions with PEPA
concentrations of (A) 0 wt.%, (B) 20 wt.%, (C) 33 wt.%, (D) 36 wt.%, (E) 50 wt.%, and (F) 70 wt.% at
each process ((a) before and (b) after the solvent replacement and (c) after UV light irradiation). The
length of the scale bar in the photographs is 1 mm.

The measured Bragg wavelengths and estimated FCC (111) lattice spacings of the
elastomer-immobilized colloidal photonic crystal films prepared at various NIPAM mole
fractions are plotted as functions of the PEPA concentration in Figure 5A,B, respectively.
Colloidal photonic crystal films with lower NIPAM mole fractions always exhibited smaller
Bragg wavelengths and smaller lattice spacings. As the PEPA concentration increased, the
Bragg wavelengths and lattice spacings decreased and then became saturated. The ultimate
Bragg wavelength and lattice spacing of the most shrunken state were approximately 455
and 150 nm, respectively. The elastomer-immobilized colloidal photonic crystal film with
an NIPAM mole fraction of x = 0.5 exhibited a linear dependence of the Bragg wavelength
on the PEPA concentration in the range between 0 wt.% and 70 wt.% and showed uniform
colors from red to dark blue. This indicates that the gel-immobilized colloidal photonic
crystal film with an NIPAM mole fraction of x = 0.5 is the most suitable for the preparation
of elastomer-immobilized colloidal photonic crystal films with various uniform colors
because of its convenient linear tuning over a wide range.
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with PEPA concentrations of (A) 0 wt.%, (B) 20 wt.%, (C) 40 wt.%, and (D) 60 wt.% at each process 
((a) before and (b) after the solvent replacement and (c) after UV light irradiation). The length of the 
scale bar in the photographs is 1 mm. 
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Figure 5. (A) Bragg wavelengths and (B) estimated FCC (111) lattice spacings of the elastomer-
immobilized colloidal photonic crystal films prepared at various NIPAM mole fractions as functions
of the PEPA concentration.

4. Conclusions

Elastomer-immobilized nonclose-packed colloidal photonic crystal films with var-
ious uniform Bragg reflection colors were prepared using one kind of gel-immobilized
nonclose-packed colloidal photonic crystal film. Using elastomer precursor solution mix-
tures composed of HBA and PEPA, which have high and low affinities for gel-immobilized
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colloidal photonic crystal films, respectively, as the swelling solvent, the degree of swelling
was controlled by varying the mixing ratio of the precursor solutions. As the PEPA concen-
tration increased, the Bragg wavelength of the resultant elastomer-immobilized colloidal
photonic crystal film decreased. Additionally, when the NIPAM mole fraction in the
gel-immobilized colloidal photonic crystal film decreased, the Bragg wavelength of the
resultant elastomer-immobilized colloidal photonic crystal film decreased. The ultimate
Bragg wavelength and lattice spacing of the most shrunken state were approximately 455
and 150 nm, respectively. Furthermore, the gel-immobilized colloidal photonic crystal film
with an NIPAM mole fraction of x = 0.5 was the most suitable because the resultant Bragg
wavelength exhibited a linear dependence on the PEPA concentration in the range between
0 wt.% and 70 wt.%; consequently, elastomer-immobilized colloidal photonic crystal films
with uniform colors from red to dark blue were prepared. The present facile prepara-
tion method can potentially improve the practical application of elastomer-immobilized
colloidal photonic crystals for tunable photonic crystals and sensors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15102294/s1, Figure S1: Reflection spectra and photographs
of the gel-immobilized colloidal photonic crystal films with an NIPAM mole fraction of x = 0.6
immersed in elastomer precursor solutions with PEPA concentrations of (A) 0 wt.%, (B) 20 wt.%, (C)
40 wt.%, (D) 50 wt.%, (E) 60 wt.%, (F) 65 wt.%, (G) 70 wt.%, (H) 80 wt.%, and (I) 90 wt.% at each
process ((a) before and (b) after the solvent replacement and (c) after UV light irradiation). The length
of the scale bar in the photographs is 1 mm; Figure S2: Reflection spectra and photographs of the
gel-immobilized colloidal photonic crystal films with an NIPAM mole fraction of x = 0.3 immersed in
elastomer precursor solutions with PEPA concentrations of (A) 0 wt.%, (B) 20 wt.%, (C) 40 wt.%, and
(D) 60 wt.% at each process ((a) before and (b) after the solvent replacement and (c) after UV light
irradiation). The length of the scale bar in the photographs is 1 mm.
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