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Abstract: Zinc oxide is a crucial component in rubber products, but its excessive usage can lead to
environmental damage. As a result, reducing the amount of zinc oxide in products has become a
critical issue that many researchers aim to address. This study employs a wet precipitation method
to prepare ZnO particles with different nucleoplasmic materials, resulting in ZnO with a core–shell
structure. The prepared ZnO underwent XRD, SEM, and TEM analysis, indicating that some of the
ZnO particles were loaded onto the nucleosomal materials. Specifically, ZnO with a silica core–shell
structure demonstrated 11.9% higher tensile strength, 17.2% higher elongation at break, and 6.9%
higher tear strength compared to the indirect method of ZnO preparation. The core–shell structure
of ZnO also helps reduce its application in rubber products, thereby achieving the dual objective of
protecting the environment and improving the economic efficiency of rubber products.

Keywords: core–shell structured zinc oxide; natural rubber; tread rubber; reduction in zinc oxide dosage

1. Introduction

Zinc oxide is an inorganic filler widely used in the rubber industry, and it has several
functions. First, zinc oxide acts as an active agent in rubber to promote the vulcanization
reaction, which helps to accelerate the rate of vulcanization and increase the degree of
vulcanization, thus improving the physical and mechanical properties of rubber. Second,
ZnO is used as a filler of rubber composites intended for products exhibiting increased heat
conductivity. Furthermore, zinc oxide acts as an antioxidant that absorbs harmful ultraviolet
rays, oxygen, and ozone to avoid their oxidation and the aging of rubber, thus prolonging
the service life of rubber [1–3]. In addition, zinc oxide can be used as an antimicrobial agent
to kill microorganisms by releasing oxygen and zinc ions, thus increasing the durability
and service life of rubber products. In summary, zinc oxide is a very important rubber
filler in rubber because of its multiple roles in promoting vulcanization, antioxidation, and
antibacterial activity [4–6].

The rubber tire industry represents the largest consumer of zinc oxide, with approx-
imately 50% of total zinc oxide usage being attributed to this industry [7]. Currently,
micron-sized ZnO is used primarily as the curing active agent in the tire industry, and
only a portion of the ZnO is involved in the activation of the curing reaction. As a result,
a significant amount of ZnO remains in the rubber in the form of micron-sized particles,
and residual Zn is released into the environment during tire operation, contributing to
environmental pollution [8,9]. Despite the important role of ZnO in sulfur vulcanization, its
concentration in rubber compounds, especially those used in aquatic environments, must
be reduced to, at least, below 2.5 wt%, because zinc oxide is classified as being toxic to
aquatic life. According to European Union Regulation (EC) No. 1272/2008 on classification,
labeling, and packaging of substances and mixtures, ZnO was classified as Aquatic Acute 1
with hazard statement H400: Very toxic to aquatic life and Aquatic Chronic 1 with hazard
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statement H410: Very toxic to aquatic life with long lasting effects. The precaution recom-
mended in this regulation is defined as P273: Avoid release to the environment. The release
of zinc from rubber products occurs during their manufacture, use (dust created during the
abrasion of tires on road surfaces), and recycling or disposal in landfills. A potential source
of zinc in groundwater can also be rubber granulates made from end-of-life tires used to
build artificial sports fields. Taking this into account, the problem of reducing the amount
of zinc in rubber products is essential [10].

With advances in synthesis technology, various methods have been employed to pre-
pare ZnO nanoparticles as a substitute for conventional ZnO. The methods and conditions
for preparing ZnO nanoparticles have been extensively investigated and can be broadly
categorized as solid-phase, liquid-phase, and gas-phase methods based on the phase state
of the reactants [11–14]. It has been demonstrated that decreasing the particle size of ZnO
nanoparticles results in a rougher surface and uneven atomic steps, leading to increased
contact surface and chemical activity [15–18]. In contrast, the particle size of ZnO nanopar-
ticles is considerably smaller than that of ZnO, making it theoretically feasible to replace
ZnO and reduce the amount of zinc used [19–21]. The use of high-specific-surface-area
ZnO nanoparticles can increase the contact area between ZnO and rubber, improve the
efficiency of ZnO in the activation reaction (by increasing the reaction rate and reducing
energy consumption during vulcanization), and simultaneously reduce the amount of ZnO
used without compromising the enhancement effect [22–25]. According to thermodynamic
theory, smaller particle sizes result in reduced dispersion effectiveness. ZnO nanoparticles
tend to agglomerate due to their small size and high specific surface energy, thus limiting
their nano-effect [26–28]. To address this issue, researchers have employed strategies such
as loading ZnO nanoparticles or preparing core–shell structured particles. For instance,
Magdalena G. et al. [6] used a gel method to coat ZnO nanoparticles onto the surface
of SiO2 to investigate the effect of SiO2@ZnO core–shell structured nanoparticles on the
kinetics of carboxylated nitrile rubber. Yalan L. et al. [29] used a wet blending method to
load ZnO onto the surface of cellulose fibers to study the dispersion of cellulose fibers in
the rubber matrix and its impact on the mechanical strength of natural rubber. Furthermore,
Zeinab D.G. et al. [30] prepared CoO.CaO/ZnO core–shell structured particles and exam-
ined their effect on the mechanical properties of nitrile butadiene rubber (NBR), with ZnO
as the core and CoO and CaO as the shell. This approach improved the tensile strength of
NBR and enhanced the compatibility between ZnO and NBR. In addition, some researchers
have employed nanoscale active ZnO with a micron-level carrier coating structure as the
starting material and added various low-molecular-weight PIBs as dispersion aids to the
nano-active ZnO powder to achieve surface modification, thereby improving several sur-
face properties such as agglomeration adsorption and dispersion. This strategy ultimately
enhances the compatibility of nano-active ZnO with rubber materials.

In this study, core–shell structured zinc oxide nanoparticles were synthesized via the
wet precipitation method, using various materials including calcium carbonate, barium
sulfate, silicon dioxide, thermally cracked carbon black, and graphene as the core material.
The resulting core–shell structured zinc oxide nanoparticles were characterized in terms
of morphology, particle size, and the extent of zinc oxide loading onto the core material.
Subsequently, the prepared zinc oxide nanoparticles were incorporated into the formulation
of semi-steel radial tire tread rubber, and the effects on the vulcanization characteristics, me-
chanical properties, friction properties, aging properties, and dynamic thermomechanical
properties of the rubber were studied.

2. Experimental Part
2.1. Experimental Materials

Zinc chloride used in the preparation was sourced from Shandong Xuanhai
Chemical Co., Ltd. (Heze, China), whereas sodium carbonate was obtained from Tianjin
Jinhui Pharmaceutical Group Co., Ltd. (Tianjin, China) The calcium carbonate used in the
experiment was provided by Changzhou Calcium Carbonate Co., Ltd. (Changzhou, China)
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For the preparation of core–shell structure zinc oxide of barium sulfate, Shandong Qiyi
Chemical Technology Co., Ltd. (Weifang, China) provided the barium sulfate, and Shan-
dong Bluestar Dongda Chemical Co., Ltd. (Zibo, China) provided the silicon dioxide for the
core–shell structure zinc oxide of silica. The graphene used in the experiment was sourced
from Chinese Academy of Sciences Chengdu Organic Chemistry Co., Ltd. (Chengdu,
China), whereas the thermal cracking carbon black was obtained from Jiangxi Black Cat
Carbon Black Co., Ltd. (Jingdezhen, China). The indirect method of zinc oxide used in
the experiment was provided by Anqiu Hengshan Zinc Industry Co., Ltd. (Anqiu, China),
whereas the other complexes were provided by Guangzhou Chemical Reagent Factory. To
prepare the zinc oxide with core–shell structure, the aforementioned raw materials were
used, and the experiment was carried out according to the previously described method.

2.2. Preparation of Zinc Oxide with Core–Shell Structures

To prepare core–shell structured ZnO particles, analytical grade zinc chloride, sodium,
carbonate calcium carbonate (CaCO3), barium sulfate (BaSO4), silicon dioxide (SiO2),
pyrolysis of carbon black (CBp), grapheme oxide (GO), and distilled water were used. To
prepare ZnO@CaCO3, 138 g of zinc chloride was dissolved in 330 mL of distilled water.
Alternatively, 108 g of sodium carbonate was added to 500 mL of distilled water. The
prepared zinc chloride solution was added to the beaker with 81 g of calcium carbonate
solids and stirred at 80 ◦C to make the zinc chloride solution infiltrate the surface of the
calcium carbonate solids. Then, the prepared sodium carbonate solution was slowly added
to beaker and the solution was continuously stirred at 80 ◦C in an oil bath. A viscous and
honey-like gel was obtained after continuously stirring the solution for 30 min at 80 ◦C. The
solution was washed with water three times and dried for 12 h. Lastly, for the calcination
process, a small amount of provided powers were put in an alumina crucible before being
placed into a 600 ◦C furnace. The heating rate was 5 ◦C/min, and the heating operation
was 3 h [31]. Figure 1 presents the process of core–shell structured ZnO. The core–shell
structured zinc oxide/barium sulfate, zinc oxide/silica, zinc oxide/pyrolysis of carbon
black, and zinc oxide/graphene were prepared by replacing the core–shell materials in the
same way.
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2.3. Preparation of Natural Rubber-Based Nanocomposites

The rubber and auxiliary were mixed in the compactor according to the formulation
shown in Table 1. The total mixing time is 8 min and then vulcanized at 143 ◦C to obtain
the best cure time (t90). The rubber compounds obtained by adding different types of zinc
oxide were named R-ZnO, R-ZnO@CaCO3, R-ZnO@BaSO4, R-ZnO@SiO2, R-ZnO@CBp,
and R-ZnO@GO.

Table 1. Tire tread rubber experimental formula (phr).

R-ZnO R-ZnO@Ca R-ZnO@Ba R-ZnO@Si R-ZnO@CBp R-ZnO@GO

BR9000 20 20 20 20 20 20
SBR 89 89 89 89 89 89
NR 15 15 15 15 15 15

Silica 65 65 65 65 65 65
N375 20 20 20 20 20 20

Indirect method
ZnO 3 - - - - -

ZnO@CaCO3 - 3 - - - -
ZnO@BaSO4 - - 3 - - -
ZnO@SiO2 - - - 3 - -
ZnO@CBp - - - - 3 -
ZnO@Go - - - - - 3

Si69 9.5 9.5 9.5 9.5 9.5 9.5
SA 2 2 2 2 2 2
S 1.3 1.3 1.3 1.3 1.3 1.3

CZ 1.8 1.8 1.8 1.8 1.8 1.8

2.4. Characterization

The crystal structure of the core–shell structured powdered ZnO was determined using
a D-MAX2500/PC X-ray diffractometer (Nippon Rigaku Co., Ltd., Tokyo, Japan) with a test
range of 10◦ to 80◦ and a scanning rate of 5◦/min. The morphological characteristics were
observed using a scanning electron microscope (JSM-7500F; Nippon Electron Co., Ltd.,
Tokyo, Japan) with an acceleration voltage of 3 kV. The transmission electron microscope
(JEOL-JEM-2100; Japan Electron Co., Ltd., Tokyo, Japan) was used to investigate the micro-
scopic morphology of ZnO with a core–shell structure made from different nucleosomal
materials. To test the properties of the prepared core–shell structured ZnO, it was added
to a natural rubber formulation. All vulcanization properties were measured using a vul-
canometer (MDR2000, Alpha Technologies, Hudson, Ohio, USA) at 143 ◦C. The mechanical
properties were tested using an electronic tensile machine (I-7000S, High Iron Co., Ltd.,
Taipei, Taiwan) with the sample strips cut into dumbbell-shaped strips with a length of
75 mm, thickness of 2.00 ± 0.03 mm, and working width of 4 mm. The tensile properties
were measured at a speed of 500 mm/min. Tear strength was measured using the right-
angle tear mode C according to ASTM D624. The thermal oxygen aging chamber was
used to age the cut tensile and tear sample strips at 100 ◦C for 72 h. Abrasion was tested
using a DIN abrasion machine (GT-7012-D, GOTECH Co., Ltd., Taichung, Taiwan) with
a pressure of 10 N and a roller speed of 40 r/min. The dynamic mechanical analysis was
performed using a dynamic thermomechanical analyzer (242, NETZSCH, Selb, Germany)
with a test temperature range from −60 ◦C to 80 ◦C at a frequency of 3 Hz and a ramp rate
of 3 ◦C/min.

3. Results and Discussion
3.1. Characterization of Core–Shell Structure ZnO
3.1.1. XRD

The crystallinity patterns and structures of the synthesized samples were analyzed
using X-ray diffraction (XRD). Figure 2 shows the XRD patterns of commercially available
ZnO composites prepared by the indirect method, which exhibited diffraction peaks at
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31.6◦, 34.4◦, 36.1◦, 47.3◦, 56.3◦, 62.6◦, and 67.6◦ corresponding to (100), (002), (101), (102),
(110), (103), and (112) planes. The core–shell structured ZnO prepared with nucleosomal
materials such as graphene and pyrolysis of carbon black showed similar peak patterns,
indicating that the structure of ZnO on the surface of CBp and GO is primarily in the
hexagonal phase, which was produced at 600 ◦C. Hence, for the core–shell structured ZnO
prepared with nucleosomal materials such as SiO2, CaCO3, and BaSO4, some different
diffraction peaks were detected in the patterns. The XRD patterns of Ca and Ba exhibited
characteristic diffraction peaks of calcium carbonate at 23.0◦, 29.4◦, and 39.3◦, and of barium
sulfate at 22.7◦, 24.8◦, 26.8◦, and 31.5◦, respectively. These observations suggest that the
zinc oxide was attached to the surface of calcium carbonate and barium sulfate.
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Figure 2. XRD of zinc oxide with core–shell structure of different nuclear materials. 
Figure 2. XRD of zinc oxide with core–shell structure of different nuclear materials.

3.1.2. SEM

The morphology of ZnO with different nucleosomal materials is presented in Figure 3.
The high-resolution images of ZnO@CaCO3 powder showed the formation of ZnO nanopar-
ticles, which were spherical in size, uniform, and dense. ZnO was well coated around the
nucleosomal material in Figure 3a. In Figure 3b, ZnO mainly adhered to the carrier surface
in an irregular cylindrical shape, with particles adhering to each other in agglomeration. In
contrast, the flaky structure of zinc oxide shown in Figure 3c,d had numerous bumpy blocks,
indicating poor dispersion and slight agglomeration of zinc oxide monomers distributed
on the carrier surface in a sea-urchin-like crystal form. As displayed in Figure 3e, most GO
nanosheets are stacked, curled, and entangled together. The synthesized nano-ZnO exhibits
an obvious tendency for the nanoparticles to agglomerate. It should be noted that the
surface of GO nanosheets is covered by densely packed and irregularly shaped nano-ZnO
on a large scale. Some nano-ZnO particles that are grown on the brink of the interlayer and
inside the interlayer of GE nanosheets did not wrap the nucleosomal material well, and
most of the graphene material was exposed.
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(e) GO.

3.1.3. TEM

TEM was performed to investigate the ZnO with core–shell structure, as shown in
Figure 4. Figure 4a shows that a number of the ZnO particles were electrostatically adsorbed
onto the surface of calcium carbonate solid, whereas others were free and not adsorbed.
In Figure 4b, the size of the ZnO particles was between 60 and 70 nm. In Figure 4c, only a
small portion of the needle-like ZnO structure was attached to the SiO2 surface, whereas the
ZnO morphology on the silica nucleosome material was needle-like. Figure 4d illustrates
that the ZnO particles were attached to the nucleosome material in a spherical structure,
and it is clear that the ZnO particles were agglomerated together. Figure 4e shows the
GO nanosheets are decorated by nano-ZnO 60 nm in diameter. Notably, some nano-ZnO
particles are dispersed on the surface of the wrinkled GO nanosheets, and some are covered
or wrapped by thin GO nanosheets, in agreement with the SEM observations.
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3.2. Effect of Core–Shell ZnO of Different Core Materials on the Vulcanization Performance of Tire
Tread Rubber

The vulcanization performance of ZnO with different nucleosomal materials in tire
tread rubber was evaluated, as shown in Table 2. The results indicate that ZnO with a
nucleosomal structure exhibits slightly lower MH-ML values than indirect ZnO, which
may be due to its lower percentage among the same amount of ZnO, resulting in a slightly
lower crosslink density. The core–shell structured zinc oxide exhibits a shorter positive
vulcanization time and the fastest vulcanization rate, with a shorter scorch time compared
to indirect zinc oxide. This can be attributed to the small particle size, large specific
surface area, and severe lack of coordination of the core–shell structured ZnO compared
to conventional ZnO, resulting in higher reactivity. In contrast, the vulcanization rate of
R-ZnO@CBp and R-ZnO@GO core materials was slower due to the thermal cracking of
carbon black and the easy agglomeration of graphene in the rubber, resulting in insufficient
reaction between ZnO and the vulcanizing agent.

Table 2. Effect of core–shell zinc oxide with different core materials on vulcanization performance of
tire tread rubber.

R-ZnO R-ZnO@Ca R-ZnO@Ba R-ZnO@Si R-ZnO@CBp R-ZnO@GO

ML/dN·m 1.32 1.45 1.70 1.88 1.71 1.65
MH/dN·m 18.56 17.80 18.68 18.99 18.62 18.55

T10/s 444 372 329 319 437 446
T90/s 1997 1526 1405 1343 1809 1878

MH-ML/dN·m 17.24 16.35 16.98 17.11 16.91 16.90

3.3. Effect of Core–Shell ZnO of Different Core Materials on the Mechanical Properties of Tire
Tread Rubber

The mechanical properties of the rubber compounds are shown in Table 3 and Figure 5.
It shows that the tensile strength and elongation at break of the core–shell structured ZnO
specimens are greater than those of R-ZnO, probably because of the large specific surface
area, better dispersion, and greater crosslinking of the core–shell structured ZnO, which
exhibits excellent mechanical properties. For core–shell structured ZnO, R-ZnO@Si has
better performance, which may be due to the small size and good dispersion of ZnO
attached to silica, which can be effectively combined with the promoter. On the other hand,
silica acts as a reinforcing system indirectly to increase the performance of the adhesive.
Comparing the tearing properties, the core–shell structured ZnO exhibits generally higher
tear strength than the indirect method ZnO. The high surface activity of the small particle
size zinc oxide in the core–shell structured zinc oxide promotes a dense mesh structure that
increases the degree of crosslinking of the rubber and limits the movement of the molecular
chains. As a result, the elastic modulus in the directional direction is smaller than that in
the vertical direction, hindering the crack expansion.

Table 3. Mechanical properties of zinc oxide with core–shell structure.

R-ZnO R-ZnO@Ca R-ZnO@Ba R-ZnO@Si R-ZnO@CBp R-ZnO@GO

Tensile strength/MPa 18.4 19.9 19.7 20.6 19.8 20.8
Elongation at break/% 389 445 432 465 436 436

Modulus at 100% strain/MPa 3.5 3.5 3.4 3.45 3.6 3.8
Modulus at 300% strain/MPa 12.6 13.2 12.8 13.0 13.7 14.0

Tear strength/N ·mm−1 49.2 49.8 52.0 52.6 51.6 50.6
Hardness 75 75 75 76 77 76
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As shown in Figure 5d, R-ZnO has the highest wear resistance, which is due to
the lower crosslink density and higher wear rate, which is due to the lower degree of
crosslinking and susceptibility to damage by mechanical stress. Due to the higher crosslink
density of R-ZnO, the number of crosslinking sites per unit volume is higher, and the
number of effective molecular chains carrying mechanical stress is higher compared to
that of ZnO with a core–shell structure, resulting in a higher wear resistance. Similarly, for
ZnO with a core–shell structure, the high degree of crosslinking leads to excellent wear
resistance.

3.4. Effect of Core–Shell ZnO of Different Core Materials on the Dynamic Mechanical Properties of
Tire Tread Rubber

The loss factors of the materials are shown in Figure 6a, and there is a significant
decrease in the loss factor peak of the core–shell structured ZnO compared to the indirect
method ZnO, which indicates that the core–shell structure reduces the motion of the
molecular chains of the composites. tanδ at 0 ◦C and 60 ◦C then characterizes the wet-slip
resistance and rolling resistance of the rubber material for tires. The loss factor curve at
0 ◦C shows that the wet slip resistance of the composites with the addition of ZnO with
core–shell structure decreases. It indicates that the indirect method zinc oxide has stronger
interaction with the matrix and higher energy loss from the movement of molecular chains.
In contrast, at 60 ◦C, the adhesive with thermally cracked carbon black and graphene
as core–shell materials has a better rolling resistance performance, probably because the
core–shell structured ZnO promotes the dispersion of activator after loading, enhances
the vulcanization, and builds a stronger spatial crosslinking network, which makes the
hysteresis loss inside the material lower, resulting in less internal friction and lower rolling
resistance. Compared with the indirect ZnO adhesive, the energy storage modulus of the
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adhesive with barium sulfate nucleosome material increased by 42.5%, whereas the energy
storage modulus of the adhesive with graphene as the nucleosome material increased
by 32.5%.
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3.5. Effects of Core and Shell ZnO with Different Core Materials on the Aging Properties of Tire
Tread Compounds

The effects of different core–shell materials of ZnO on the aging performance of rubber
are shown in Figure 7. The performance of indirect method ZnO decreases more after
aging; the possible reason is that the reaction between indirect method ZnO and accelerator
generates less active zinc salts, which leads to low utilization of the vulcanizing agent, and
the crosslinked network is dominated by polysulfide bonds, which are less thermally stable,
so the performance decreases more obviously after thermal-oxidative aging. In comparison
with the core–shell structure zinc oxide of different nucleosomal materials, R-ZnO@Ca and
R-ZnO@Ba have better aging resistance, and the rest of the core–shell structure zinc oxide
has poorer aging resistance, which may be attributed to the fact that calcium carbonate
and barium sulfate core–shell structure zinc oxide in rubber are not easily agglomerated to
trigger the unreacted vulcanizing agent, resulting in the crosslinking of unreacted double
bonds on the rubber molecular chain; thus, the performance degradation is to a lesser
extent. The difficulty of dispersion of thermally cracked carbon black and graphene in
rubber makes the content of the unreacted vulcanizing agent decrease, which makes it
difficult to trigger the crosslinking reaction of the double bonds on the rubber molecular
chain again; i.e., the ability to resist external damage is reduced, so the degradation of
rubber performance is more obvious.
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4. Conclusions

This paper proves the core–shell structured zinc oxide was synthesized by a simple
wet precipitation method and post-processing approaches without using harmful chemicals.
The XRD results showed that the intense and sharp peaks in the ZnO hexagonal were
highly crystalline. The SEM and TEM analysis revealed that ZnO nanoparticles (nano-
ZnO) are successfully anchored onto carbonate calcium carbonate (CaCO3), barium sulfate
(BaSO4), silicon dioxide (SiO2), pyrolysis of carbon black (CBp), and graphene oxide
(GO) sheets. The performance of NR/SBR/BR compounds was studied by adding ZnO
with different nucleosomes to the formulation of semi-steel radial tire tread rubber. The
results showed that the core–shell structured ZnO with low ZnO content possesses a
higher vulcanization efficiency and much stronger reinforcement effect on the mechanical
performance properties of NR/SBR/BR compounds compared with the indirect method
zinc oxide, results of which are positively correlated with the good dispersion of ZnO
throughout the NR matrix, the enhanced interfacial interaction between the ZnO and the
matrix, and the high vulcanization efficiency of nano-ZnO. For the different core–shell
structured zinc oxide materials, the ZnO@silica-based rubber is superior in mechanical and
abrasion resistance, and the calcium-carbonate-based core–shell structured zinc oxide has
excellent aging resistance. Overall, the performance of core–shell structured zinc oxide
product is basically the same as that of indirect zinc oxide products, while the amount of
zinc oxide in rubber can be reduced, which can also lead to a reduction in the production
cost of rubber products. Accordingly, the core–shell structured ZnO with lower content is
very competitive for preparing rubber composites with high performance, and it may be
regarded as a substitute of conventional ZnO for application in rubber composites.
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