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Abstract: The giant liver fluke (Fascioloides magna) is an invasive parasite found permanently in
three foci in Europe. The fluke has an indirect life cycle involving a final and an intermediate host.
The currently accepted terminology determines three types of final hosts: definitive, dead-end, and
aberrant hosts. Recently, roe deer (Capreolus capreolus) has been classified as an aberrant host, which
cannot contribute to the reproduction of F. magna. This study investigated the hatchability of F. magna
eggs of red deer (Cervus elaphus) and roe deer origin to compare the suitability of the two host species
for the maintenance of the parasite. The study was carried out on a newly invaded area, two years
after the first reported observation of F. magna. The prevalence of the parasite proved to be 68.4%
(CI95% 44.6–85.3%) in red deer and 36.7% (CI95% 24.8–50.0%) in roe deer. The difference between the
two species was confirmed to be significant (p = 0.02). The mean intensity proved to be 10.0 (CI95%
4.9–22.6) and 7.59 (CI95% 2.7–24.2) in the red deer and the roe deer, respectively. The difference
of the mean intensities did not prove to be significant (p = 0.72). Of the 70 observed pseudocysts,
67 originated from red deer and 3 from roe deer. Most of the pseudocysts contained two flukes,
while a few pseudocysts contained one or three parasites. Egg production was observed in all three
types of pseudocysts. We did not find more than three flukes in any pseudocyst. The apparent
proportion of self-fertilisation in flukes without mating partners was 23.5% and 100% in red deer and
roe deer, respectively. The survival of single-parent eggs was not confirmed to be worse than that of
gregarious parents. The viability of offspring originating from roe and red deer differed significantly.
Our findings suggest that F. magna adapted to the new populations of susceptible hosts rather than
vice versa.

Keywords: roe deer; red deer; Fascioloides magna; egg hatching

1. Introduction

The giant liver fluke (Fascioloides magna), also known as large American liver fluke, is
an invasive parasite found permanently on the northern part of the American continent
and in three foci in Europe [1,2]. The fluke has an indirect life cycle involving a final and an
intermediate host. In this complex life cycle, mainly pulmonate freshwater snails belonging
to the family Limnaeidae can serve as the most common intermediate host [3]. According
to the currently accepted terminology specified by Pybus [1], there are three basic final
host categories: (1) definitive host, e.g., white-tailed deer (Odocoileus virginianus), mule
deer (Odocoileus hemionus), red deer (Cervus elaphus), fallow deer (Damad ama); (2) dead-end
host, e.g., moose (Alces alces), cattle, wild boar (Sus scrofa); and (3) aberrant host, e.g., roe
deer (Capreolus capreolus), mouflon (Ovis aries musimon), sheep, and goat [2]. The definitive
host is the most uniformly defined in the literature. In these species, the giant liver flukes
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become adults in a thick wall pseudocyst located within the liver parenchyma. They
produce viable eggs, which can pass through into the small intestine and are shed by faecal
material into the external environment. These hosts contribute crucially to the spread
of the parasite. In dead-end hosts, the flukes can successfully reach the liver but rarely
mature. Only a few eggs are produced, which remain enclosed in the liver parenchyma.
The infection in definitive hosts and dead-end hosts rarely have a deadly effect. The giant
liver fluke causes the most serious liver damage in aberrant hosts and often results in the
death of this type of host. The general supposition is that the parasite cannot accomplish its
migration and maturation inside the host body. The immature flukes may reach the liver,
but the pseudocyst formation and egg production are usually unsuccessful. Contrary to
the definitive host, dead-end hosts and aberrant hosts do not contribute to the spread of
the parasite [1–4].

Aside from some wild ruminants, e.g., mouflon and chamois (Rupicapra rupicapra),
the roe deer is the only cervid species in Europe known as an aberrant host. Despite
the aforementioned aberrant host characterisation, in recent years, some studies revealed
that pseudocyst formation, fluke maturation, and egg production are not uncommon
phenomena as previously described. In a Croatian survey, 227 liver and faecal samples were
analysed to assess the presence of F. magna in differently located roe deer populations [5].
Fourteen of the organs contained active pseudocysts. Seven animals had both pseudocysts
containing sexually mature flukes and migratory juvenile flukes simultaneously. These
findings suggested the longer survival of the large American liver fluke-infected roe deer.
Despite adult parasites, none of the faecal samples was positive for the F. magna egg.
The authors concluded that the observed phenomena indicated a potential beginning of
adaptation processes in roe deer [5].

Fifty-two faecal samples were analysed to assess the prevalence and epidemiological
risk of F. magna infection in roe deer [6]. The samples were collected in 2015 (n = 35) and 2017
(n = 17) in the Lower Silesian Wilderness, Poland. The prevalence of shed eggs was 45.7%
and 29.4% in the first and second study years, respectively. These results demonstrated, on
the one hand, that roe deer also could have a considerable role in the deposition of large
American liver fluke eggs into the environment. On the other hand, the presence of the
eggs in faecal material could indicate a co-evolutionary host–parasite relationship [6].

This investigation aimed to determine the hatchability of giant American liver fluke
eggs originating from roe deer in comparison with red deer-originated eggs to demonstrate
the co-evolutionary process between the parasite and its new host.

2. Material and Methods
2.1. Sample Collection

We collected the samples from a regional endemic area in the Southern Transdanubian
region of Hungary, where the presence of the giant liver fluke was confirmed in 2016,
two years before the initiation of this investigation [7]. The study was conducted between
1 January 2018 and 31 December 2022 on a hunting area managed by SEFAG Forest
Management and Wood Industry Share Company.

For the hatching investigation, we collected F. magna-infected roe deer and red deer
livers. Every animal was shot in the frame of individual hunting events and not for the
aim of our study. After the deer were gralloched, we separated the liver and immediately
transported them to the laboratory.

2.2. Parasitological Procedure

We kept the organs at 4 ◦C and processed them in 24 h. We sliced the organs into
0.5–1 cm wide segments during the liver autopsy to determine the pseudocyst numbers
and their fluke counts. After a cyst opened, its content was immediately gathered using
a syringe and washed through a sieve with 100 µM diameter pores. For hatching, the
eggs were collected from both host species. We collected the one-fluked pseudocysts, the
two-fluked pseudocysts, and the three-fluked pseudocysts separately. After this procedure,
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we counted the fluke number and thoroughly washed the cutting surface off to avoid
egg contamination.

2.3. Histopathology

For microscopical investigation, the pseudocyst containing roe deer livers and some
tissue blocks were taken from the infected organs. The sample blocks were fixed in 10%
buffered formaline. Before the haematoxylin–eosin staining, the samples were embedded
into paraffin and cut into four µm thick sections.

2.4. Hatching Procedure

The eggs were placed into six-well plates filled with distilled water (approximately
10 mL) and were incubated at 25 ◦C. The evaporated water was continuously checked and
refilled. The hatching procedure lasted for six weeks. After the tenth day, we checked the
embryonation. In this phase, the development generally cannot be detected. We assessed
the eggs weekly during the remaining time and used Swales’ [8] and Campbell’s [9]
works for their developmental evaluation. We divided the developmental stages into five
categories (Table 1, Figure 1). Before the hatching process, the final amounts of different
originated eggs were divided into three portions. Therefore, the final results of each isolate
combined from three repetitions.

Table 1. Stages to assess the development of Fascioloides magna eggs in roe deer samples.

Developmental Category Main Characteristics

Unembryonated egg No developmental processing,
the eggs usually seem empty or damaged (Figure 1A)

Embryonated egg Embryo position in the egg’s centre,
embryo formation visible (Figure 1B)

Eye-spot development Movement often observable
eye-spots appeared (Figure 1C)

Pre-hatching miracidium Intensive movement
increased mucoid plug (Figure 1D)

Hatching Opened operculum
miracidia outside the egg (Figure 1E)

The hatching of F. magna miracidia intermittently occurs. The temperature decrease
could stimulate and accelerate the process [8,9]. For this reason, we placed the pre-hatching
miracidium stage eggs into the refrigerator at 4 ◦C for two h. After this period, the eggs
were stored at room temperature for 60 min, and the hatching process was assessed using a
microscope with 40× magnification. The cooling and observational periods would have
been repeated if the miracidium had not emerged. After two resultless attempts, we
qualified the hatching to be unsuccessful.

2.5. Statistical Analysis

Characterising the fluke infection in hosts, we determined the prevalence and mean
intensity in them. For comparing the results, we used unconditional exact test [10]. The
proportions of hatched, pre-hatching, eye-spotted miracidia, and embryonated eggs were
determined. To compare the hatching ability of one-fluked and two-fluked eggs originating
from the two investigated host species, we conducted a Kaplan–Meier survival analysis.
For this reason, we classified the eggs into the following groups: red deer one-fluked
pseudocyst egg (RED-PC1), red deer two-fluked pseudocyst egg (RED-PC2), roe deer one-
fluked pseudocyst egg (ROE-PC1), and roe deer two-fluked pseudocyst egg (ROE-PC2).
The differences of the cumulative survival curves were ascertained by log-rank test. The
statistical analysis was performed by SPSS statistical software, version 27.0 [11].
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Figure 1. Different stages of Fascioloides magna eggs during the hatching (note: (A)—unembryonated
egg; (B)—embryonated egg; (C)—eye-spotted miracidium; (D)—pre-hatching miracidium, and
(E)—hatching miracidium).
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3. Results
3.1. Parasitological Findings

Our investigation found 13 and 22 F. magna infected animals among 19 red deer and
60 roe deer, respectively. The prevalence proved 68.4% (CI95% 44.6–85.3%) in red deer
and 36.7% (CI95% 24.8–50.0%) in roe deer. The difference between the two species was
confirmed to be significant (p = 0.02). The mean intensity proved 10.0 (CI95% 4.9–22.6) and
7.59 (CI95% 2.7–24.2) in the red deer and the roe deer, respectively. The difference of the
mean intensities did not prove to be significant (p = 0.72). Of the 70 observed pseudocysts,
67 originated from red deer and 3 from roe deer. The main prevalent pseudocysts contained
two flukes, while one or three parasites were found in smaller amounts. Egg production
was observed in all three types of pseudocysts (Table 2). We did not find more than three
flukes in any pseudocyst.

Table 2. Fascioloides magna numbers in the detected pseudocysts.

One Fluke Two Flukes Three Flukes

red deer 17 (4) * 46 (45) 7 (7)
roe deer 1 (1) 2 (1) 0

* The parenthetical numbers indicate the egg containing pseudocysts.

3.2. Histopathology

In three infected roe deer livers, we observed the formation of thick-walled pseu-
docysts. These organs had partly or completely disrupted texture due to the extensive
interstitial fibrous connective tissue proliferation. Due to the inflammatory changes, the
proliferated connective tissue stripes were formed, wherein thick-walled hepatic blood
vessels and intrahepatic bile ducts were observed. At the cutting surface, we observed
the migratory tract of the parasites, which usually contained dark brown pigmentation,
the haematin. The cysts in the liver parenchyma consisted of thickened connective tissue,
infiltrating lymphocytes, and eosinophil granulocytes. Several eggs were situated in the
lumen (Figure 2).

3.3. Egg Hatching

We collected 1080 eggs altogether (307 from RED-PC1, 402 from RED-PC2, 99 from
ROE-PC1, and 278 from ROE-PC2) for hatching (Table 3).

Table 3. Percentage of the different developmental stages of one-fluked and two-fluked pseudocysts
in both hosts.

Total Egg Embryonated Eye-Spotted Pre-Hatching Hatching

RED-PC1 212 80.2% (170) * 64.2% (136) 64.2% (136) 52.8% (1112)
RED-PC2 232 84.5% (196) 70.3% (163) 70.3% (163) 60.3% (140)
ROE-PC1 83 36.9% (31) 14.3% (12) 14.3% (12) 4.8% (4)
ROE-PC2 278 44.8% (60) 20.1% (27) 20.1% (27) 9.7% (13)

RED-PC1: Red deer one-fluked pseudocyst, RED-PC2: red deer two-fluked pseudocyst, ROE-PC1: roe deer
one-fluked pseudocyst, ROE-PC2: roe deer two-fluked pseudocyst. * Percentage of the developmental category to
the total egg count (number of eggs).

The more considerable developmental retardation was observed between the fresh
(one-cell stage) and embryonated phases in both hosts. After embryonation, the develop-
mental losses were moderate until hatching. Interestingly, we found that all eye-spotted
eggs reached the pre-hatching stage despite the host or the fluke number (Figure 3).

In the comparison of the development within the hosts, we found strong divergences
between the different egg origins (viz. RED-PC1 vs. ROE-PC1 and RED-PC2 vs. ROE-PC2).
The hatching success did not vary between the one-fluked and two-fluked pseudocysts,
neither in red deer nor roe deer (Table 4).
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Table 4. Comparison of the hatching ability of different egg types.

RED-PC2 ROE-PC1 ROE-PC2

RED-PC1 * 0.059 ** <0.0001 <0.0001
RED-PC2 <0.0001 <0.0001
ROE-PC1 0.056

* RED-PC1: Red deer one-fluked pseudocyst, RED-PC2: red deer two-fluked pseudocyst, ROE-PC1: roe deer
one-fluked pseudocyst, ROE-PC2: roe deer two-fluked pseudocyst. ** p-value.
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4. Discussion

Our results supported a previous finding. The F. magna could be able to reach sexual
maturity and produce fertile eggs in roe deer [6], whose species is currently known as
the aberrant host. On the other hand, we confirmed that the parasite has the potential for
selfing (self-fertilisation), which was previously observed in its relatives, within the order
Echinostomida [12,13].

Giant liver fluke is apparently an invasive parasite in Europe and this species is
capable to establish new host populations and spread rapidly between new habitats. This
invasive parasite may alter the population dynamics of different types of final hosts [14].
As an alien parasite, its co-existence with roe deer has lasted for a short period; therefore,
the co-evolutionary adaption of the new host has only recently begun [5]. The signs of
this possible co-evolutionary process can be detected. Within its older European habitats,
faecal egg shedding is also confirmed [6], while it is lacking in newly invaded areas [5].
Pseudocyst formation in roe deer, as the sign of an advanced stage of infection, has already
been found in all European F. magna habitats [15].

During this investigation, we confirmed that large American liver flukes are capable of
self-fertilisation in both red deer and roe deer hosts. This phenomenon is characteristic for
these species, which have a low probability of meeting a partner because of low mobility
or population density. During the colonisation of a new host, at the initial stage, the
parasite must cope with low population density. Under these conditions, selfing ensures
reproduction, thus maintaining the genotype until a potential mating partner appears [14].

As a consequence of self-fertilisation, the population loses genetic diversity through
inbreeding [15]. In liver fluke (Fasciola hepatica) without co-inhabitants, self-fertilisation
occurs in only 2% [16], which suggests that this reproductive strategy is a facultative way
of population maintenance.

In our study, the apparent proportion of selfing in flukes without mating partners was
23.5% and 100% in red deer and roe deer, respectively. Our data suggested that parasites in
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roe deer have a much higher selfing ability. The very few (only one) single mature flukes in
roe deer might explain this controversy.

The limited efficacy of self-fertilisation was conspicuous when we investigated the
average loss during embryonic development. In comparison with eggs originating from
gregarious flukes, single-parent eggs faced heavier losses, even though the difference
between the viability of cross-fertilised and self-fertilised eggs did not prove significant.

The difference between the two host species was remarkable. The eggs of red deer
origin showed a significantly better survival potential than that of roe deer origin. Based on
this observation, the roe deer host seemed to impede the development of the parasite more
efficiently than the red deer. The findings of other studies cannot support this hypothesis [4].
It is more probable that our sampling method (shooting healthy animals) could detect only
the fortunate survivors of the parasite infection. These animals could acquire less virulent
genotypes of F. magna.

Within the study area, F. magna is a new parasite for the local populations of both the
red and roe deer [7]. Considering the prevalence and the mean intensity we detected in
the two investigated species, the parasite could establish a permanent population in the
region. The lower prevalence in the roe deer cannot be explained by higher resistance. The
survival of a roe deer individual depends on the environmental factors of its territory. The
presence or absence of other definitive hosts and intermediate hosts strongly influence the
probability of infection. For this reason, the comparison between the two species is less
productive than a comparison of roe deer populations of different areas.

In new areas with new host species or populations, a parasite must choose an optimal
level of virulence to maximise its reproduction success [17,18]. In this situation, high
virulence reduces the host’s fitness as well as its lifespan, which threaten the survival of
the parasite and can drive the extinction of the whole parasite population. The reduc-
tion in virulence in favour of better transmissibility can be observed in many parasite
species [17–20].

In the case of F. magna, it is better to consider host–parasite interactions, whereas this
parasite has no intention to kill the host. Since its first detection within the study site,
two years had passed until the beginning of this investigation [7]. These circumstances
suggested that the parasite had resided for a very short period, which could not be enough
for a population level genetic change in deer populations of the area. On the other hand,
the parasite could have produced several generations, even during this short period of time.
Moreover, the loss by perished hosts could cause a bottle-neck effect in the parasite popu-
lation. Highly virulent genotypes, which caused the death of their hosts, reached a dead
end without reproduction. Meanwhile, less virulent genotypes could multiply the locally
advantageous alleles, causing radical change in gene frequency in parasite population.

Since its occurrence, the F. magna could not cause an observable population reduction
in any of its host populations in the study region. A stable equilibrium between the host
and the parasite seemed to have evolved at the very beginning of the parasite invasion.
Notwithstanding, by a more reliable explanation, the parasite and the host continue a bal-
anced trench warfare, in which both participants have victories and defeats time after time.
This situation is created by a fluctuating selection in both the parasite and the host caused
by themselves to each other as the Red Queen hypothesis describes it expressively [21,22].

This balanced arms race suggests that a heterogenous host population met a less
heterogenous parasite population, which can prevent the escalation of virulence [23,24].
Without genetic investigations, this hypothesis is rather speculative; therefore, further
research is needed to clarify the background of the surprisingly attentive behaviour of the
invader in the study area.

This study aimed to investigate an aspect of the roe deer and F. magna co-evolution. In
a hatchability test, we confirmed that eggs obtained from the pseudocysts of roe deer livers
can develop and hatch. This finding supported the hypothesis that the roe deer may serve
as a definitive host for F. magna after a short adaptation period. Notwithstanding, in this
study, the adaptation period was as short as two years, which questioned the adaption of
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the host. Based on our findings, it is more probable that the parasite sacrificed its virulence
in favour of transmissibility.
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