Table 9.
Summary of different classification techniques.
S. No. | Year and Reference | Classification Technique Used |
---|---|---|
1. | 2010 [2] | SVM |
2. | 2012 [35] | Backpropagation networks |
3. | 2012 [3] | Multi-class SVM |
4. | 2013 [72] | Spectral disease indices |
5. | 2013 [37] | Feed-forward back propagation neural network |
6. | 2016 [38] | Two support vector machines (serial combination) |
7. | 2016 [9] | CNN |
8. | 2017 [41] | SqueezeNet, AlexNet |
9. | 2017 [10] | CNN |
10. | 2017 [42] | AlexNet |
11. | 2018 [61] | CNN models |
12. | 2018 [4] | Random forest |
13. | 2018 [13] | Deep CNN |
14. | 2018 [14] | CNN model based on LVQ |
15. | 2018 [5] | SVM |
16. | 2019 [16] | Deep CNN |
17. | 2019 [62] | CNN |
18. | 2019 [17] | Convolutional neural network with global average pooling |
19. | 2019 [7] | SVM |
20. | 2019 [15] | NASNet |
21. | 2019 [64] | Deep CNN |
22. | 2019 [46] | CNN |
23. | 2019 [47] | ANN and SVM |
24. | 2020 [20] | CNN |
25. | 2021 [24] | AlexNet and GoogleNet |
26. | 2021 [26] | DM deep learning optimizer |
27. | 2020 [22] | CNN |
28. | 2021 [73] | CNN and convolutional autoencoders |
29. | 2021 [28] | DenseNet |
30. | 2021 [31] | VGG, DenseNet, and ResNet |
31. | 2021 [32] | GoogleNet, VGG16 |
32. | 2021 [27] | SVM, stochastic gradient descent, and random forest (machine learning) Inception-v3, VGG-16, and VGG-19 (deep learning) |
33. | 2022 [66] | Optimal mobile network-based CNN |