Skip to main content
. 2023 May 15;23(10):4769. doi: 10.3390/s23104769

Table 9.

Summary of different classification techniques.

S. No. Year and Reference Classification Technique Used
1. 2010 [2] SVM
2. 2012 [35] Backpropagation networks
3. 2012 [3] Multi-class SVM
4. 2013 [72] Spectral disease indices
5. 2013 [37] Feed-forward back propagation neural network
6. 2016 [38] Two support vector machines (serial combination)
7. 2016 [9] CNN
8. 2017 [41] SqueezeNet, AlexNet
9. 2017 [10] CNN
10. 2017 [42] AlexNet
11. 2018 [61] CNN models
12. 2018 [4] Random forest
13. 2018 [13] Deep CNN
14. 2018 [14] CNN model based on LVQ
15. 2018 [5] SVM
16. 2019 [16] Deep CNN
17. 2019 [62] CNN
18. 2019 [17] Convolutional neural network with global average pooling
19. 2019 [7] SVM
20. 2019 [15] NASNet
21. 2019 [64] Deep CNN
22. 2019 [46] CNN
23. 2019 [47] ANN and SVM
24. 2020 [20] CNN
25. 2021 [24] AlexNet and GoogleNet
26. 2021 [26] DM deep learning optimizer
27. 2020 [22] CNN
28. 2021 [73] CNN and convolutional autoencoders
29. 2021 [28] DenseNet
30. 2021 [31] VGG, DenseNet, and ResNet
31. 2021 [32] GoogleNet, VGG16
32. 2021 [27] SVM, stochastic gradient descent, and random forest (machine learning)
Inception-v3, VGG-16, and VGG-19 (deep learning)
33. 2022 [66] Optimal mobile network-based CNN