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Abstract: (1) Background: This study evaluates the effect of a conventional/low-voltage light-curing
protocol (LV protocol) (10 s with 1340 mW/cm2) and high-voltage light-curing protocol (HV protocol)
(3 s with 3440 mW/cm2) on the microhardness (MH) of dental resin-based composites (RBCs). Five
resin composites were tested: conventional Evetric (EVT), Tetric Prime (TP), Tetric Evo Flow (TEF),
bulk-fill Tetric Power Fill (PFL), and Tetric Power Flow (PFW). (2) Materials and Methods: Two tested
composites (PFW and PFL) were designed for high-intensity light curing. The samples were made
in the laboratory in specially designed cylindrical molds; diameter = 6 mm and height = 2 or 4 mm,
depending on the type of composite. Initial MH was measured on the top and bottom surfaces of
composite specimens 24 h after light curing using a digital microhardness tester (QNESS 60 M EVO,
ATM Qness GmbH, Mammelzen, Germany). The correlation between the filler content (wt%, vol%)
and the MH of the RBCs was tested. For the calculation of depth-dependent curing effectiveness,
the bottom/top ratio for initial MH was used. (3) Conclusions: MH of RBCs is more dependent on
material composition than on light-curing protocol. Filler wt% has a greater influence on MH values
compared to filler vol%. The bottom/top ratio showed values over 80% for bulk composites, while
for conventional sculptable composites, borderline or suboptimal values were measured for both
curing protocols.

Keywords: resin composites; bulk-fill composites; microhardness; high-intensity curing; filler content

1. Introduction

Composites are defined as materials that are formed by two or more materials that
have different physical and chemical properties and have superior properties compared to
their parts [1,2]. Resin-based composites (RBCs) are widely used for the development of
dental biomaterials. The main components of RBCs include organic matrix resin, inorganic
part-fillers, coupling agents, and initiators of the polymerization process [3–5]. Resins are
composed of a mixture of two or more monomers to achieve balanced functionalities in
workable rheology and the desired mechanical properties before and after curing [6]. They
mainly consist of the bifunctional monomers Bis-GMA and UDMA (urethane dimethacry-
late), and due to their high viscosity, TEGDMA (triethylene glycol methacrylate) is used
as a diluent. Bis-EMA (bisphenol A polyethethylene glycol dimethacrylate) is added to
improve handling properties and reduce polymerization shrinkage [3].
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The addition of various inorganic filler contents, such as silica glass, quartz, ceramic,
metal, and pre-polymerized particles, in diverse shapes and sizes, can enhance the me-
chanical properties [7–10] of the dental composites while allowing practical functionalities
such as low shrinkage volume and stress [11], desired flowability (or viscosity) [12,13],
shade [14,15], and good biocompatibility [16,17] to be obtained for various clinical applica-
tions. Several factors, including weight fraction, shape and size, orientation, and dispersion
of the fillers in the resin matrix, determine the characteristics of the designed composite
systems.

RBCs have been the most commonly used restorative materials in dentistry. Due
to their good aesthetic and mechanical properties, they are used as direct or indirect
restorations, pit and fissure sealants, cavity liners, veneers, crowns, endodontic sealers, and
orthodontic devices [2].

Depending on the particle size, the composites are classified as macrofilled, microfilled,
nanofilled, and hybrid (micro-hybrid and nano-hybrid). Nanofilled and nanohybrid RBCs
have high polishing ability comparable to that of the enamel, good wear resistance, and
transparency [6,7]. Due to their increased aesthetics, strength, and durability, they are
increasingly preferred by clinicians as a universal restorative material for both anterior and
posterior restorations [18].

Increasing the filler load in an RBC improves its overall physical properties as well as
resistance to the functional wear placed on the restorative material. The material’s viscosity
is directly affected, as the increase in filler loading will result in a sculptable higher-viscosity
material, while less filler material will result in a flowable low-viscosity-based material. The
main advantages of flowable composites include high wettability of the tooth surface, the
ability to form layers with a minimum thickness, high flexibility, radiopacity, and different
colors of the material.

The challenges flowable composites faced were in the areas of strength and frac-
ture toughness, wear resistance, and polymerization shrinkage as well as in modulus of
elasticity [18,19].

To maximize the physical, mechanical, and biological performance of the composites,
strong interfacial reactions between fillers and resin matrix are essential. The coupling
agents silane monomers, which contain organic–inorganic functional groups and can
chemically bridge the inorganic fillers to organic resins to enhance the interfacial bonding,
are most widely used to modify the surface of the filler materials [20–23]. Their role is to
provide a strong and stable chemical bond between the organic matrix and the inorganic
fillers [3,4,24].

Two types of initiators are mainly used in RBCs—benzoyl peroxide in self-cured
composites and most often camphorquinone (QC) in light-cured composites, as dual-cured
materials contain both of them. Because of QC’s intense yellow color, alternative lighter-
colored initiators that completely bleach out after photopolymerization have been recently
promoted. These include phenyl propane-dione (PPD), acyl phosphine oxide (APO), and
Ivocerin [25].

Conventional RBCs are applied using the incremental technique (2 mm thick composite
layer), which is a time-consuming process and may result in inaccuracies. To simplify the
procedure, manufacturers created bulk-fill composites which enabled placing layers up
to 4 mm while ensuring sufficient depth of cure. This is achieved by optimization of the
photoinitiator system, modification of fillers (larger size or higher particle translucency), or
inclusion of various chemicals in the composition [26,27]. Flowable bulk-fill composites
have lower filler content, resulting in poorer mechanical properties, so they should not
be used as a surface layer of the filling, which is exposed to direct chewing load [28]. The
application of bulk-fill composites in posterior restorations reduces cusp deflection [29–31]
and polymerization stress [3,32], thus increasing the fracture resistance of the restoration
and hard dental tissues. Bulk-fill materials contain specially patented photoinitiators. One
of them is based on germanium and is commercially named Ivocerin. This highly reactive
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photoinitiator, compared to standard photoinitiators such as CQ, works by shortening the
curing time and allows the curing light to penetrate up to 4 mm. [33–38].

RBCs are in the plastic phase, and their hardening occurs due to the visible light-
initiated cross-linking of resin monomers into a three-dimensional polymer network [39].

A high degree of composite polymerization is essential for optimal physical properties
and biocompatibility [40]. The conversion of monomers to the polymer is never complete
and reaches up to 75%. At the beginning of light irradiation, photoinitiators are activated
and turn into free radicals. The collision of free-radical initiators activates the monomers,
forms covalent bonds between carbon atoms, and forms long-chain polymers. The length-
ening and the interaction of the polymer chains cause an increase in the viscosity and the
rigidity of the composite paste. Within a rapidly stiffening structure, certain unreacted
monomers remain trapped. Residual unconverted methacrylate groups which may re-
side in lower parts of poorly polymerized composite fillings present not only cytotoxic
and genotoxic risks, but also their solubility might cause the formation of voids and the
occurrence of secondary caries [39].

In the last decade, there has been significant development of light-curing units as
well as the introduction of various light-curing protocols. Conventional light with radiant
exitance of about 1000 mW/cm2 has been most commonly used in clinical practice. Recently,
high-intensity curing units have been put into practice, which use light intensity of over
2000 mW/cm2. There are a large number of factors that affect the quality of polymerization
(light intensity, curing light distance, exposure time) [41–43]. With the use of high-intensity
light, along with shortening the exposure time, there was a concern about increasing the
polymerization shrinkage stress [44,45].

The successful polymerization of RBCs, characterized by the monomer–polymer
conversion ratio, can be evaluated by their hardness. There is a positive correlation between
the conversion ratio and hardness of RBCs. It was found that 80% bottom-to-top hardness
ratio corresponds to a 90% conversion ratio. On the other hand, the wear and fracture
resistance as well as the durability of the restoration are defined by the composite hardness.
Higher MH values correlate with higher biocompatibility of composite fillings [3,46].

A group of authors reports that there are significant differences in the degree of
conversion of the deeper layers of the RBCs in those polymerized with different curing
intensities [47,48], while other authors present that the exposure time has a greater influence
on the MH and the conversion ratio [49,50].

The MH of the RBCs is also influenced by the size, volume, and weight of the filler
particles. A positive correlation between filler content (wt% and vol%) and surface hardness
in dental composites was shown. It was found that RBCs containing nanofillers show higher
values of MH [51]. Flowable composites with lower filler content and higher volume of the
organic matrix usually show lower MH values, as well as higher levels of polymerization
shrinkage [52].

The shade of RBCs also has an effect on MH and conversion ratio. It was observed that
opaque materials and materials with high filler load, which exhibit stronger light scattering,
consequently had a lower degree of conversion and lower MH. Conversely, translucent
shades exhibit a higher degree of conversion and higher MH [39].

Microhardness is defined as the resistance against penetration or permanent indenta-
tion of the surface, which is a criterion for resistance to plastic deformation, and is calculated
by using the applied force divided by the surface area of the indentation. The Vickers test
is one of the most commonly used tests for testing MH [53].

The aim of this study was to compare the effect of HV and LV curing protocols on MH
values and the MH bottom–top ratio, as well as the influence of the filler content (wt%,
vol%) on MH, for conventional and bulk-fill composites, including composites designed
for high-intensity light curing.
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2. Materials and Methods
2.1. Tested Materials and Light-Curing Protocols

Five different resin composites were used in the research: 3 conventional and 2 bulk-
fill composites (Table 1). The two tested composites (PFL and PFW) were designed for
high-intensity light curing.

Table 1. Resin composites investigated in the study [54].

Composite
Viscosity Composite Type Composite

Name Resin Matrix Filler Content
(wt%/vol%) Manufacturer

Sculptable Conventional
Evetric (EVT) UDMA, Bis-GMA, Bis-EMA 80/56

Ivoclar Vivadent,
Schaan,

Liechtenstein

Tetric Prime (TP) Bis-GMA, UDMA, Bis-EMA,
D3MA 77/56

Bulk-fill Tetric Power Fill
(PFL)

Bis-GMA, Bis-EMA, UDMA,
propoxylated bisphenol A

dimethacrylate, DCP, β-allyl
sulfone AFCT agent

77/54

Flowable
Conventional Tetric Evo Flow

(TEF)
Bis-GMA, UDMA,

decandioldimethacrylate 58/31

Bulk-fill Tetric Power
Flow (PFW) Bis-GMA, Bis-EMA, UDMA 68/46

Two types of curing protocols were tested; the high-voltage protocol (HV protocol) in-
volved light curing for 3 s with a radiant exitance of 3440 mW/cm2, while the conventional
or low-voltage protocol (LV protocol) involved light curing for 10 s with radiant exitance
of 1340 mW/cm2. An LED curing unit (Bluephase PowerCure, Ivoclar Vivadent, Schaan,
Liechtenstein, emission wavelength range: 390–500nm) was used in this research.

2.2. Specimen Preparation

A total of 40 cylindrical composite specimens were made (6 mm diameter, height of
2 mm for conventional and 4 mm for bulk-fill composites), 8 samples for each composite
(n = 8). Specimens were made in metal molds, open on both sides, on the bottom side
flattened with glass plates, and on the top side covered with Mylar foils to obtain the
smooth surface needed for the proper measurement of the MH [23]. Composite specimens
were irradiated only from the top side (that was marked), according to the described curing
protocols, and were stored in a dry and dark place for 24 h to complete the post-cure
reaction [24]. The samples were subsequently polished on the top and bottom with a
four-step coarse to superfine grain disc system (20 s per step) (Sof-Lex, 3M ESPE, St. Paul,
MN, USA) at a speed of 15,000 rpm. Final polishing was performed with the Sof-Lex
diamond polishing system, which consists of pre-polishing and diamond-impregnated
polishing spirals that achieve a highly polished surface. Surface residues were removed by
washing and drying the samples.

2.3. Microhardness Measurement Protocol

MH was measured on the top and bottom surfaces of the specimen using a digital
microhardness tester (QNESS 60 M EVO, ATM Qness GmbH, Mammelzen, Germany)
equipped with a Vickers diamond indenter and a microscope with a magnification of 20×.

An indentation in the shape of a diamond was made in the middle of the surface of
the specimen under a load of 100 g for 20 s [55]. Based on the size of the impression, using
the equation HV = 0.1891 × F/d2, where F is the load in N (newtons) and d is the mean
value of the diagonals in mm (millimeters), the device using the integrated microscope
automatically determined the MH value of the specimen surface (Figures 1–5). The mean
value of MH was obtained by measuring MH at 5 places on the surface of each sample (top
and bottom).
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2.4. Statistical Analysis

IBM SPSS v25 software and Microsoft Excel were used for the statistical analysis of
the results, with a statistical significance level of α = 0.05. As a preliminary analysis, the
Kolmogorov–Smirnov and Shapiro–Wilk tests were calculated to test the normality of the
distribution. The obtained data were distributed normally; therefore, the use of parametric
statistics was justified. The following analyses were performed: RMANOVA, Pearson’s
correlation coefficient, and descriptive statistics. Repeated measures analysis of variance
(RMANOVA) was used to examine the main effects of materials and curing protocols, as
well as the interaction effect of materials and curing protocols on MH. Pearson’s correlation
coefficient was used to test the relationship between MH and filler content (wt% and vol%).

3. Results

Table 2 shows the results of descriptive statistics: central tendency measure, standard
deviation, and min and max functions for all tested variables.

In Table 3, the results show statistically significant effects of material and polymeriza-
tion, as well as a significant interaction effect of the aforementioned variables. Statistical
significance was present when MH was measured from both the upper and lower sides of
the specimen. Partial eta-squared values represent a measure of the relative effect size. The
results show that the effect of the variable polymerization is significantly lower compared
to the second variable material, as well as compared to the interaction effect. This indicates
that the differences in MH are mostly related to the variability in the material, rather than
the variability in the curing light voltage (different curing protocols).



Polymers 2023, 15, 2250 7 of 15

Table 2. Descriptive statistics data.

Variable Average Standard
Deviation Min Max

Evetric 65.73 15.15 49.10 81.70
Tetric Evo Flow 33.42 4.01 26.80 38.70
Tetric Power Fill 45.64 4.88 40.20 51.60

Tetric Power Flow 38.99 3.57 34.60 43.80
Tetric Prime 47.60 5.80 40.90 55.00

3 s curing 46.67 13.12 31.10 81.30
Conventional curing 45.88 13.94 26.80 81.70

Top surface 52.65 15.21 35.60 81.70
Bottom surface 39.90 7.25 26.80 53.60

Table 3. RMANOVA results (p-values and partial η2 values).

Top Surface Bottom Surface

p Partial η2 p Partial η2

Material <0.000 0.998 <0.000 0.991
Curing protocol <0.039 0.195 <0.000 0.515

Material × curing protocol <0.011 0.463 <0.000 0.714

Initial MH values measured on the top and bottom specimen surfaces are shown in
Figure 6. The MH values ranged between 27.7 and 42.8 for the flowable and between 35.2
and 80.8 for the sculptable composites. The highest MH values were measured with the
sculptable composite EVT from the top surface, while the lowest values were obtained with
the flowable composite TEF. The biggest difference in the MH of top and bottom surfaces
was observed with sculptable composite EVT, followed by TP and PFL. EVT with values of
80.0 and 80.8 on the top side and 51.7 and 50.3 on the bottom side of the specimen has a
significantly higher MH value compared to other composites.
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The lowest initial MH values, as well as the smallest difference in MH values of top
and bottom surfaces, were measured for flowable composites. MH values of the top surface
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of the flowable composites (TEF and PFW) show similar values for both curing protocols.
Higher initial MH was shown by PFW compared to TEF on both sides of the specimen.

Pearson’s correlation coefficient was used to test the relationship between MH and
composite filler content (wt%, vol%). Correlations were made with MH values measured
on the top surface of the specimen polymerized with two curing protocols [25]. A total
of four correlations were tested, as shown in Table 3. It was determined that there is
no statistically significant correlation, but it is important to emphasize that the obtained
correlation coefficients are considered very high (Table 4).

Table 4. Pearson’s correlation coefficients.

Filler Content and LV/HV Curing Protocol p-Value Correlation Coefficient (R)

wt% LV protocol 0.120 0.780
wt% HV protocol 0.117 0.783
vol% LV protocol 0.194 0.694
vol% HV protocol 0.188 0.701

In Figures 7 and 8, initial MH values measured on the top specimen surface are plotted
as a function of filler content. No statistically positive correlation between MH values
and filler wt% was established, but the correlation coefficient is very high, 0.78 for the LV
protocol and 0.783 for the HV protocol. A comparatively weaker association was identified
between MH and filler vol%; correlation coefficients were 0.694 for the LV protocol and
0.701 for the HV protocol.

Figure 9 shows bottom/top ratios for initial MH values. The values of bottom/top
ratios ranged between 61.5 and 84% for the HV protocol and between 65 and 86% for the
LV protocol. EVT shows significantly reduced top/bottom ratio values of 61.5% for the HV
protocol and 65% for the LV protocol, while the top/bottom ratios for TEF polymerized
with the HV protocol and TP polymerized with the HV and LV protocols are close to the
threshold of 80%. Bulk composites PFL and PFW show the best bottom/top MH ratio of all
tested composites for both curing protocols.
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4. Discussion

The improvement of the material properties of RBCs is essential to obtain reliable and
long-lasting clinical results.

The surface properties of resin composites, roughness, and microhardness have gained
great clinical importance, as they are related to the esthetics and function of restorations.
The superficial microhardness of RBCs is important for the clinical success of restoration,
since the higher the microhardness of restorative material, the better the resistance to surface
wear and scratching. Inadequate polishing of RBCs results in periodontal disease and the
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development of secondary caries due to increased plaque accumulation, compromising
long-term clinical success [36,56]. A Sof-Lex system was used in the present study to polish
the surface of resin composites and prepare the sample for MH testing, as it has been
reported that this allows obtaining a lower surface roughness compared with any other
polishing system [36,57,58].

The successful polymerization of resin-based dental composites, expressed in their
high hardness, depends on many factors related to the light-curing protocols, process
parameters, and composition and properties of the restorative material. The hardness of the
resin-based composites is defined by the monomer–polymer conversion ratio: the higher
the polymerization ratio, the higher the hardness.

There is a large number of studies that examined the influence of curing protocols
on the MH and top–bottom ratio of different composites. Most of them determined that
light-curing protocols affect the micromechanical properties of different RBCs [59–62].
However, some studies did not confirm the influence of different curing protocols on the
MH of RBCs [63,64]. Differences in the obtained results are probably due to the outcomes of
such studies being highly dependent on the choice of material and testing procedures [55].

In this research, partial η2 values showed statistically significant effects of material
and curing protocol, as well as a significant interaction effect of the aforementioned two
variables on the initial MH on both specimen surfaces. The effect of the curing protocol
variable is far lower than that of the material variable or the interaction effect, which means
that changes in MH are more related to the variability in the material than to the variability
in the curing protocol. The effect size of the curing protocol was higher on the bottom
specimen surface compared to the top surface. Results presented by other authors also
show that the material factor was more influential compared to curing protocols [65].

Compared to sculptable composites, flowable composites showed lower initial MH
values with both curing protocols. The lowest MH values were measured for TEF. Par
et al. [55] present differences in the MH values of flowable composites when using different
curing protocols, while in this research, only TEF shows a modest reduction in MH resulting
from the HV protocol. This can be explained by the reported finding that polymerization
effectiveness tends to be more diminished by high-intensity light curing in flowable than in
sculptable composites [66], which is why it is recommended to use high-intensity curing
light with caution for flowable composites. Flowable composites, due to their low initial
MH and filler content, have lower strength and durability, and the authors recommend the
use of a sculptable composite over a flowable composite as a cover layer, especially in the
region of strong masticatory forces [67,68].

The highest MH values were measured with EVT when using both protocols and
were 80.0 and 80.8 for the top surface and 51.74 and 50.3 for the bottom surface, which are
significantly higher compared to those of other composites. PFL and TP show similar MH
values with both used protocols. Two of the composites investigated in this study (PFW
and PFL) were specifically designed for use with the HV curing protocol. The investigated
MH properties for these composites were mostly within the ranges obtained for other
investigated composites of the corresponding viscosity (sculptable for PFL and flowable
for PFW).

The goal of the research was also to determine how filler content (wt%, vol%) affects
MH values. Filler content is considered to be the basic determinant related to the mechanical
properties of the material. It is claimed that materials with high filler content would
have higher surface hardness since, immediately after curing, the surface layer, mainly
composed of the organic matrix, can further polymerize during polishing, thus increasing
its strength [36]. The results of Pearson’s analysis in this research showed that there is
no statistically significant correlation between the measured MH and filler content, but it
is important to emphasize that the obtained correlation coefficients are considered very
high for wt% (R = 0.78 and 0.783) and for vol% (R = 0.694 and 0.701) for the LV and HV
protocols. The value of the correlation coefficient for filler weight percentage (wt%) is
on the border of statistical significance. On scatterplots of initial MH vs. filler content,
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the highest deviation from the correlation line is shown for the conventional composite
EVT, with both curing protocols. EVT has the highest percentage of filler content of all
tested composites as well as the highest measured MH values. It is known that a higher
percentage of inorganic filler reduces the transmission of visible light into deep layers,
thereby reducing the polymerization in deeper layers [55], which can partially explain the
large difference in the obtained MH value of the top and bottom specimen surfaces with
EVT in this research.

The hardness on the bottom surface of the composites is lower compared to the top due
to the lower polymerization ratio owing to the lower light energy input. According to the
accepted criterion of bottom–top MH ratios, above 80% indicates acceptable polymerization
throughout the composite layer [3,55,65].

In this research, suboptimal curing effectiveness was identified for EVT with a mea-
sured top/bottom ratio of 65% and 62.5% with LV and HV protocols, as well as for TEF (77%
with HV protocol). Other investigated composites showed sufficient curing effectiveness.
It was published that the decrease in MH in the deeper layers of specimens is significantly
less with bulk-fill composites [43], which was also confirmed by this research. High matrix
content and the presence of nanoparticles in the filler define a very high translucency of
the unpolymerized bulk-fill composite, which allows the light to penetrate easily to the
deepest layers of the restoration [3]. The best top–bottom ratio in this research was shown
by the two bulk-fill composites also designed for the HV protocol, namely PFW (84% for
LV and 83.5% for HV protocol) and PFL (80% for LV protocol and 81.5 % for HV protocol).

With the evolution of restorative materials, bulk-fill resin composites have emerged,
offering improved physical and mechanical properties that depend on their composition,
which varies according to manufacturers, as they can modify the organic matrix, size, and
morphology of the filler particles to achieve adequate behavior.

A limitation of the present in vitro study is the fact that in a clinical situation, changes
in the presence of saliva, enzymes, and changes in pH could affect MH over time.

5. Conclusions

The MH of five dental resin-based composites was investigated. The MH was eval-
uated with two curing protocols, with variations in the light intensity, curing time, and
composite thickness. The following was concluded:

The MH of RBCs is more dependent on material composition than on light-curing pro-
tocol. The highest initial MH values were measured for sculptable conventional composites,
and the lowest initial MH values were measured for flowable composites. Filler weight
percentage has a greater influence on MH values compared to filler volume percentage.
The bottom/top ratio showed values over 80% for bulk composites (both sculptable and
flowable), while for conventional composites, borderline or suboptimal values were mea-
sured for both curing protocols. The conventional flowable composite showed a reduction
in MH resulting from the HV protocol. The tested bulk-fill composites can be safely used
up to at least 4 mm incremental thickness.
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