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Abstract: The objectives of this study were to analyze the bonding criteria for friction stir spot welding
(FSSW) using a finite element analysis (FEA) and to determine the optimal process parameters using
artificial neural networks. Pressure-time and pressure-time-flow criteria are the bonding criteria used
to confirm the degree of bonding in solid-state bonding processes such as porthole die extrusion
and roll bonding. The FEA of the FSSW process was performed with ABAQUS-3D Explicit, with
the results applied to the bonding criteria. Additionally, the coupled Eulerian–Lagrangian method
used for large deformations was applied to deal with severe mesh distortions. Of the two criteria,
the pressure-time-flow criterion was found to be more suitable for the FSSW process. Using artificial
neural networks with the bonding criteria results, process parameters were optimized for weld zone
hardness and bonding strength. Among the three process parameters used, tool rotational speed
was found to have the largest effect on bonding strength and hardness. Experimental results were
obtained using the process parameters, and these results were compared to the predicted results and
verified. The experimental value for bonding strength was 4.0 kN and the predicted value of 4.147 kN,
resulting in an error of 3.675%. For hardness, the experimental value was 62 Hv, the predicted value
was 60.018 Hv, and the error was 3.197%.

Keywords: friction stir spot welding; bonding criterion; coupled eulerian–lagrangian; artificial
neural network

1. Introduction

Recently, aluminum alloys have been widely used in industries using sheet materials
to increase fuel efficiency and improve impact resistance. Most research has focused on ap-
plying aluminum alloys to tailored blanks, such as tailor-welded and tailor-rolled blanks [1].
However, due to their high thermal conductivity and low melting point, aluminum alloys
have low weldability in resistance spot welding and laser welding, making them difficult
to process into patchwork blanks [2,3]. Therefore, friction stir spot welding (FSSW) is
often used instead of conventional welding methods. FSSW is a convenient solid-state
welding process for welding aluminum alloys [4]. Compared to conventional welding
techniques, FSSW has various advantages, such as low cost and eco-friendliness. Figure 1
shows a schematic of the FSSW process. Typically, the welding process involves plunging a
rotating tool into the specimen, followed by stirring; the tool is retracted after the welding
is complete.

Nevertheless, numerical simulation of the FSSW process is problematic due to mesh
distortions in the finite element analysis (FEA). Accordingly, in the FEA of the FSSW process,
the arbitrary Lagrangian–Eulerian (ALE) and coupled Eulerian–Lagrangian (CEL) methods
are often used to account for large deformations. Xiong et al. developed a numerical model
for AA2524-T3 refill FSSW using the CEL method to investigate the correlations between
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the process parameters, and found a relationship exists between the grain size and tool
rotational speed [5]. Chu et al. studied the joint formation and defect evolution in probeless
FSSW using a three-dimensional CEL model. According to the FEA results, the highest
temperature and plastic strain were located at the inner edge of the shoulder, owing to the
higher heat flux around the shoulder [6]. El-Sayed et al. reviewed different techniques for
friction stir welding (FSW) and assessed the current state of finite element modeling using
the ALE method [7].
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However, it is difficult to determine the effectiveness of the FSSW process based solely
on an FEA. Therefore, bonding is often verified and confirmed based on the bonding
criterion used in the solid state. Some studies have analyzed solid bonding mechanisms in
processes such as roll bonding and porthole die extrusion while employing appropriate
bonding criteria. Donati and Tomesani investigated the impacts of die design on the
product quality in aluminum profiles extruded with seam welds [8]. Donati et al. analyzed
the process parameters and distinct die geometries utilized in the extrusion of a hollow
profile featuring a seam weld [9]. Through a numerical analysis of the extrusion processes,
they obtained local conditions of the experimentally produced welds and developed a
bonding criterion applicable to various welding conditions. Moreover, Donati et al. found
that using a larger welding chamber could significantly improve product deformability [10].
Gianluca Buffa et al. conducted experimental tests, a microstructural analysis, and an FEA
to evaluate the reliability and effectiveness of using bonding criteria previously developed
for other processes for FSW [11]. To implement the considered criteria and understand
the material flows during FSW, Buffa et al. employed a validated numerical model to
compute the essential field parameters and found that the pressure-time-flow criterion was
a more suitable bonding criterion than the pressure-time criterion in the FSW process [12].
The process parameter optimization was performed using an artificial neural network
(ANN). Nejad et al. investigated the fatigue crack growth rate and fracture behaviors of an
aluminum 2024-T351 alloy and employed an adaptable optimization algorithm to determine
the optimal welding parameters. They also conducted a sensitivity analysis to evaluate
the impacts of the rotational and feed rates on the fatigue crack growth rate and fracture
toughness [13]. Kahhal et al. combined a response-surface methodology and multi-objective
particle swarm optimization algorithm to investigate the multi-objective optimization of
mechanical properties during the FSW of an AH12 1050 aluminum alloy [14]. Ramesh
studied the role of the process parameters in the FSW processes [15]. In earlier studies
that relied solely on FEA, it was challenging to identify the materials suitable for FSSW,
along with their corresponding bonding strength and hardness. However, by incorporating
the FEA results into the bonding criteria, it is now possible to determine the feasibility of
bonding and predict the weldability without conducting experiments. In this study, an
FEA is performed using the CEL technique of the ABAQUS commercial software, which
deals with the severe mesh distortions in the FEA of the FSSW process. The results from the
FEA analysis were applied to two solid-state bonding criteria to identify the most suitable
bonding criteria for the FSSW process. In addition, the optimal process parameters were
derived using an ANN technique with hardness and bonding strength as the objective
functions. The reliability of this approach was confirmed by comparing the predicted and
experimental results.
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2. Methods
2.1. Experiments

A 1.6-mm-thick sheet of AA6061-T6 was used for the experiment. Table 1 lists the
mechanical properties of AA6061-T6 [16]. FSSW was conducted on a WINGEN friction stir
machine with a 20-kW spindle motor. As shown in Figure 2, the specimen was fixed and the
experiment was performed by changing the process parameters. During the FSSW process,
various process parameters can affect the welding quality. FSSW process parameters
include tool rotation speed (RS), dwell time (DT), plunging depth (PD), tilting angle, and
pin geometry. Figure 3 shows a graph of stroke length over time in the FSSW process; the
maximum stroke is the PD, and DT is the duration at the maximum stroke. The geometry of
the rotating tool (including the size and configuration of its pin and surface area in contact
with the shoulder region) can impact both the heat generated through friction and the
resulting deformation behavior. The friction behavior between the sheets and FSSW tool
is significantly influenced by the height of the pin and area of the shoulder region in the
tool geometry. In the FSSW process, the region of the shoulder in contact with the material
is a primary source of heat generation. The pin in the FSSW process is responsible for the
intense stirring and serves as a significant source of heat generation within the weldment.
The PD in the FSSW process can impact both the level of pressure exerted between the tool
surface and sheets and the amount of generated heat. RS and DT can also significantly
impact the welding quality, including weldment microstructures and bonding strength. As
a result, the quality of welding, including strength, ductility, and characteristics of the heat-
affected zone, is determined by both the tool geometry and the process parameters. Among
the various process parameters with the strongest influences on welding quality and easily
changeable by users, RS, DT, and PD were selected in this study. Process parameter sets
for the test cases are shown in Table 2. A total of 81 specimens were manufactured (three
for each case), with the average value of the parameters considered. Figure 4 shows the
tool used in the experiment. A lap-shear test, prepared according to ASTM D3163 and
performed using a universal testing machine (Manufacturer: R&B, Daejeon, Republic of
Korea) at a loading rate of 1.3 mm/min, was conducted on a test specimen manufactured
using FSSW (Figure 5). The lap-shear test was used to determine the bonding characteristics
and bonding strength [4,16].

Table 1. Mechanical properties of the AA6061-T6 sheet.

Mechanical Property Value

Young’s modulus 68.9 GPa
Poisson’s ratio 0.33

Tensile yield stress 276 MPa
Ultimate tensile strength 310 MPa

Vickers hardness 107 Hv

Table 2. Friction stir spot welding (FSSW) process parameters.

Tool Rotational Speed (rpm) Dwell Time (s) Plunging Depth (mm)

800 6 2.2
1000 8 2.4
1200 10 2.6
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2.2. Finite Element Analysis (FEA)

FEA was utilized to examine the outcomes of the FSSW process. The simulation used
the commercial software ABAQUS/2021 and a workstation equipped with E5-2640 CPU
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and 64.0 GB RAM. FEA was performed using the CEL method supported by the ABAQUS
software, as mesh distortions do not occur under large deformations during FSSW.

The FEA implemented boundary conditions and plunge speeds utilized in the actual
experiments and used Eulerian parts with EC3D8RT temperature-displacement elements
to represent the workpieces, whereas the tool was modeled as a rigid Lagrangian body
with the same diameter as the actual part. The workpiece measured 25 × 25 mm and
had a thickness of 3.2 mm, with a 1.0-mm void layer at the top. The workpiece was par-
titioned into two equal-thickness sub-regions—upper and bottom sheets. Subsequently,
material properties were assigned to each worksheet using the volume fraction technique.
The FEA made several assumptions: the tool was represented as a rigid body, the work-
pieces followed the temperature- and strain rate-dependent elastic-plastic Johnson–Cook
model, the initial temperature of the workpiece tool was 22 ◦C, and the tool was assumed
to be isothermal. Equation (1) presents the utilization of the Johnson–Cook model for
representing the plasticity of the material, while Equation (2) shows the adoption of the
Johnson–Cook damage model. The model parameters used for AA6061 were based on
previous references [6,16–18]. The equations are defined as:

σ = (A + Bεn)
(
1 + Cln

( .
ε/

.
ε0
))[

1− ((T − Tr)/(Tm − Tr))
m] (1)

and
−
ε f =

[
D1 + D2eD3σ∗

]
[1 + D4ε∗][1 + D5T∗]. (2)

The melting temperature equation involves the constants A, B, C, n, and m specific to
the material as well as the ambient temperature Tr, plastic strain ε, and plastic strain rate

.
ε.

The model includes the material-specific parameters D1, D2, D3, D4, and D5 as well as the
triaxiality ratio σ∗, dimensionless strain rate ε∗ (representing the ratio of the viscoplastic
strain rate to a reference strain rate), and homologous temperature of the material T∗.

The following boundary conditions were applied in the FEA: the tool was allowed to
translate and rotate only in the Y-direction, with the workpieces fixed in the X-direction.
Figure 6a shows the boundary conditions of the FEA model and Figure 6b shows the mesh
of the FEA model. The model incorporated the temperature-varying thermal properties of
the AA6061-T6 sheets, including their thermal conductivity and specific heat, as shown
in Table 3.
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The main source of heat in the FSSW process is the friction between the workpiece and
rotating tool, with Coulomb’s friction law utilized to describe their contact. The specified
friction coefficients are listed in Table 3.
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Table 3. Parameters for finite element (FE) model of AA6061-T6.

Parameters Value Reference

Young’s modulus (GPa) 69 [16]
Poisson’s ratio (ν) 0.33 [16]

Thermal expansion (1/◦C) 2.8 × 10−5 [16]

Thermal conductivity (W/m·K) 1180 (at 20 ◦C)
225 (at 600 ◦C) [16]

Friction coefficient (µ) 0.06 (600 ◦C) [19]
0.3 (100 ◦C) [20]

Convective heat transfer coef., hconv
(W/m2·K) 20 [16]

Interface heat transfer coef., hinter
(W/m2·K)

3500 (at pressure 2 MPa)
8000 (at pressure 8 MPa) [16]

Johnson–Cook parameters

A 324.1

[18]

B 113.8
C 0.002
m 1.34
n 0.42

D1 −0.77
D2 1.45
D3 −0.47
D4 0.0
D5 1.6

Specific heat (J/kg·◦C) 925 (at 20 ◦C)
1233 (at 600 ◦C) [16]

2.3. Bonding Criterion

As mentioned in Introduction, two criteria are used for solid-state bonding. The first
criterion is the pressure-time criterion W [21], based on the integral in time of the ratio
between the material contact pressure and flow stress; W is calculated as follows:

W =
∫ t

0

p
σ

dt ∼= ∑j

pj

σj
∆tj . (3)

The flow stress of the material at a given temperature, strain, and strain rate is repre-
sented by σ and the contact pressure at the interface is denoted by p. A threshold value from
a previous study was used in this study [22]. The second criterion is the pressure-time-flow
criterion W ′ [7], calculated as follows:

W ′ =
∫ t

0

p
σ

vdt ∼= ∑j

pj

σj
vj∆tj . (4)

In the above equation, v is the velocity of the specified node. W has a time unit (s),
whereas W ′ has a length unit (mm). W ′ can be considered the “equivalent length” of
material flow. In other words, when a particle of a substance reaches a suitable temperature
and pressure, it must have a certain minimum velocity for an appropriate amount of time.

Experiments were conducted according to the specifications provided in Table 2 to
evaluate the suitability of the considered bonding criteria for FSSW. Lap-shear tests were
conducted to check the bonding according to each process parameter and measure the
bonding strength. In addition, to identify the bonding criterion suitable for the FSSW pro-
cess among the two-bonding criterion, the values of W and W ′ were derived by substituting
the results of the FEA into the two bonding criteria.

2.4. Artificial Neural Network (ANN)

An ANN represents brain performance by simulating the structures of human synaptic
connections. A feed-forward ANN known as a multilayer perceptron (MLP) employs
several layers consisting of computational neurons. An MLP has connections between
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adjacent layers, with each neuron in a layer connected only to other neurons in the next
layer. The first layer of the MLP computes the values of the input variables, whereas the
hidden layer computes intermediate values with each weighted connection between the
neurons. Finally, the last layer computes the output of the MLP. MLPs are trained by
modifying these weights to target a computed output that achieves the desired prediction.
Figure 7 is a diagram showing the optimization process. In this study, RS, DT, and PD were
selected as the input data because they significantly affect the results of the FSSW process.
The bonding strength and the hardness were selected as output data because they are the
most important factors in the welding quality. As shown in Figure 8, the hardness was
measured at every 2 mm from the center of the weld after cutting the specimen produced
by FSSW to ensure the weld was visible. As the hardness of aluminum changes with
heat, the specimens were manufactured using cold mounting. In addition, the hardness
measurements were performed according to the ASTM-E384 standard and confirmed by
pressing a square pyramid of diamond with a face angle of 136◦ using a Vickers hardness
tester. The lowest hardness among the measured results was used.
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3. Results and Discussion
3.1. Experiments

In the experiments, the bonding was examined according to the process parameters,
with the bonding strength checked to determine if the bonding was successful. The bonding
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strength was measured by a lap-shear test using a universal testing machine as mentioned
in Section 2.1. Figure 9 shows the fractured specimen after the lap-shear test.
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3.2. FEA

FEA was performed according to the process parameters shown in Table 2. As the
results from the FEA could not confirm whether the bonding occurred, the contact pressure
and flow stress of the material at the given temperature, strain, and strain rate conditions
and the velocity of the specified node were extracted and substituted into the bonding
criterion. Figure 10 shows the results from the FEA of the FSSW process using the CEL
technique in the ABAQUS software at RSs of 1200 rpm and 800 rpm, PDs of 2.4 mm and
2.2 mm, and DTs of 10 s and 6 s. In the case of an RS of 1200 rpm, PD of 2.4 mm, and DT
of 10 s, sufficient frictional heat is generated, with the upper and lower sheets bonded. In
contrast, in the case of an RS of 800 rpm, PD of 2.2 mm, and DT of 6 s, sufficient frictional
heat is not generated; thus, the upper and lower sheets are not bonded.
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3.3. Bonding Criterion

The results obtained from the FEA were applied to the W and W ′ parameters. Based
on the obtained values of W and W ′, if the threshold value was exceeded, it was judged that
the bonding had occurred, and vice versa [21]. The average temperature values calculated
during a time interval with non-zero pressure values correspond to the temperature at each
point. The results are shown in Table 4 and compared with the actual test results. Figure 11
shows the values of W and W ′ according to temperature as graphs. When RS increases,
hardness decreases depending on the position, owing to the local temperature increase in
the weld zone [23].
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Table 4. Bonding criteria, bonding strength, and hardness results in all cases.

No. RS
(RPM)

DT
(s)

PD
(mm)

W Parameter
(s)

W’ Parameter
(mm)

Hardness
(Hv)

Bonding
Strength (kN)

Average
Temperature

(◦C)

1 800 6 2.2 2.34 0.94 X X 337.8
2 800 6 2.4 2.48 1.00 X X 338.4
3 800 6 2.6 2.39 0.96 X X 342.5
4 800 8 2.2 3.68 1.07 X X 346.7
5 800 8 2.4 3.89 1.62 85 2.3 357.8
6 800 8 2.6 3.83 1.59 80 2.7 352.3
7 800 10 2.2 3.72 1.51 86 2.5 361.2
8 800 10 2.4 3.79 1.54 85 2.8 356.2
9 800 10 2.6 3.73 1.51 75 3.2 353.3

10 1000 6 2.2 4.35 0.62 X X 376.8
11 1000 6 2.4 4.56 1.32 72 2.9 391.0
12 1000 6 2.6 4.49 1.30 70 3.3 382.2
13 1000 8 2.2 4.67 1.37 75 3.0 402.3
14 1000 8 2.4 4.82 1.43 70 3.2 422.1
15 1000 8 2.6 4.76 1.40 68 3.5 418.3
16 1000 10 2.2 4.64 1.36 70 3.1 431.1
17 1000 10 2.4 4.71 1.48 67 3.3 408.6
18 1000 10 2.6 4.69 1.48 65 3.7 392.8
19 1200 6 2.2 3.45 0.88 68 3.7 401.1
20 1200 6 2.4 3.74 1.00 60 4.0 406.7
21 1200 6 2.6 3.55 0.92 57 4.1 422.2
22 1200 8 2.2 3.68 0.97 62 4.0 438.7
23 1200 8 2.4 3.94 1.08 55 4.2 439.2
24 1200 8 2.6 3.75 1.00 52 3.7 445.6
25 1200 10 2.2 3.54 0.92 58 3.5 438.8
26 1200 10 2.4 3.76 1.00 53 4.1 445.8
27 1200 10 2.6 3.62 0.95 50 3.2 421.0
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The results for W and W ′ differ for condition No. 10. The W parameter indicates
that bonding is possible, whereas the W ′ parameter indicates that bonding is not possible
(as shown in the experimental results). These results indicate that the W ′ parameter is
more suitable for the FSSW process because of the rapid velocity at the surface in the
FSSW process; thus, the W ′ parameter with a velocity term seems more accurate. In
contrast, a prior study showed that, for an FSW process, the W parameter could predict
weldability [24,25]. Thus, the W parameter that does not consider the welding speed is
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more suitable for FSW compared to FSSW because the contact time of the tool is shorter
and the welding speed is slower.

3.4. ANN

ANNs were trained for each objective function using observations for training (70%),
testing (15%), and validation (15%) datasets to find the best combination of the prescribed
parameter settings. The optimal combination was determined based on the minimum
standard deviations of the residuals while testing different parameter combinations. Table 5
lists the ANN training parameters, with the neuron and layer count selected to ensure
accurate predictions while avoiding both underfitting and overfitting.

Table 5. Parameters of trained artificial neural networks (ANNs).

Objective Hardness Bonding Strength

Neurons in the input layer 3 3
Number of hidden layers 1 1

Neurons in the hidden layer 4 4
Neurons in the out layer 1 1

Training algorithm Levenberg–Marquardt
Back-Propagation

Levenberg–Marquardt
Back-Propagation

Activation function
(Hidden layer) Tansig Tansig

Activation function
(Output layer) Purelin Purelin

Validation data fraction (%) 15 15
Test data fraction (%) 15 15

Figures 12 and 13 show the expected surface hardness and bonding strength values
as functions of the process parameters, respectively. As shown in Figure 12, hardness
decreases as DT, PD, and RS increase. In Figure 13, as PD, DT, and RS increase, the bonding
strength increases.
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Statistical criteria were also used to evaluate and compare the predictive abilities of
the models, as shown in Table 6.

Table 6. Statistical characteristics of the surrogate model.

Objective Mean Square Error
(MSE)

Root Mean Square Error
(RMSE) R

Hardness 1.159929 1.077 0.997
Bonding Strength 0.005329 0.073 0.997

Figure 14a shows the change in the bonding strength for each parameter when the
other process parameters are held fixed, and Figure 14b shows the change in hardness. As
shown in Figure 14a,b, when RS is 800 rpm, the bonding strength is predicted as 2.31 kN
and the hardness as 86.02 Hv. When RS is 1200 rpm, the bonding strength is predicted as
4.2 kN and hardness as 56.4 Hv. In contrast, when the DT is 6 s, the bonding strength is
predicted as 2.93 kN and the hardness as 72.30 Hv; when the PD is 2.2 mm, the bonding
strength is predicted as 3.01 kN and the hardness as 74.97 Hv. As seen in the graph of
Figure 14, RS significantly affects bonding strength and hardness (i.e., the slope of the RS
graph is much greater than those of the DT and PD graphs).

Pareto fronts were obtained for each model using the “Non-Dominated Sorting Genetic
Algorithm II” [26]. Figure 15 shows the achieved Pareto front for all cases in Table 2. All
points can be selected, considering the design priorities. In this study, the first value of the
Pareto front (the value with the largest bonding strength) was selected and compared with
the actual experimental results, as shown in Table 7. Both the predicted and experimental
results show similar values in terms of bonding strength and hardness. In previous research,
Jo et al. optimized the FSSW process parameters using the Taguchi method [16], with only
bonding strength set as the objective function; thus, the optimal process parameters were
set as RS of 1400 rpm and DT of 8 s (PDs were not compared because the sheet thicknesses
were different). In this study, as the objective functions are bonding strength and hardness,
the results considering both are considered more useful. If only the bonding strength
is used as the objective function, RS and DT are higher than necessary and hardness is
lowered, resulting in a poor welding quality [27].

In future work, using these results, it will be possible to easily determine the bonding
strength and hardness of the FSSW process. Furthermore, weldability can be predicted by
using these results for processes similar to friction stir spot welding, such as refilled friction
stir spot welding (RFSSW) and two-stage refilled friction stir spot welding (TFSSW), which
are processes that have been recently studied.
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Table 7. Overall optimization summary.

Parameter/Objective ANN Optimum

RS (rpm) 1178.276
DT (s) 7.490

PD (mm) 2.402
Hardness (Predicted) 60.018

Hardness (Experiment) 62.000
Bonding strength (Predicted) 4.147

Bonding strength (Experiment) 4.000
Relative error (Hardness) 3.197%

Relative error (Bonding strength) 3.675%
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4. Conclusions

In this study, an FSSW process using AA6061-T6 with 1.6-mm thickness was compared
and analyzed using experiments, FEA, bonding criteria, and ANNs to optimize the bonding
and process parameters. Based on the analysis and experiments, the following conclusions
were drawn.

1. In the FSSW process, the pressure-time-flow criterion is more appropriate than the
pressure-time criterion.

2. In the FSSW process using the pressure-time-flow criterion, it is possible to know
whether bonding has occurred without a separate preliminary experiment.

3. Among the FSSW process parameters (RS, PD, DT), RS has the greatest effect on both
the bonding strength and hardness.

4. When process parameters were optimized using ANN, the values were 1178.276 rpm
for RS, 7.490 s for DT, and 2.402 mm for PD. The experimental value of the bonding
strength was 4.0 kN and the predicted value was 4.147 kN, resulting in an error of
3.675%, while the hardness had an error of 3.197% (with an experimental value of
62 Hv and predicted value of 60.018 Hv).
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