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Abstract
Purpose  The main objective of this opinion paper was to bring to light and enhance our understanding of the amount of 
double-strand DNA breaks in sperm and whether there is a threshold of no return when considering repair by the oocyte/
embryo.
Methods  A brief review of literature related to the theories proposed for the appearance of double-strand breaks in human 
spermatozoa. Further commentary regarding their detection, how oocytes or embryos may deal with them, and what are the 
consequences if they are not repaired. Finally, a strategy for dealing with patients who have higher levels of double-strand 
DNA breaks in sperm is proposed by reviewing and presenting data using testicular extracted sperm.
Results  We propose a theory that a threshold may exist in the oocyte that allows either complete or partial DNA repair of 
impaired sperm. The closer that an embryo is exposed to the threshold, the more the effect on the ensuing embryo will fail to 
reach various milestones, including blastocyst stage, implantation, pregnancy loss, an adverse delivery outcome, or offspring 
health. We also present a summary of the role that testicular sperm extraction may play in improving outcomes for couples 
in which the male has a high double-strand DNA break level in his sperm.
Conclusions  Double-strand DNA breaks in sperm provide a greater stress on repair mechanisms and challenge the threshold 
of repair in oocytes. It is therefore imperative that we improve our understanding and diagnostic ability of sperm DNA, and 
in particular, how double-strand DNA breaks originate and how an oocyte or embryo is able to deal with them.
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The sperm DNA story

It is now more than 40 years since Evenson et al. [1] pub-
lished a landmark study showing a relationship between 
mammalian sperm chromatin heterogeneity and fertility in 
a number of mammalian species, including humans. Ensu-
ing studies have focused on the relationship between sperm 
chromatin/DNA damage and reproductive outcomes. Many 
of these studies have shown that men with high levels of 
sperm chromatin/DNA damage in their ejaculated sperm 
have a reduced chance of conceiving [2–6] and a higher 
incidence of fathering a pregnancy that could lead to a 
miscarriage [7–9]. Concurrently, the DNA sperm integrity 
tests available have still failed to convince many that they 
have clinical utility [10–12].

Although the predictive value of sperm chromatin/DNA 
fragmentation tests continues to be controversial, some 
recently introduced tests appear to significantly increase 
their clinical utility. Particularly those tests that measure 
double-strand breaks (DSB) in sperm, including COMET 
tests at neutral pH, which use specific software that makes 
test results more accurate, precise, and reproducible. The 
main objective of this opinion paper is to highlight the 
existence of DSB in sperm and postulate how they may 
arise and what their significance could be on the success 
of an IVF cycle.

The sensitivity to detect DSB is of paramount impor-
tance because, although DSB in sperm DNA are less fre-
quent than single-strand breaks (SSB), they are highly del-
eterious, leading to genetic instability and chromosomal 
rearrangements [13]. Loss of control of DSB repair has 
gained increasing relevance since DSB repair plays a cen-
tral role in the development of many human diseases [14]. 
Regarding embryo development, some studies suggest 
that the zygote responds to DSB in sperm DNA through 
mechanisms that delay the replication of paternal DNA, 
ultimately leading to embryo arrest [15, 16]. In particular, 
Casanovas et al. [16] showed that in patients with high lev-
els of DSB, cleavage delay as assessed by morphokinetics 
is present throughout preimplantation development.

DNA double-strand breaks are repaired by means of two 
main mechanisms: nonhomologous end joining (NHEJ) 
and homologous recombination (HR) [17–19]. Both 
mechanisms operate in all eukaryotic cells that have been 
examined, but the relative contribution of each mecha-
nism varies. For example, most mammalian cells seem 
to favor nonhomologous end joining. DSB restoration in 
the zygote occurs using NHEJ and HR repair pathways. 
These pathways are not equally important during the cell 
cycle. The choice of which repair pathway depends on 
the developmental stage of the embryo and the cell cycle. 
NHEJ works throughout the cell cycle, while HR functions 

during the S/G2 stage. DSB repair is obtained by stop-
ping replication, and these breaks are preferably restored 
using HR [20]. In general, utilization of the DSB repair 
pathways during spermatogenesis from spermatogonia to 
sperm cells see the use of HR-based pathways in spermato-
gonia and spermatocytes, and the classical NHEJ pathway 
in spermatogonia, spermatocytes, round spermatids, and 
sperm cells. The alternative end joining (aEJ) pathway is 
utilized during spermatogenesis from spermatogonia to 
sperm cells except for spermatocytes (reviewed by [19]). It 
is believed that at the zygotic stage, NHEJ plays an essen-
tial role in the restoration of sperm DSBs [21]. Although 
some initial research has indicated the ability of the mam-
malian oocyte/embryo to repair DSB in sperm, little is 
understood of the consequences and impact it may have 
on the ensuing embryo and fetus. In particular, enhancing 
our understanding of the amount of DSB in sperm and 
whether there is a threshold of no return when consider-
ing repair by the oocyte/embryo is an area where more 
research should be targeted.

Why should we fear DSB in comparison to SSB 
and how do they originate?

There are several mechanisms of generation of DSB at the 
intra-testicular level: (i) during mitosis in spermatogenesis, 
DNA repair systems fail to repair DSB [22], (ii) during mei-
osis-I, ATM kinase fails to phosphorylate H2A histone at 
nuclear foci of DSB, enabling their identification and repair 
[23], and (iii) during spermiogenesis, topoisomerases play 
a dual role of DNA nucleases and ligases in order to pro-
vide relief of the torsional stress produced during the dis-
placement of histones by protamines. If these breaks are 
not repaired by the ligase activity of topoisomerases, this 
will result in the generation of DSB followed by irreversible 
DNA degradation by a nuclease [15, 24–26]. It has been 
postulated that an intricate partnership also exists between 
topoisomerase integrated in the sperm chromatin and 
SUMOulation [27]. It would be thought that DSBs related to 
meiosis and mitosis would be targeted for clearance by apop-
tosis or by the Sertoli cells [22, 28–31]; however, the pos-
sible escape of sperm carrying these abnormalities is highly 
feasible. DSBs generated by anomalies in the final stages 
of histone-protamine replacement during spermiogenesis 
would less likely be policed by clearance mechanisms and 
could find their way into the ejaculated sperm population.

The aim of spermatogenesis is to create a highly organ-
ized and condensed chromatin sperm nucleus. This leads to 
an almost inert chromatin and shuts down gene transcrip-
tion. The intricate folding needed to create this highly inert 
chromatin involves specific regions involving protamine 
and DNA toroids, which are thought to be connected to 
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the nuclear matrix by toroid linker regions (see review by 
[32]). It has been postulated that these toroid regions in fully 
condensed sperm chromatin provide vulnerable, nuclease-
sensitive regions that can be digested by external nucleases, 
leading to DNA strand breaks [32].

A further occurrence of DSB could manifest at the 
post-testicular level. We have proposed the occurrence 
of DSB during migration of spermatozoa through the 
epididymis via activation of endonucleases present in the 
nucleus of mature spermatozoa. Since oxygen radicals 
have been shown to activate sperm endonucleases [28], 
and it is well known that the levels of oxygen radicals 
in the epididymis can be relatively high [30, 33, 34], we 
postulate that DSB could also be generated during migra-
tion of spermatozoa through the epididymis. In support 
of this hypothesis, we can examine whether there is a 
difference in sperm quality and reproductive outcomes 
between sperm that is recovered in the testes versus that 
recovered in the ejaculate.

Outcomes in patients treated with testicular 
sperm

Numerous publications have shown that males who have 
increased levels of DNA strand breaks in their ejaculated 
sperm show lower levels of DNA strand breaks in their 
sperm retrieved from the testes (Table 1, Supplemental 
Table 1). A group of studies have also shown improvement 
when reverting to the use of testicular sperm after poor 
outcomes when using ejaculated sperm (Table 1). These 
studies have in general been retrospective in nature, com-
paring previous failed attempts with ejaculated sperm to 
those using testicular sperm (Table 1). The live birth out-
comes in these selected patients are encouraging, and we 
would argue warrant a randomized trial to substantiate the 
growing data. The improvement in sperm characteristics 
is most convincing when examining the presence of DSB 
using various sperm DNA assessment techniques (Table 1, 
Supplemental Table 1). Furthermore, other parameters 

show improvement when using testicular sperm, includ-
ing an improvement in blastocyst development [35] and 
a decrease in miscarriage rates. One of the more intrigu-
ing data sets supporting the induction of post-testicular 
DSB by activation of human sperm endonucleases in the 
epididymis is the improvement in pregnancy outcome 
observed in couples with repeated idiopathic IVF fail-
ure and embryo cleavage arrest using ejaculated sperm 
when compared to the use of testicular sperm in TESE-
ICSI cycles [36]. Overall, the drawback of the majority of 
studies published examining this question is that they are 
comparing previous failed cycles and making the associa-
tion with high DNA strand break levels in the ejaculated 
sperm. The direct improvement when using testicular 
sperm, which possess lower levels of DNA strand breaks, 
must be verified in more robust studies.

Other approaches to limit DSBs in sperm 
prior to ICSI

Infertile males will routinely present with both SSB and 
DSB in their sperm population [7, 37]. The origin of 
these separate populations is speculative. While DSB 
may originate from earlier meiotic or chromatin reor-
ganization, SSB have been largely linked with reactive 
oxygen species [38]. These reactive species also affect 
sperm motility by affecting the mitochondrial mem-
brane. For this reason, any sperm selection system that 
selects progressively motile sperm (or eliminates immo-
tile sperm) will be efficient in reducing single-stranded 
DNA-affected sperm [39]. On the contrary, DNA DSB 
could be present in spermatozoa with good motility and 
morphology. A number of other techniques have been 
proposed to eliminate sperm-carrying DSBs. In these 
cases, some microfluidic selection systems have proven 
to be effective in reducing these spermatozoa [40, 41]. 
Density gradient centrifugation has also been reported 
to have some efficiencies in removing sperm possessing 
DSB [42]. Unfortunately, the data examining the utility 

Fig. 1   Consequences of ferti-
lization by a sperm carrying 
double-strand breaks (DSB) 
in relation to the threshold of 
repair by the oocyte during 
fertilization. High levels of 
remaining DNA damage in the 
oocyte will lead to failure at 
earlier stages of development 
(fertilization or embryo), while 
lower levels of remaining DNA 
damage may manifest them-
selves later in development

• Fer�liza�on

Remaining DNA
Damage in Oocyte

•Embryo development •Pregnancy •Miscarriages •Offspring health

Complete 
DNA
Repair
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of microfluidic systems is still minimal. Finally, the 
interest in sperm selection techniques is growing rapidly, 
as evidenced by a number of recent reviews [43–45] that 
have examined simple solutions such as short abstinence 
[46] to more complex artificial intelligence-based tech-
nologies [47].

How can DSBs in sperm be the bad guy?

We have known for many years that the oocyte and devel-
oping preimplantation embryo depend on a multitude of 
highly orchestrated and synchronized events to develop 
and reach their final goal of a healthy live birth. Sperm 
are implicated in many of the major early hurdles in devel-
opment, including activation of maternal mRNA stores 
in the first few days of development, embryonic genome 
activation, metabolic switches, compaction, and differen-
tiation of cell lineages in the blastocyst, to name a few 
of the critical events that must occur to ensure viability 
[48, 49]. Stress from any of these events can have long-
term consequences. Fertilization from a sperm possessing 
either SSB or DSB will incur stress on the oocyte during 
fertilization and the developing embryo. We have already 
seen the human embryo is armed with a plasticity that can 
cope with adverse events [50]. The best-emerging example 
is that human blastocysts that have been clinically diag-
nosed as mosaic aneuploid (displaying an abnormal copy 
number of chromosomes) can lead to healthy births, sug-
gesting the presence of an in vivo mechanism to eliminate 
aneuploidy [51, 52]. As controversial as this may be, it 
does indicate that mechanisms also exist in the oocyte or 
embryo to repair both SSB and delivered by a fertilizing 
sperm. We propose that a threshold may exist that allows 
either complete or partial DNA repair. The closer that an 
embryo is exposed to the threshold, or if it cannot maintain 
the threshold, then depending on the level, the ensuing 
embryo will fail to reach various milestones, including 
blastocyst stage, implantation, pregnancy loss, an adverse 
delivery outcome, or offspring health (Fig. 1). Sperm DSB 
would obviously provide greater stress on repair mecha-
nisms and challenge the threshold more often. It is there-
fore imperative that we improve our understanding and 
diagnostic ability of sperm DNA, and in particular, how 
DSB originate and how an oocyte or embryo is able to 
deal with them.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10815-​023-​02748-5.
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