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Cell type-specific gene expression patterns are outputs of transcriptional gene

regulatory networks (GRNs) that connect transcription factors and signaling
proteins to target genes. Single-cell technologies such as single cell RNA-
sequencing (scRNA-seq) and single cell Assay for Transposase-Accessible
Chromatin using sequencing (scATAC-seq), can examine cell-type specific
gene regulation at unprecedented detail. However, current approaches to
infer cell type-specific GRNs are limited in their ability to integrate sScRNA-seq
and scATAC-seq measurements and to model network dynamics on a cell
lineage. To address this challenge, we have developed single-cell Multi-Task
Network Inference (scMTNI), a multi-task learning framework to infer the GRN
for each cell type on a lineage from scRNA-seq and scATAC-seq data. Using
simulated and real datasets, we show that scMTNI is a broadly applicable
framework for linear and branching lineages that accurately infers GRN
dynamics and identifies key regulators of fate transitions for diverse processes
such as cellular reprogramming and differentiation.

Transcriptional gene regulatory networks (GRNs) specify connec-
tions between regulatory proteins and target genes and determine
the spatial and temporal expression patterns of genes'”. These net-
works reconfigure during dynamic processes such as development or
disease progression, to specify cell type specific expression levels.
Recent advances in single cell omic techniques such as single cell
RNA-sequencing (scRNA-seq) and single cell Assay for Transposase-
Accessible Chromatin using sequencing (scATAC-seq)’ enable col-
lecting high resolution molecular phenotypes of a developing system
and offer unprecedented opportunities for the discovery of cell type-
specific regulatory networks and their dynamics. However, compu-
tational methods to systematically leverage these datasets to identify
regulatory networks driving cell type-specific expression patterns are
limited.

Existing methods of network inference from single cell omic
data*® have primarily used transcriptomic measurements and have
low recovery of experimentally verified interactions”®. Recently a
small number of methods have attempted to integrate scRNA-seq and
SCATAC-seq datasets” ' to examine gene regulation, however, many
of these methods focus on definining cell clusters and the network is
defined entirely based on accessible sequence-specific motif matches.
This restricts the class of regulators that can be incorporated into the
regulatory network to those with known motifs. Furthermore, existing
methods infer a single GRN for the entire dataset or do not model the
cell population structure which is important to discern dynamics and
transitions in the inferred networks for cell type-specificity. To over-
come the limitations of existing methods, we have developed single-
cell Multi-Task Network Inference (scMTNI), a multi-task learning
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framework that integrates the cell lineage structure, scRNA-seq and
ScATAC-seq measurements to enable joint inference of cell type-
specific GRNs. scMTNI takes as input a cell lineage tree, scRNA-seq data
and scATAC-seq based prior networks for each cell type. scMTNI uses a
probabilistic prior to incorporate the lineage structure during network
inference and outputs GRNs for each cell type on a cell lineage. We
performed a comprehensive benchmarking study of multi-task learn-
ing approaches including scMTNI on simulated data and show that
incorporation of multi-task learning and tree structure is beneficial for
GRN inference.

We applied scMTNI to a previously unpublished scRNA-seq and
scATAC-seq time course dataset for cellular reprogramming in mouse
and two published scRNA-seq and scATAC-seq cell-type specific
datasets for human hematopoietic differentiation. We demonstrate
the advantage of scMTNI's framework to integrate scATAC-seq and
scRNA-seq datasets for inferring cell type specific GRNs on linear and
branching lineage topologies. We examined how the inferred networks
change along the trajectory and identified regulators and network
components specific to different parts of the lineage tree. Our pre-
dictions include known as well as previously uncharacterized reg-
ulators of cell populations transitioning to different lineage paths,
providing insight into regulatory mechanisms associated with repro-
gramming efficiency and hematopoietic specification.

Results
Single-cell Multi-Task learning Network Inference (scMTNI) for
defining regulatory networks on cell lineages
We developed scMTNI, a multi-task graph learning framework for
inferring cell type-specific gene regulatory networks from scRNA-seq
and scATAC-seq datasets (Fig. 1a), where a cell type is defined by a
cluster of cells with a distinct transcriptional, and, if available, acces-
sibility profile. scMTNI models a GRN as a Dependency network?, a
probabilistic graphical model with random variables representing
genes and regulators, such as transcription factors (TFs) and signaling
proteins.

scMTNI takes as input cell clusters with gene expression and
accessibility profiles and a lineage structure linking the cell clusters
(Fig. 1). Such inputs can be obtained from existing methods for inte-
grative clustering” and lineage construction?. scMTNI uses the
SscATAC-seq data for each cell cluster to define cell type-specific
sequence motif-based TF-target interactions (e.g., a motif for a parti-
cular TF, which is accessible only in specific cell types will resultin a TF-
target interaction only in those cell types) which are used as a prior to
guide network inference (Methods). scMTNI can also take bulk ATAC-
seq data for corresponding cell types to generate cell type-specific
prior networks or cell type-agnostic priors derived from sequence-
specific motifs that in turn could be filtered with relevant ATAC-seq
data. scMTNI's multi-task learning framework incorporates a prob-
abilistic lineage tree prior, which uses the lineage tree structure to
influence the similarity of gene regulatory networks on the lineage.
This lineage tree prior models the change of a GRN from a start state
(e.g., progenitor cell state) to an end state (e.g., more differentiated
state) as a series of individual edge-level probabilistic transitions. The
output of scMTNI is a set of cell type-specific GRNs one for each cell
cluster in the lineage tree. scMTNI is able to incorporate both linear
lineage and tree-based lineage structure. scMTNI takes known cell
lineage tree structure or computationally inferred cell lineage using,
for example, a minimum spanning tree (MST**) approach on scRNA-
seq data. While scMTNI was developed to incorporate both scRNA-seq
and scATAC-seq data, it can be applied to situations where scATAC-
seq, and therefore a cell type-specific prior network, is not available.
We refer to the versions of our approach as scMTNI+Prior and scMTNI
depending upon whether it uses prior knowledge or not. The output
networks of scMTNI are analyzed using two dynamic network analysis
methods: edge-based k-means clustering and topic models (Fig. 1b).

These approaches identify key regulators and subnetworks associated
with a particular cell cluster or a set of cell clusters on a branch.

Multi-task learning algorithms outperform single-task algo-
rithms for single cell network inference

To evaluate scMTNI and other existing algorithms with known ground
truth networks on single-cell transcriptomic data, we set up a simula-
tion framework, which entailed creation of a cell lineage, generating
synthetic networks and corresponding single-cell expression datasets
for each cell type on the lineage (Fig. 2a). We used a probabilistic
process of network structure evolution to generate the network
structure for three cell types, each containing 15 regulators and 65
genes and between 202-239 edges (Methods). Next, we applied
BoolODE" to simulate the in silico single-cell expression data using
each cell type’s generated network. To mimic the sparsity in single-cell
expression data, we set 80% of the values to 0. We created three
datasets with different numbers of cells: 2000, 1000, and 200, refer-
red here as datasets 1, 2, and 3.

We asked whether multi-task learning is beneficial compared to
single-task learning for network inference from scRNA-seq data. To
this end, we compared scMTNI and four other multi-task learning
algorithms, MRTLE®, GNAT?, Ontogenet”, and AMuSR*® to three
single-task algorithms, LASSO regression”, INDEP, and SCENIC*
(Methods). Of these methods, only SCENIC uses a non-linear regres-
sion model while the others are based on linear models. INDEP is
similar to scMTNI but does not incorporate the lineage prior. Each
algorithm was applied within a stability selection framework and
evaluated with Area under the Precision recall curve (AUPR) and
F-score of top k edges, where k is the number of edges in the true
network (Fig. 2b, c¢). On dataset 1, based on AUPR, scMTNI, MRTLE, and
AMUSR are able to recover the network structure better than the other
multi-task learning and single-task learning algorithms (Fig. 2b).
Ontogenet performs better than the single-task learning algorithms in
at least two cell types. Finally, GNAT performs comparably to the
single-task learning algorithms. When comparing algorithms based on
F-score of top k edges, we have similar observations that scMTNI and
MRTLE have a better performance than other algorithms (Fig. 2c).
Ontogenet performs better than LASSO and INDEP in at least two cell
types, and comparable to SCENIC, except that Ontogenet in cell type 3
is worse than SCENIC. GNAT is comparable to the single-task learning
algorithms for at least 2 of the cell types. The low F-score of AMuSR is
because the inferred networks are too sparse, with fewer than 100
edges, while the other algorithms inferred similar number of edges as
the true networks. These results remain consistent for datasets 2 and 3
which have fewer cells (1000 and 200, respectively); scMTNI and
MRTLE remain superior in performance than other algorithms mea-
sured by both AUPR and F-score (Fig. 2b, c). We expect scMTNI to be
better since the network simulation procedure is similar, but the data
generation process is different and independent from scMTNI’s model.
Finally, we aggregated the results across all three cell types and data-
sets to obtain an overall comparison of the algorithms. Here we con-
sidered algorithms across all parameter settings tested as well as the
best parameter setting determined by the best F-score or AUPR. Based
on the AUPR of “all parameter setting”, we found that multi-task
learning methods, especially scMTNI and MRTLE are generally better
than single-task learning methods with higher AUPRs (Supplementary
Fig. 1A, C). AMuSR also outperformed the single-task algorithms based
on AUPRs, although this was not as significant as MRTLE and scMTNIL.
When considering the “best parameter setting”, the methods were not
significantly different when using AUPR, though MRTLE and scMTNI
had the highest AUPR (Supplementary Fig. 1B, D). When using the F-
score, scMTNI and MRTLE remained top performing algorithms for the
“all parameter setting” (Supplementary Fig. 2A, C) and the “best
parameter setting” (Supplementary Fig. 2B, D). Further, GNAT and
Ontogenet had a higher F-score than the single-task learning method
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LASSO for the “all parameter” and “best parameter” settings, respec-
tively. AMuSR suffered on the F-score metric due to the high sparsity in
the inferred networks. Across different single-task algorithms, LASSO
had the worst performance. Overall, the results on the simulated net-
works suggest that multi-task learning algorithms have a better per-
formance than single-task algorithms for network inference on sparse
datasets such as single-cell transcriptomic data. Furthermore, scMTNI

and MRTLE are able to more accurately infer networks than other
multi-task learning algorithms.

Inference of gene regulatory networks of somatic cell repro-
gramming to induced pluripotent stem cells

Cellular reprogramming is the process of converting cells in a differ-
entiated state to a pluripotent state and is important in regenerative
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Fig. 1| An overview of the scMTNI framework. a scMTNI takes as input a cell
lineage tree and cell type-specific sScRNA-seq data and cell type-specific prior net-
works derived from scATAC-seq datasets. If sScATAC-seq data is not available, bulk
or sequence-based prior networks can be used for the cell types. The output of
scMTNI is a set of cell type-specific gene regulatory networks for each cell type on
the cell lineage tree. b The output networks of scMTNI are analyzed using two
dynamic network analysis methods: edge-based k-means clustering and Latent
Dirichlet Allocation (LDA) based topic models to identify key regulators and sub-
networks associated with a particular cell cluster or a set of clusters on a branch.
¢ Datasets used with scMTNI. The simulation data comprised a linear trajectory of

three cell types, while the three real datasets came from a reprogramming time-
series process, immunophenotypic cell types identified during human adult
hematopoietic differentiation, and immunophenotypic blood cells during human
fetal hematopoiesis. MEF mouse embryonic fibroblast, iPSCs induced pluripotent
cells, HSC hematopoietic stem cell, CMP common myeloid progenitor, GMP
granulocyte-macrophage progenitors, Mono monocyte, HSC-MPP hematopoietic
stem cells and multipotent progenitors, LMP lymphoid-myeloid progenitors,
MEMP MK:-erythroid-mast progenitors combined with cycling MEMPs, GP granu-
locytic progenitors, Ery erythroid cells, pDC plasmacytoid dendritic cells.

medicine as well as for generating patient-specific disease models.
However, this process is inefficient as a small fraction of cells get
reprogrammed to the pluripotent state®. To gain insight into gene
regulatory networks that govern the dynamics of this process, we
profiled single cell accessibility (scATAC-seq) during reprogramming
of mouse embryonic fibroblasts (MEFs) to the induced pluripotent
state and four intermediate timepoints, day 3, day 6, day 9, and day 12,
to constitute a dataset of 6 timepoints. We used LIGER to integrate the
scRNA-seq and scATAC-seq datasets (Fig. 3a, b) and identified 8 clus-
ters (Methods). Of these clusters, C4 is MEF-specific while C5 is ESC-
specific (Fig. 3¢, d) and showed good integration of the scRNA-seq and
ScATAC-seq profiles (Supplementary Fig. 3). We removed Cé6 as it did
not have scRNA-seq cells and applied a minimum spanning tree
(MST*) approach to construct the cell lineage tree from the 7 cell
clusters with both scRNA-seq and scATAC-seq (Methods, Fig. 3e). The
MEF-specific cluster (C4) is at one end of the tree, while the ESC-
specific cluster (C5) is at the other end. This is consistent with the
starting and end state of the reprogramming process and we con-
sidered C4 to represent the root of the tree. The other clusters
represented a mix of cells from different time points, which is con-
sistent with the level of heterogeneity of the reprogramming system™.
We further verified the identity of these intermediate clusters with a
Monocle based trajectory analysis** which shows that C7, C2, and C3
represent cells that might exit the trajectory towards reprogramming
and C8 represents cells upstream of this point (Supplementary Fig. 4).

We applied scMTNI, scMTNI+Prior (scMTNI with prior network),
INDEP, INDEP+Prior (INDEP with prior network), SCENIC and addi-
tionally CellOracle to this dataset (Fig. 3f). We included CellOracle as it
combines scRNA-seq and scATAC-seq data, by using accessibility to
restrict the set of edges selected based on expression. We used the
matched scATAC-seq clusters to obtain TF-target prior interactions for
each scRNA-seq cluster needed for INDEP+Prior, scMTNI+Prior and
CellOracle (Methods). We assessed the quality of the inferred networks
by comparing to multiple gold standard datasets in mouse embryonic
stem cells (mESCs, Table 1): one derived from ChIP-seq experiments
("ChIP”) from ESCAPE or ENCODE databases***, one from regulator
perturbation experiments ("Perturb”)***, and the third from the
intersection of edges in ChIP and Perturb ("ChIP + Perturb”). We first
compared the performance of the methods using F-score on the top
500, 1k, and 2k edges across methods (Fig. 3f, Supplementary Figs. 5,
6). On Perturb, CellOracle and scMTNI+Prior had the best perfor-
mance, beating other algorithms significantly. On ChIP, SCENIC and
CellOracle were the best performing methods. Finally, on Perturb +
ChIP, CellOracle and scMTNI+Prior had the best performance.
Although CellOracle had high F-scores, its inferred GRNs included a
substantially smaller number of regulators (7-11) compared to SCENIC
or scMTNI + Prior (29-36). In addition to F-score, we also considered
the number of predictable TFs as an additional metric (Supplementary
Fig. 7, Methods). This is defined as the number of individual TFs whose
targets had a significant overlap with the gold standard. Higher the
number of predictable TFs, the better is a method. On ChIP,
SCMTNI + Prior had the highest average number of predictable TFs.
scMTNI had the highest number of predictable TFs for the Perturb,
Perturb + ChIP datasets followed closely by scMTNI + Prior. Overall,

scMTNI+Prior had among the highest F-scores, high number of pre-
dictable TFs and a greater coverage of the gold standards compared to
competing methods using expression alone (SCENIC) as well as those
that either incorporated accessibility information (CellOracle,
INDEP + Prior) or cell lineage information (scMTNI).

To perform an initial assessment of the network dynamics on the
cell lineage, we computed F-score between each pair of inferred net-
works defined by the top 4k edges (Fig. 3g). Both scMTNI and
ScMTNI + Prior networks diverged in a manner consistent with the
lineage structure. scMTNI networks formed three groups of cell types,
(C4, C8, C1, C7), (C2, C3) and (C5 (ESC)). scMNTI + Prior found similar
groupings but placed C5 (ESC) closer to (C1, C7, C8, C4) branch. Both
methods showed that C5 is closest to C1, which could be an important
transitioning state of cells during reprogramming. SCENIC showed
similarity among Cl1, C4, C7, however had lower similarity scores for
most pairwise comparisons which made it difficult to discern a clear
lineage structure. CellOracle topology identified the (C2, C3) group,
but placed it under a subtree with (C4, C8), which, though feasible
given the heterogeneity of the system, is less consistent with the gra-
dual progression of the reprogramming process through the inter-
mediate C7 state. The networks inferred by the other methods were
very dissimilar which is biologically unrealistic given the high hetero-
geneity of the reprogramming system with several intermediate
populations®. Overall, these results suggest that scMTNI+Prior
recovered regulatory networks of high quality and the networks
exhibit a gradual rewiring of structure from the MEF to the
pluripotent state.

scMTNI predicts key regulatory nodes and GRN components
that are rewired during reprogramming

To gaininsight into the regulatory mechanisms of cell populations that
successfully reprogram versus those that do not and to further char-
acterize these different cell clusters, we examined the rewired network
components in each cell type-specific network inferred by scMTNI +
Prior. We used two complementary approaches: k-means edge clus-
tering and Latent Dirichlet Allocation (LDA, Methods). In the k-means
edge clustering approach, we represented each edge in the top 4k
confidence set of any cell cluster, by a vector of confidence scores in
each cell cluster-specific network (if an edge is not inferred in the
network it is assigned a weight of 0). Next, we clustered edges based on
their edge confidence pattern into 20 clusters determined by the Sil-
houette Index coefficient optimization (Fig. 4a). The largest “edge
clusters” exhibited interactions specific to one cell cluster (e.g., E4, E6,
E7, E11, E13, E15, and E16), while smaller clusters exhibited conserved
edges for more than one cell cluster (e.g., E2, ES5, E12). To interpret
these edge clusters, we identified the top regulators associated with
each of the edge clusters (Fig. 4b). E16, which was MEF-specific (C4)
had Npm1, Nme2, Thyl, Ddx5, and Lox[2 as the top regulators which are
known MEF-specific genes. In contrast, E11, which was ESC-specific (C5)
had Kif4, Sp1, Sp3 as some of its top regulators, which have known roles
in stem cell maintenance (KIf4), or are essential for early development
(Spr?”) and post natal development (Sp3*). Edge clusters that shared
edges across multiple cell clusters, e.g., E5 (C4, C8, and Cl), shared
some of the top-ranking regulators such as NpmlI and Thyl with the
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MEF-specific cluster and also identified other fibroblast-specific genes
such as Col5a2 and YbxI. Finally, E2 which comprised shared edges
between cell clusters C1 and C5, contained Esrrb, as its top regulator
(Fig. 4b). Esrrb plays an important role for establishing and maintaining
the pluripotency network®”. This further supports the lineage structure
that C1 likely represents a population of cells that are committed to
becoming pluripotent.

While the k-means analysis identified regulatory hubs specific to
individual cell clusters, it was challenging to identify entire sub-
networks that rewired at specific branch points because it treats each
edge independently. We developed an approach by adopting Latent
Dirichlet Allocation (LDA) that was recently used to study regulatory
network rewiring from transcription factor ChIP-seq datasets*’
(Methods). In this approach, each TF is treated as a “document” and
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Fig. 3 | Inference of cell-type specific networks of mouse cellular reprogram-
ming data. a UMAP of LIGER cell clusters on the scATAC-seq data and scRNA-seq
data. b UMAP depicting the sample labels of the scATAC-seq and scRNA-seq data
from mouse cellular reprogramming. ¢ The distribution of samples in each LIGER
cluster. d The distribution of LIGER clusters in each sample. e Inferred lineage
structure for scMTNI linking the 7 cell clusters with scRNA-seq measurements.

f F-score of top 1k edges in predicted networks of scMTNI, scMTNI+Prior, INDEP,
INDEP+Prior, SCENIC and CellOracle compared to three gold standard datasets:
ChIP, Perturb and Perturb+ChIP. The top boxplots show the F-scores of n=7 cell
clusters, while the bottom heatmaps show FDR corrected t-test comparing the
F-scores of the row algorithm to that of the column algorithm. The two-sided paired
t-test is conducted on F-scores of n=7 cell clusters for every pair of algorithms. A

FDR < 0.05 was considered significantly better. The sign < or > specifies whether
the row algorithm’s F-scores were worse or better than the column algorithm’s
F-scores. The color scale is specified by — log(FDR), with the red color proportional
to significance. Non-significance is colored in gray. In the boxplot, the horizontal
middle line of each plot is the median. The bounds of the box are 0.25 quantile (Q,)
and 0.75 quantile (Qz). The upper whisker is the minimum of the maximum value
and Qs +1.5*/QR, where IQR = Q3 — Q;. The lower whisker is the maximum of the
minimum value and Q; - 1.5*/QR. g Pairwise similarity of networks from each cell
cluster using F-score on the top 4k edges. Rows and columns are ordered based on
the dendrogram created using the F-score similarity. Source data are provided as a
Source Data file.

target genes are treated as “words” in the document. Each document
(TF) is assumed to have words (genes) from a mixture of topics, each
topic in turn interpreted as a pathway. TFs across cell clusters are
treated as separate documents. We applied LDA with k=10 topics
(Fig. 4¢, d, Supplementary Figs. 8-10), and examined each of the topics
based on their Gene Ontology process enrichment (Supplementary
Fig. 11), and the tendency and identity of specific regulators to rewire
across the cell clusters. Topics 3 and 6 are enriched for cell cycle terms
(Supplementary Fig. 11). Other processes associated with these topics
included immune response (topic 1), developmental processes (topics
1,3 and 8), electron transport (topic 9), and chromosome organization
(topic 10). Topic 3 networks were among the most divergent networks
across the cell populations and identified several known regulators of
pluripotency (Fig. 4¢). In particular, Esrrb was a hub in C5 (ESC) and C1
(closest to ESC) but absent in the other cell clusters.

We used the LDA analysis to further characterize cell populations
that become pluripotent (C1-C5 branch), and those that remain stalled
(C7-C3-C2 branch) by identifying regulators that gained or lost con-
nections between these two branches. Several topics included

Table 1| The statistics of the gold standard datasets used for
the mouse reprogramming and human hematopoiesis studies

Dataset Gold standards Number  Number
of TFs of targets
Mouse ChiP 54 31,367
reprogramming
Perturb 179 21,019
Perturb + ChIP 47 6109
Human Hematopoietic stem cells (HSC) 6 9173
hematopoiesis
CD14_monocytes 1 6523
megakaryocytes 4 8733
erythroid_progenitors 1 7955
R3R4_erythroid_cells 1 8494
macrophages 1 163
CD34_hematopoietic_stem_cells- 3 5847
derived_proerythroblasts
T-cells 3 6189
B-cells 7036
GM_B-cells 48 10,597
Human UniBind 56 10,621
hematopoiesis
Cus_ChIP 149 6179
Cus_KO 50 6108
Cus_KO +Cus_ChlIP 26 2124
Cus_KO + UniBind 12 2020

For mouse reprogramming, shown are network statistics for the mouse embryonic stem cell
(ESC) line from ESCAPE** and ENCODE® databases and Nishiyama et al.*. For the human
hematopoietic studies, shown are network statistics for the gold standard datasets obtained
from the UniBind database®® and Cusanovich et al.”’.

regulators that showed a difference in connectivity between these
branches including topics 2, 3,4, 6, 8, and 9. The regulators that gained
edges in the pluripotency branch compared to the stalled branch
included cell cycle regulators (Top2a, Ccnbl: topic 3) and known
pluripotency genes (Esrrb: topic 3 and Kif4: topic 4, Fig. 4d). In con-
trast, regulators that gained connections in C7-C3-C2 branch relative
to the C1-C5 branch (or maintained connections similar to C4), inclu-
ded MEF-specific genes such as Lox[2, Fos[2 (topic 2), Aebpl (topic 6),
Hoxd13 (topic 8), and Fosll, Nme2 and Ccngl (topic 9). Nme2 is known
to regulate Myc, which is one of the four reprogramming factors®.
Aebpl, associated with fibroblast differentiation®’, and Lox[2, asso-
ciated with connective tissue***, persisted in all three cell clusters in
the stalled branch (C7-C3-C2). Overall, our analysis indicated that in
cell populations that do not reprogram successfully, cell cycle reg-
ulators have lower connectivity while several of the MEF regulators
(e.g., Nme2, Aebpl) persist or gain connections. These new predicted
regulators can be perturbed to examine the impact on cellular repro-
gramming efficiency.

Inferring gene regulatory networks in human hematopoietic
differentiation

To examine the utility of scMTNI in a different cell fate specification
system, we applied scMTNI to a published scATAC-seq and scRNA-seq
dataset for human adult hematopoietic differentiation*. This dataset
profiled accessibility and transcriptomic state of immunophenotypic
populations that were sorted based on cell surface markers and
enabled studies of how multipotent progenitors transition into
lineage-specific cell states. We considered the cell populations profiled
with both scATAC-seq and scRNA-seq datasets: hematopoietic stem
cell (HSC), common myeloid progenitor (CMP), granulocyte-
macrophage progenitors (GMP) and monocyte (Mono). These popu-
lations are known to be heterogeneous comprising multiple sub-
populations®. To identify these sub-populations, we again applied
LIGER? and identified 10 integrated clusters of RNA and accessibility
(Fig. 5a-d). Most clusters exhibited a mixed composition: C8 is mainly
composed of HSCs but also included CMPO cells; C6 and C9 are
composed of GMP and CMPO cells. C1 (73 cells) and C4 (37 cells) were
mainly composed of Mono cells and were combined into C1. C5 had
too few RNA cells (22 cells) and was excluded from further analysis. We
next inferred a cell lineage tree from these 8 cell clusters using a
minimal spanning tree approach® as described in the reprogramming
study (Fig. Se, Methods). As C8 is largely made up of HSC cells and HSC
is the starting cell type, we treated C8 as the root of the lineage.

We applied the same set of network inference algorithms to this
dataset as the reprogramming dataset: sScMTNI, scMTNI+Prior, INDEP,
INDEP+Prior, SCENIC and CellOracle. We assessed the quality of the
inferred networks from each method by comparing them to gold-
standard edges from published ChIP-seq and regulator perturbation
assays from several human hematopoietic cell types. This included
ChlIP-seq datasets from the UniBind database (Unibind*®), ChIP-seq
(Cus_ChIP) and regulator perturbation (Cus_KO) experiments in the
GM12878 lymphoblastoid cell line from Cusanovich et al.*” and the
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Fig. 4 | Network dynamics analysis of GRNs from cellular reprogramming.

a k-means clustering analysis of top 4k edges in inferred networks. Shown are the
mean profiles of edge confidence of 20 edge clusters. Each row corresponds to an
edge cluster and each column corresponds to a cell cluster. The red intensity
corresponds to the average confidence of edges in that cluster. Shown also are the
number of edges in the edge cluster. b Top 5 regulators for each edge cluster.
Shown are only regulators that have at least 10 targets in any edge cluster. The size

0 10 20 30 40

and brightness of the circle is proportional to the number of targets. ¢ LDA topic 3
networks along the cell lineage. The layout of each network is the same, edges
present in a particular cell cluster are shown in red. Labeled nodes correspond to
regulators with degree larger than 10. d Top cell cluster-specific regulators for each
topic. Shown are only regulators that have at least 10 targets in any cell cluster. The
more yellow and larger the circle, the greater are the number of targets for the
regulator. Source data are provided as a Source Data file.
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intersection of ChIP and perturbation studies (Cus_KO+Cus_ChIP, on three of the five gold standards. On Unibind and Cus_KO+Unibind,
Cus_KO+Unibind). In total, we had five gold standard networks. We  SCENIC is significantly better than INDEP and scMTNI (Fig. 5f, Sup-
used F-score and the number of predictable TFs of the top 500, 1k, 2k  plementary Fig. 13). Methods that used prior knowledge, CellOracle,
edges in the inferred network (Methods, Fig. 5f, Supplementary INDEP+Prior, scMTNI+Prior, were generally better than methods
Fig. 12). The relative performance of the algorithms depended upon  without priors for the ChIP-based datasets (Cus_ChIP, Unibind). Cel-
the gold standard. Algorithms that did not use priors (INDEP, SCENIC IOracle performs better than INDEP+Prior and scMTNI+Prior on
and scMTNI) performed comparably (with no significant difference) Cus_ChIP and Unibind, but is outperformed by all methods on any of
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Fig. 5 | Inference of cell type-specific networks for human hematopoietic dif-
ferentiation data. a UMAP of LIGER cell clusters of the scATAC-seq and scRNA-seq
data. b UMAP depicting the original cell types (samples) with scATAC-seq and
scRNA-seq data. ¢ The distribution of cell clusters in each sample. d The distribu-
tion of samples in each LIGER cluster. e Inferred lineage structure linking the eight
cell clusters with scRNA-seq data. f Boxplots showing F-scores of n="7 cell clusters
(all cell clusters excluding C1) for top 1k edges in predicted networks from scMTNI,
SCMTNI+Prior, INDEP, INDEP+Prior, SCENIC and CellOracle compared to gold
standard datasets (top). FDR-corrected t-test to compare the F-score of the row
algorithm to the F-score of the column algorithm (bottom). The two-sided paired
t-test is conducted on F-scores of n=7 cell clusters for every pair of algorithms. A

FDR < 0.05 was considered significantly better. The sign < or > specifies whether
the row algorithm’s F-scores were worse or better than the column algorithm’s
F-scores. The color scale is specified by — log(FDR), with the red color proportional
to significance. Non-significance is colored in gray. In the boxplot, the horizontal
middle line of each plot is the median. The bounds of the box are 0.25 quantile (Q,)
and 0.75 quantile (Qz). The upper whisker is the minimum of the maximum value
and Qs +1.5*/QR, where IQR = Q3 — Q;. The lower whisker is the maximum of the
minimum value and Q; - 1.5*/QR. g Pairwise similarity of networks from each cell
cluster using F-score on the top 5k edges. Rows and columns ordered by hier-
archical clustering using F-score as the similarity measure. Source data are pro-
vided as a Source Data file.

the regulator perturbation datasets. INDEP+Prior and scMTNI+Prior
are comparable across the gold standard datasets with no significant
difference in performance (Fig. 5f, Supplementary Fig. 13). Based on
number of predictable TFs in the predicted networks (Supplementary
Fig. 14), INDEP+Prior and scMTNI+Prior recovered more predictable
TFs especially in KO experiments, while CellOracle recovered more
predictable TFs in Cus_ChIP and UniBind. For the Unibind dataset,
we had ChIP-seq based gold standard edges for different blood cell
types, with 1 to 48 transcription factors (Table 1). Of the 10 cell types,
methods that used priors performed significantly better than methods
that did not on the GM_B-cells and Hematopoietic Stem Cells (HSCs)
which had the largest number of TFs (Supplementary Figs. 15, 16).
However, CellOracle had much lower performance in other cell types
and was outperformed by methods with and without priors, likely
because of the smaller number of TFs in these datasets. The number of
predictable TFs per dataset and method was generally low with the
exception of GM_B-cells where methods with priors were better than
methods without priors (Supplementary Fig. 17). However, these gold
standards were much smaller and therefore can assess smaller portion
of the inferred networks.

We next examined the inferred networks for the extent of change
on the lineage structure (Fig. 5g). The single-task learning methods
INDEP and INDEP+Prior exhibited a low overlap across each pair of cell
lines and did not as such obey the lineage structure. SCENIC recovers
part of the lineage structure, but placed C7 (common myeloid) close to
Cé6 (granulocyte-macrophage progenitors (GMP)) rather than CI10,
which has similar sample composition as C7. In contrast, sScMTNI and
scMTNI+Prior were able to find two groups of cell types, one corre-
sponding to the HSC and CMP2 branch consisting of C8, C3, and C2,
and the second corresponding to the CMPO, CMP1, and GMP branch
(C6, C9, C10, and C7). CellOracle also inferred a similar tree with small
variations within these two groups. For this dataset, the addition of
accessibility or lineage information was helpful to capture realistic
extents of network level changes.

Inferring shared and lineage-specific regulators for hemato-
poietic differentiation

Similar to our cellular reprogramming study, we examined the scMTNI
+Prior networks to identify cell type-specific regulators and network
components (Fig. 6) with k-means and LDA analysis. We applied
k-means edge clustering to the union of top 5k edges in any of the cell
clusters and identified 19 edge clusters (Methods). Compared to the
reprogramming study, a larger portion (94% vs 86%) of the edges are
specific to one cell cluster (Fig. 6a). We used these edge clusters to
examine the differences and similarities at the branch between the
CMP clusters (C7, C10), and the GMP clusters (C6 and C9). Edge cluster
E12 was specific to C7 and Cl10, E18 was specific to C6 and C9, and
E19 shared edges from C6, C9, C10, C7. Both E19 and E12 had YBXI and
TSC22D3 as top regulators (Fig. 6b). YBXI is known to direct fate of
HSCs with high expression in myeloid progenitor cells*® and involved
in monocyte/macrophage differentiation*’. TSC22D3, which is a glu-
cocorticoid leucine zipper®, is involved in differentiation of

hematopoietic stem cells™. E12 additionally had KLF1, FLI1, S100A4 as
top regulators. KLFI is an essential regulator for the erythroid
lineage’>*, which is derived from the myeloid progenitor cells. FLI1
also plays a role in erythroid lineage by regulating the Erythpoetin
protein®, suggesting these cells are committed to the erythroid line-
age. In contrast, E18 which shared edges between C6 and C9 identified
immune system-related regulators such as /RF8 and NFKBIA which have
been associated with general lymphoid development (IRF8%) or spe-
cific lineages such as B cells (VKBIA*). Overall, the k-means edge
clustering approach helped identify the key regulators with known or
plausible roles in hematopoiesis that could explain the differences
among the different lineages.

Our LDA topic analysis predicted several cell type-specific net-
work components with different extents of conservation across the
lineage (Fig. 6¢, d, Supplementary Figs. 18-20). These topics were
enriched in diverse biological processes such as cell cycle (Topic 1 and
8, Supplementary Fig. 21) and blood related processes (Topic 9). Topic
2 showed a gradual rewiring of an /D2-specific network from the HSC
populations (C8, C3, C2), to KLFI and MYC centered networks for C7
and C10 which represented the CMP populations (Fig. 6¢, d). ID2 which
belongs to the Inhibitors of DNA family of proteins has been shown to
regulate both the erythroid and lymphoid lineages*” and is consistent
with its presence in the C8, C3, C2 clusters. Furthermore, KLFI con-
nectivity was more pronounced in C7 compared to C10, which could
indicate these cells are more committed than those in C10. Similarly,
PBX1 which is a key regulator of differentiation versus self-renewal was
seen in C7 and C9. Topic 3 captured additional differences between the
two GMP clusters, C6 and C9, with /RF8 exhibiting more connections in
C6 compared to C9 (Fig. 6d, Supplementary Fig. 18). Topics 1, 6 and 10
exhibited a conserved core around HMGB2, TSC22D3, and YBX1
respectively, across all cells clusters (Supplementary Figs. 18-20).
HMGB2 is an important regulator for HSCs®. Both YBXI and 7SC22D3,
which were also identified in our k-means analysis, have known roles in
hematopoiesis*®. Topic 8 was associated with various cell cycle and
chromatin remodeling regulators such as TOP2A, CDC20, and CCNBI1
(Supplementary Figs. 20, 21). Taken together, the LDA analysis iden-
tified subnetworks centered on candidate key regulators with known
general roles in hematopoiesis as well as regulators involved in specific
lineage decisions.

Inferring gene regulatory networks in human fetal
hematopoiesis

Our applications of scMTNI so far were on cell lineages where a
branching structure was computationally inferred. To examine the
utility of scMTNI in a system with known branching lineage structure,
we applied it to a published scATAC-seq and scRNA-seq dataset of
human fetal hematopoiesis®®, which captured specification to multiple
blood lineages (Fig. 7a). We considered the cell populations measured
with both scATAC-seq and scRNA-seq datasets at two resolutions: (1)
coarse resolution comprising hematopoietic stem cell (HSC), multi-
potent progenitors (MPPs), lymphoid-myeloid progenitors (LMPs),
MK-erythroid-mast progenitors (MEMPs), granulocytic progenitors
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(GPs), and (2) fine-grained resolution, which additionally included the
derived cell types from these progenitor populations. We evaluated
the methods that incorporate prior and their no-prior versions on this
dataset: scMTNI, scMTNI+Prior, INDEP, INDEP+Prior, and CellOracle, at
two levels of resolution of the cell types (Methods).

On the fine lineage, algorithms that did not use priors (INDEP and
scMTNI) performed comparably based on F-score (with no significant
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difference) on all five gold standards (Fig. 7b, Supplementary Figs. 22,
23)). INDEP+Prior, scMTNI+Prior, which use priors were significantly
better than methods without priors, while CellOracle performed the
worst in all gold standards. INDEP+Prior and scMTNI+Prior are com-
parable across the gold standard datasets. Based on predictable TFs,
SsCMTNI+Prior and INDEP+Prior were the best (Supplementary Fig. 24).
As observed in the Buenrostro dataset, CellOracle did comparably to
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Fig. 7 | Inference of cell type-specific networks for human fetal hematopoiesis
data. a Cell lineage structure linking the cell clusters from scRNA-seq. b Boxplots
showing F-scores of n =11 cell clusters for top 1k edges in predicted networks from
SCMTNI, scMTNI+Prior, INDEP, INDEP+Prior, and CellOracle compared to gold
standard datasets (top). FDR-corrected t-test to compare the F-score of the row
algorithm to the F-score of the column algorithm (bottom). The two-sided paired
t-test is conducted on F-scores of n =11 cell clusters for every pair of algorithms. A
FDR < 0.05 was considered significantly better. The sign < or > specifies whether
the row algorithm’s F-scores were worse or better than the column algorithm’s
F-scores. The color scale is specified for — log(FDR), with the red color proportional
to significance. Non-significance is colored in gray. In the boxplot, the horizontal
middle line of each plot is the median. The bounds of the box are 0.25 quantile (Q;)

and 0.75 quantile (Qs). The upper whisker is the minimum of the maximum value
and Qs + 1.5*/QR, where IQR = Q3 — Q,. The lower whisker is the maximum of the
minimum value and Q; - 1.5*/QR. c. Pairwise similarity of networks from each cell
cluster using F-score on the top 5k edges. Rows and columns ordered by hier-
archical clustering using F-score as the similarity measure. Reconstructed cell
lineage trees are shown at the bottom of the pairwise F-score similarity matrix and
are constructed using the MST algorithm on the F-score matrix. HSC-MPP hema-
topoietic stem cells and multipotent progenitors, LMP lymphoid-myeloid pro-
genitors, MEMP MK-erythroid-mast progenitors combined with cycling MEMPs, GP
granulocytic progenitors, Ery erythroid cells, Mono monocyte, pDC plasmacytoid
dendritic cells. Source data are provided as a Source Data file.

other methods on the ChIP-based gold standards (Unibind, Cus_ChlIP),
but had fewer predictable TFs in the other gold standards. The poor
performance of CellOracle is likely due to its complete reliance on the
prior network for determining the structure of the final inferred
network. We compared scMTNI+Prior and CellOracle on the coarse
lineage and observed similar superior performance of scMTNI+Prior
on both F-score and predictable TF metrics (Supplementary
Fig. 30A, B).

We next examined the lineage structure by constructing an MST
from pairwise distances of the inferred networks and compared it to
the ground truth (Fig. 7c). The single-task learning methods INDEP and
INDEP+Prior inferred networks had very low overlap for each pair of
cell lines and the resulting lineage tree was different from the ground
truth (Fig. 7c). In contrast, scMTNI and scMTNI+Prior were able to
recover the cell lineage exactly as the input cell lineage tree. CellOra-
cle, inferred more similarity across cell types and captured several
aspects of the original lineage (e.g., MEMP deriving from HSC-MPP),
but did not correctly recover several other aspects (e.g., LMPs and GPs
derived from HSC, Granulocytes derived from GPs). For the coarse
lineage, scMTNI+Prior and CellOracle inferred the same tree, but
placed LMPs and GPs under MEMPs instead of under HSCs (Supple-
mentary Fig. 30C). Taken together, these results show that
scMTNI+Prior’s framework of using lineage information and accessi-
bility results in inference of more accurate GRN structure and
dynamics during the differentiation process for known branching cell
type trajectories.

Examining dynamics of GRN components for fetal
hematopoiesis

We applied our k-means and LDA analysis to identify regulators asso-
ciated with edge rewiring and subnetwork changes for the fine
(Fig. 8a-c, Supplementary Figs. 25-28) and coarse hematopoiesis
lineages (Fig. 8d, Supplementary Figs. 31-35). The k-means analysis
identified edge clusters spanning multiple cell types of the lineage tree
(e.g., E16, E15, E21, E14, E13, E19, E7) as well as individual lineages (E4:
B cells, E3: Granulocytes, ES: Erythrocytes, E9: Mast cells, E2: HSC-
MPPs, E18: MEMPs) (Fig. 8a). We examined the regulators associated
with the edge clusters shared across multiple cell types and found
HNRNPK and PTMA to be frequently associated with these clusters
(Fig. 8b). HNRNPK has a number of regulatory functions across diverse
cell types including as a regulator of hematopoiesis®®. PTMA, which
stands for prothymosin alpha is not well understood for its function
but is implicated in growth and survival of cells of hematopoietic ori-
gin, and required for the filament-inducing activity of macrophage
lysate®, which would be consistent with its expression in the hema-
topoietic lineage®’. E17 had edges common to the Myeloid lineage
spanning HSC-MPPs, MEMPs, Mast-cells, Megakaryocytes and Ery-
throid populations and had ENO1, NPM1, SNRPDI in addition to
HNRNPK and PTMA as top regulators (Fig. 8b). ENOI encodes a gly-
colytic enzyme which is expressed in several human tissues and has
been shown to be a regulatory enzyme with links to the MYC
pathway®’. E2 had edges specific to HSC-MPPs and was associated with

PTMA, SNRPDI1, SOX4 and EEFIAI, which have immune-related func-
tions. E18 which was specific to MEMPs was associated with KLFI,
BRPF3 and PTMA. KLFI, which was found in the Buenrostro et al.
dataset of adult hematopoiesis as well*, is an essential regulator for
the erythroid lineage®*, and was also found to be upregulated by
Ranzoni et al. as cells transitioned from HSC/MPP to MEMPs*’. E16 and
E14 are edge clusters shared across all cell types with EEFIAI, CDC20,
HMGN2, NPM1, TOP2A as top regulators. HMGN2 belongs to the high-
mobility group of proteins, which was identified in our analysis of the
Buenrostro et al. dataset as well. Other regulators implicated cell cycle
(CDC20, TOP2A) or more general regulators of development and pro-
liferation (MPMI). Cell-cycle and cell-fate decisions are inherently tied
especially in progenitor populations where the cell fate decision could
be influenced by the cell cycle stage of the cells®*. The k-means analysis
of the coarse lineage exhibited much more shared network structure
compared to the fine lineage, though it also identified edge sets spe-
cific to each coarse cell type (E1: HSC, E3: GPs, E2: LMPs, Supplemen-
tary Fig. 31). Several of the regulators identified in the fine lineage
analysis were seen in the coarse lineage analysis showing overall con-
sistency of our results. For example, E8 which had edges shared across
all cell types had EEFIAI, FOS, HMGN2, NPM1 as the top regulators.
Similarly, KLFI was identified in the MEMP-specific edge cluster in the
coarse (E4) and fine lineages (E17). The coarse lineage analysis also
found additional regulators. For example, E2, which was specific to the
LMP lineage was associated with /RFS, KLF3, BAG4, and MAP2K?7. IRFS8,
which was identified in the Buenrostro et al. dataset as well plays a key
role in innate immune response and is an essential for development of
the lymphoid lineage including B cells*, monocytes and pDCs®.

Our LDA analysis identified topics representing subnetworks that
rewire from the HSC state to different lineages (Methods). The topic
genes were enriched in immune response (topic 1), cell-cycle (topics 2,
3 and 5), cellular respiration (topic 4) and general metabolic processes
(topic 7, Supplementary Fig. 29A). LDA topic 3 identified a regulatory
subnetwork that gained connections in B cells for regulators like
FOXP4 and PPR2R5B (Fig. 8c, Supplementary Fig. 26) and was enriched
for cell cycle processes (Supplementary Fig. 29A). In contrast, topic 1
represented an opposite pattern of gradual loss of edges connected to
FOS from HSC-MPP to downstream lineages (Supplementary Fig. 25).
FOS was found to be upregulated in Ranzoni et al. in the HSCs/MPPs
population®. Other topics exhibited conserved hubs like PTMA (topic
4, Supplementary Fig. 26), HNRNPK (topic 8, Supplementary Fig. 27)),
and NPM1 (topic 5, Supplementary Fig. 26) across multiple lineages and
several cell cycle regulators such as TOP2A and CDC20 (topic 2, Fig. 8c,
Supplementary Fig. 25). On the coarse lineage, the LDA analysis
revealed more hubs in HSC-MPPs which were lost when differentiating
to the other lineages (Fig. 8d, Supplementary Figs. 31-35). The
exceptions were ENOI (topic 7, Supplementary Fig. 34), HMGN2 and
NPM1 (topic 4, Supplementary Figs. 31, 33) and PTMA (topic 3, Sup-
plementary Fig. 31), which persisted at all lineages. NPM1, which was
found both in fine and coarse tree, plays an important role in hema-
topoietic progenitors, especially in early myeloid differentiation®®. A
few regulators also gained connections in specific lineages, for

Nature Communications | (2023)14:3064

13



Article

https://doi.org/10.1038/s41467-023-38637-9

a  kmeans clustering

# Edge

»
o
]

. HSC-MPPs

- Monocytes

. Granulocytes

. Megakaryocytes
- Erythroid—cells

63
76
185
90
42
395
49
73
61
46
136

[0.92/0.92 0.72 0.82/0.91 0.75J0i98 0.88 0.8 |
0.21 0.08 0.02 0.1 [0.72]0198J0I98 0.07 0.16 0.33

- 018 0.06 0.010.01 0 032 0 096 O 0.1 0.15
: 0.13 0.08 0.02 0.02 0.16 0.18J0I98JOIR 0.22 0.35
0.62 0.46 0.02
-0 002 0 001 0 0.050.01j0188 0.06 0.04 0.03
- OIS0 0.22 0.11]0168]0168 0.02J0188 0.4 0.13 048
0.1 0.12 0.1 [J0I9F 0.13 0.09,0.48 0.11 0.1 0.08
- 0.05016 0.41 0.21 0.35/0:52 0.35 0.4
0 0.240.04 0.09 0.020.14 0 0.21 0.2
- 0.09 0.08 0.09 0.08 0.0 0.09 0.09 0.07 0.08

D§AKKFODDDumOJZm 2ok rdad
LREBnnemOCCOs! P00 Tore
' T T

Top regulators for edge clusters

&£

ol

& LS
=_
UXJLKxOOmXX&mO i

E22. 0.12J0W8 0.31J0184 0.02 0.24 0.21 0.04 0.01 0.11 0.09 88
E4. 0 0.010.02 0.03J0I88 0 0.01 0.01 0.02 0.01 0.02 |80
E3. 0 0 001001 0 0 [J01850.01001001 0 [599
E11- 0 0.02J08F 0.01 0 0.010.02 0 0.010.010.01 0
E10- 0 001001001 O 01 0 0 0 001 0 445
E8- 0 0 0 O O O 0 O o o4 o [678
E5S- 0 0 0 O 0 001 0 0 O O [0W8[640 O
E9- 0 0.01001001 0 0 001 0 [J0I88 0.01 0.01 [648 R IR
E2.[JI88 0.05 0.01 0.01 0 0.06 0.02 0 0.02 0.01 0.01 406 E2===c+vvrsrecee@errrseree@rrenncenncnncenns
E12. 0- 0 0 0 0 0o 0 0 0 0 - E12=e@tstsssonssscscastsssssssssessces@eooscos@ecccstsssttssssecscs@essssnss@
E1. 0 0- 0 0 0o 0 0 0'010_01- El=++@+oQreveccrsress @@ rrreccte ittt tersrescttttttreeene
score 0.000.250.500.75 number of edges Degree _ Degree O 25 O s0 O 7 O 100
e 200 400 600 0 25 50 75 100
¢ Top regulators per topic (fine lineage)
topic: 1 topic: 2 topic: 3 topic: 4 topic: 5
CDC201® © © © © © © © 0 ¢ o ANKEIS &' @ it 1¢ PTMA o0 o
Fs1@e0ee0e00ee o000 e00e0ee winlo e Tty oo : ¢ vwi@oeo -000 L4
.
TOP2A+ c0e0ee THNIIS . Tt POLR2)2q +
DUSP14 @ R * | SNRPD1+ . . e . 'Y ° TCF19 ° POLR2I4 @ MCM71 @ = . L]
arsje @ e @0 e e | D1y Tore]e
KLF6{® © ¢ 0 © © @ o LMO4+ @ o . ETV5 CFL1 D1
DLGAPS5 ° Ppig’é';; SLC?’;‘:)P‘FG : t
1
BRIP1 PTTG1 4 b s POU2F2{ @ PTK7
ZNF490 +f ° 2ZNF225 POLR2C ([ ]
topic: 6 topic: 7 topic: 8 topic: 9 ‘topic: 10
EEF1IAI- @ © @ © @ © [ EI]
Mgg:;‘.:. : 1 ENOI-() @ © ¢ @ @ © oo 0 S e @ o0 coner cee0 - T T
iy oo BTF3-@® © © © o e 0 o - LGALS1q @ ® .0 .
i ND;i?Z?: HNRNPK L] L 2 oo FuTad - PLKId ® @ o + o o
EAFI4{ @ CDK5 +f ) JRK L 4
MAML3 [ ) CHEK2« [ ) PSTPIP2 CREBBP
IRF4
PESHKS‘ KLF14] ® Jy— PY WT1 [ ] TTK
XBP1 ° MAP2K7 = ZNF133
2ZNF30 HE;(V);: ® ° CFLI{@ o + o @ 13 soxa{ @ ..

R R R EEEER] R EEREER] R EEEER]

g 5 % 2Eg% g 5 % zEBg% g 5 % 2B s 5 % 2=EB:fE o 5 % 2Eg%

o = § =8 & o = § =8 & o = § =8 = @ = § =S8 £ o = § =8 =

+ <] s> + <] 8> + o] 5> = [} g > + <] g >

2w 2w o u - g w g w
= = Degree o 10@ 20@ 0@ 4 = Degree
H H 0 10 20 30 40
d Top regulators per topic (coarse lineage)
topic: 1 topic: 2 topic: 3 topic: 4 topic: 5

FOS - AHRY @ . . ° BANF1 4 ® o O AURKB- @ @ © DDX54 ® @ ° o
FOSB e o O HISTIHIB] o o o @ CFL14 ) ° BRCA1Y1 @ e + -+ [HMGNI{ @ e O

ELF2- ® o @ [HSTIH2BG{ ® @ e @ EDFi{ @ o - o cbco1 @ O @ IRF8 - °
FOSL1+ e HNRNPK ® | HISTIHIDY @ e - @ |CDC2s5C- @ + + o PATZ1 e o o
HESX1+ @ o o MEIST - ® @ |HSTIHIE{ @ + + @ CDCAS = e o o E2F1 . ®

KLF6 - e o O MYC @ o O LGALS11 @ ©® @ CDK(1 o o FOXO1 - -

PLCG1 o o TFCP24 e o o PHPTI1 @ @® ® @ | CDKN34 e o o @ GFIB A ..

PLEK e o CREB1 « - POLR2I ® o @ | DLGAP5- e o o SP24 e o o
CSF1R+ o ERG A e o O PTMA 4 HELLSH @ @ o @ SP3 4 e o O
HINFP - . ETV3 e o o S100A4 4 ® o e | HMGN2+ TCF3 A e + O

topic: 6 topic: 7 topic: 8 topic: 9 topic: 10
CiTA\ @ o o @ ENO1 A [ BCL11A 4 e o O FOXP1 - ® O O | ZNF76- e - e
HOXAQ - o o o HSP90B14 ® o CDKé{ ® =+ -+ @ KLF4 - « -+ e BCL3q =+ o {
RFX5 - e o+ o NR2F6 - e IRF94 @ e SP1 - e @ @ | HOXB2{ ® e o
KLF7 + e o o XBP11 @ o e SPI1 4 o O SP4+ o o ACP5 o °
SMADS - .« o ATF3 4 ® TCF12 e e @ | EEF1A1- o ASCL2 4 . °
ATF4A4 @ . EAF19 @ . TCF4 - o o SNAIBH @ e o | BACHI{ @ .
E2F5 - . ESRRG A . JUNB « o HCFC1+ ® ° EPAS1{ @
FOSL2+ . () HOXB4 . MNDA 4 o o KLF12 ° FOXJ1 4 .
FOXO3 - . JAGTIQ o+ ZNF219 ) . KLF8 - e | NFE2L24 o
HF{ @ o JUN A . BACH2{ @ . MECOM 4 ° PURA .

Q¢ & g g g & ¢ QL ¢ ¢ 9L g ¢ QL g ¢
I = O = I = 6 = I = O = I = 6 = r = 6 =
w - w - w — w - w -

= = = = =

Degree @ 10 @ 20 @ 3 @ < Degree “
0 10 20 30 40

example, LGALSI (topic 3), JAGI (topic 7), CDKI (topic 4) had more
edges in the LMP lineage and PLEK in the MEMP lineage (Supplemen-
tary Fig. 31). Both LGALSI®” and JAGI®® have been shown to be involved
in hematopoiesis, however, the specific roles in this process is not as
well-characterized. In topic 5, we observed the persistence of an IRFS-
specific network from the HSCs/MPPs to LMPs populations, which was
lost in MEMPs/GPs lineage and is consistent with our k-means analysis

and our results from Buenrostro et al. (Supplementary Fig. 33). Taken
together, the k-means and LDA analysis identified several components
of fetal hematopoiesis GRNs that changed as cells differentiated from
HSC-MPP to differentiated cell types. While many of the regulators
have well-characterized roles in hematopoiesis, several are previously
uncharacterized that can be followed up with targeted functional
studies.
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Fig. 8 | Network rewiring during human fetal hematopoiesis. a k-means edge
clusters of the top 1k edges (rows) across 11 cell clusters (columns). The edge
confidence matrix was clustered into 21 clusters to identify common and divergent
networks. The red intensity corresponds to the average confidence of edges in that
cluster. Shown also are the number of edges in the edge cluster. b Top 5 regulators
of each edge cluster. The size and brightness of the circle is proportional to the
number of targets. Regulators mentioned in text are in red. ¢ Top regulators
associated with each cell cluster’s network in each topic for fine-grained lineage

tree. Shown are only regulators that have at least 10 targets in any cell cluster. The
brighter and larger the circle, the greater are the number of targets for the reg-
ulator. d Top regulators associated with each cell cluster’s network in each topic for
coarse lineage tree. Shown are only regulators that have at least 10 targets in any
cell cluster. The brighter and larger the circle, the greater are the number of targets
for the regulator. For ease of interpretation only the top 10 regulators per topic are
shown. The full list of regulators per topic are shown in Supplementary Fig. 31.
Source data are provided as a Source Data file.

Discussion

Single-cell technologies have transformed our ability to study cellular
heterogeneity and cell-type specific gene regulation of known and
novel cell populations. Defining gene regulatory networks from
scRNA-seq data of developmental systems has remained challenging
as most existing methods have assumed a static view of the GRN and
do not leverage accessibility to inform the GRN structure. To address
this need, we developed single-cell Multi-Task Network Inference
(scMTNI), a probabilistic graphical model-based approach that uses
multi-task learning to infer cell type-specific GRNs on a cell lineage tree
by integrating scRNA-seq and scATAC-seq data and model the
dynamics of these regulatory interactions on a lineage. A major benefit
of the scMTNI framework is its flexibility in incorporating different
sources of accessibility information as well as the ability to model
dynamics on cell lineages of different topologies. The probabilistic
prior-based framework makes scMTNI more robust to noisy or
incomplete accessibility data and allows the incorporation of addi-
tional regulators such as signaling proteins and TFs with no binding
information. Guided by the cell lineage structure, sScMTNI’s inferred
networks exhibit meaningful changes along the trajectory and identify
regulators and network components specific to cell populations
transitioning to different lineage paths.

Multi-task learning is well-suited for the inference of cell type-
specific GRNs. However, a key question is how to implement multi-task
learning for GRN inference. A number of multi-task learning algorithms
were developed for inferring GRNs and functional networks from bulk
transcriptomic data but have not been systematically compared for
their effectiveness on single-cell transcriptomic data. Some approa-
ches, such as AMuSR* have used a flat hierarchy where all the tasks are
considered equally related. For heterogeneously related datasets, a
hierarchy or a tree is well-suited to model the dependence across
datasets. Such hierarchies can be implemented as a phylogenetic tree
with observed data at the tips of the tree as in GNAT* and MRTLE®, or
as a cell-lineage tree with observations at all nodes in the tree. scMTNI
and MRTLE both use a tree-based structure prior, whereas AMuSR,
GNAT, and Ontogenet used a regularized regression parameter to
implement multi-task learning. scMTNI and MRTLE have better per-
formance in predicting the gene regulatory relationships than single-
task learning algorithms. The performance of Ontogenet is better than
the single-task learning algorithms LASSO and INDEP in at least two cell
types, and comparable to SCENIC. A prominent factor contributing to
the difference in the performance of the algorithms was whether the
models inferred a directed graph versus an undirected graph, with
GNAT generally suffering likely due to this reason. Performance of
GNAT is worst among multi-task learning algorithms and comparable
to the single-task learning algorithms. We speculate that the undir-
ected graphical models learned by GNAT might be a reason that the
performance is not as good as other multi-task learning algorithms. We
also examined the performance of algorithms across different para-
meter settings that control for sparsity as well as for sharing infor-
mation. We found that the algorithms were generally robust to the
setting of sharing and more sensitive to the extent of sparsity. How-
ever, multi-task learning algorithms generally outperformed single-
task learning algorithms indicating that this is a useful direction for

methodological development for GRN inference from single cell omic
datasets. Importantly, single-task learning infers very different net-
works that makes it challenging to study transitions across the
networks.

Once GRNs are inferred across multiple cell types, the next chal-
lenge is to examine which components of the GRNs change along the
lineage. We developed two complementary techniques to study
dynamics. Our k-means edge clustering method was able to find reg-
ulatory connections that were unique to each cell cluster, while our
LDA topic model-based dynamic network analysis highlighted sub-
networks that were activated or deactivated along the lineage. We
applied our tools to study GRN dynamics in adult and fetal hemato-
poietic cell differentiation and reprogramming from mouse embryo-
nic fibroblasts to embryonic stem cells. We found that these systems
exhibited different dynamics, with the reprogramming system exhi-
biting more edges shared across populations compared to the
adult hematopoietic system which identified most edges as cell
cluster-specific. In all three systems, our analysis identified known and
previously uncharacterized regulators. For example, in the repro-
gramming system, we found that cells that were closer to the end point
pluripotent state already had an Esrrb-centered GRN component
active. In contrast, cells that were on an alternate trajectory exhibited
persistence of the MEF regulatory program including regulators such
as Aebpl. Between adult and fetal hematopoiesis we found several
shared regulators that were known lineage-specific regulators (e.g.,
IRF8 in the lymphoid lineage), but also identified regulators unique to
each system which could be followed up with future validation studies.

ScMTNI currently assumes that the input lineage structure is
accurate. However, lineage construction, especially from integrated
scRNA-seq and scATAC-seq datasets is a challenging problem. One
direction of future work is to assume the initial lineage structure is
inaccurate and incorporate the refinement of the lineage structure as
part of the GRN inference procedure. A second direction of work is to
model more fine-grained transitions within each cell population, for
example using RNA velocity or pseudotime®, which will complement
the coarse-grained dynamics that scMTNI currently handles. Studies
from bulk RNA-seq data have shown that estimating hidden tran-
scription factor activity (TFA)”° can further improve the performance
of network inference. Thus, another direction of future work is to
estimate hidden TFA and incorporate these to improve the accuracy of
the inferred networks. Finally, SCENIC generally outperforms the
single-task learning algorithms which do not use prior, which is likely
because of its regression-tree based model that captures non-linear
dependencies and is less prone to the sparsity of the dataset. While
SCMTNI’s stability selection framework can capture some non-linear-
ities, another direction of future work is to extend scMTNI to model
more non-linear dependencies.

In summary, scMTNI is a tool to infer cell type-specific regulatory
networks and their dynamics on a cell lineage which combines scRNA-
seq and scATAC-seq data. As single cell multi-omic datasets become
increasingly available, we expect scMTNI to be broadly applicable to
predict GRNs and prioritize regulators associated with regulatory
network dynamics across cell types in diverse cell-fate specification
processes.
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Methods

This research complies with all relevant ethical regulations. Mice used
in the reprogramming study were maintained in agreement with our
UW-Madison Institutional Animal Care and Use Committee (IACUC)
approved protocol (ID M005180-R03).

Single-cell Multi-Task Network Inference (scMTNI)

Single-cell Multi-Task Network Inference (scMTNI) is a probabilistic
graphical model-based approach that uses multi-task learning to infer
gene regulatory networks for cell types related by a cell lineage tree
(Fig. 1). We define a cell type to be a group of cells with similar tran-
scriptome and accessibility levels as defined by existing cell clustering
methods. Each task learns the gene regulatory network (GRN), G for
each cell type or cell cluster d. Given cell type-specific datasets for M
cell types, D={D?, ... , D™}, our task is to find the set of graphs
G={GY, ... ,G™} and parameters @ ={0%, ... , 8™} for each of the cell
types. G is modeled as a dependency network?, a class of probabil-
istic graphical models for inferring directed, predictive relationships
among random variables (regulators and genes). Each gene is modeled
as a random variable X; @ which encodes the expression level of gene i
in each cell. A conditional probability distribution P(X‘?|R®) models
the relationship between gene i and its set of regulators, R(d) in cell
type d. In a dependency network, GRN inference entails estlmatmg the
regulators Rgd) for each gene i in each cell type d. To enable joint
learning of these cell type-specific networks, our goal is to find the set
G={GY, ... ,G™} and parameters @ ={6", ... , 6"} by estimating the
posterior distribution of these two sets and finding their maximum a
posteriori values:

P(G,0|D) «x P(D|G,0)P(O|G)P(G) @

P(D|G, 0) is the data likelihood, expanded as [[;,P(D?|G?, 69). In a
dependency network, pseudo likelihood? is used to approximate the
data likelihood for each cell type, defined as the products of the con-
ditional distribution of each random variable X( ) given its neighbor
set R in cell type d, PX'V|R®,6\V). Thus, the likelihood can be
wrltten as:

P(D|G,O)O( H H P(X(d)lR(d) Hﬁ-d)) (2)
defl,..,Myie(l,...N)

Given the neighbor set R(d) the above quantlty can be computed
efficiently. We assume that each variable X ) and its neighbor set R(d)
in cell type d are from a multi-variate Gaussmn distribution. Thus
PX\PIR,6?) can be modeled using a conditional Gaussian distribu-
tion with mean uxdlkd and variance of(d 2 which can be estimated in
closed form. R(‘“ is selected from the input list of regulators using a
greedy search algorlthm executed in parallel across all cell types
(See Supplementary Methods). The second term P(0|G) in Equation (1)
is estimated using the maximum likelihood settings of the parameters.
The third term P(G) =P(G®, --- , G™) in the objective function is the
structure prior and is defined in a way to capture the state of an edge
across all cell types modeled, where G={G®, --- , G™}. We assume that
P(G) is composed of two priors, one is the cell-type specific prior P(T),
where T={T",..., T}, and the other one is a cell lineage structure
prior P(S) which captures the similarity between related cell types
along the cell lineage tree, where S$={S?,..., 5"},

P(T) is the cell-type specific prior, which decomposes over a
product of cell-type specific graphs: P(T®,...,T™) = TX_ P(T@). The
P(T®) decomposes over a product of individual edge configurations,
P(/{,‘fg), where I(d’ is an indicator function that represents whether there
exists an edge between regulator u to target gene v in cell type d,

X, X, as follows:

@ _ [ Lif thereisanedge fromutovin celltyped, 3)
%1 0, otherwise.
As in Roy et al.”

function:

, we model the prior probability using a logistic

1
P(I9=1)= — 4
( > 1+e— (Bo+Br*m) )

The Bo parameter is a sparsity prior that controls the penalty of
adding of a new edge to the network, which takes a negative value
(Bo <0). A smaller value of By will result in a higher penalty on adding
new edges and will therefore infer sparser networks. The f; para-
meter controls how strongly motifs are incorporated as prior (8; = 0).
A higher value of g, will result in motif presence being valued more
strongly to select an edge. f3; is set to O when there is no cell type-
specific motif information available. m'? is the weight of the edge
from regulator u to target v in the prior network and is computed
based on the motif instance score if gene v has a motif instance of
regulator u in its promoter region, additionally filtered by available
bulk or single cell ATAC-seq peaks. Thus, we have

M M
P = [P =] I[ Pud )

d=1 d=1uuvurv

The cell lineage structure prior P(S) is constructed to make use of
multi-task learning. We define P(SY, ..., S™) as a product over a set of
edges between regulators and target genes: ], ,.,PUS,....J00).
Under the assumption that the prior probability of the edge state in
one cell type is only dependent upon its state in the predecessor cell
type, we have:

PS)= [] Pl o= 11 TI Pudizapdy,),

u,v;u#v wVurY defl,.. .M} (6)
where pa(d) denotes the predecessor cell type of cell type d on the cell
lineage tree and r denotes the starting root cell type. P(/%)/2%?) is a
measure of overall gain and loss of regulatory connections between
related cell types and is assumed to be the same across the set of
edges. Thus, it can specified by three parameters: the probability of
gaining a regulatory edge in the root cell type, p, = P(I(’)) the prob-
ability of gaining a regulatory edge in cell type d given that the edge
does not exist in its predecessor cell type, pi = P(/'9) =1)/7%@ = 0), and
the probability of maintaining a regulatory edge in cell type d, given it
is present in its predecessor cell type pi2 =P(I'¥) =1|/2%® =1). These
parameters of the priors can be set by the user or estimated empirically
by analyzing different configurations and selecting those values with
the best agreement with existing biological knowledge of the system.
SCMTNI uses a greedy score-based structure learning algorithm. Please
refer to Supplementary Methods for details.

Input datasets

Simulated datasets. To benchmark the performance of different
multi-task and single-task learning algorithms, we simulated single cell
expression data from a lineage resembling a linear differentiation
process for three cell types (Fig. 2a). We simulated network dynamics
on the lineage while controlling the extent of similarity with the three
prior parameters: p,, the probability of having an edge in the starting/
root cell type; p@, the probability of gaining an edge in cell type d that
is not in the predecessor cell type; pﬁﬂ), the probability of maintaining
an edge in cell type d from the predecessor cell type. We set
p,=0.5p%=0.4 and p’ =0.7 or 0.8 and simulated three networks
from a linear lineage tree for each of the three cell types, each with 15
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regulators and 65 genes. Next, we applied BoolODE on the simulated
gene regulatory networks and generated single cell expression data for
2000 cells for each cell type. To mimic the dropouts in the scRNA-seq
data, we added 80% sparsity uniformly to all genes on the simulation
data. We refer to this simulated dataset as dataset 1, consisting of 65
genes and 2000 cells for three cell types. We generated smaller sample
sizes of these datasets, dataset 2 and dataset 3 by downsampling
dataset 1to 1000 cells (dataset 2) and 200 cells (dataset 3). We applied
each of the algorithms on these three datasets within a stability
selection framework and evaluated their performance based on AUPR
and F-score as described in the Evaluation section.

Human hematopoietic differentiation data. Buenrostro et al.** mea-
sured single-cell accessibility (scATAC-seq) and single-cell RNA
sequencing (scRNA-seq) data to study the regulatory dynamics
during human hematopoietic differentiation for multiple immuno-
phenotypic cell types: hematopoietic stem cells (HSCs), common
myeloid progenitors (CMPs) and granulocyte-macrophage progeni-
tors (GMPs) and Monocytes (Mono). We downloaded processed
scRNA-seq data for each cell type from Data S2 of Buenrostro et al.
(https://ars.els-cdn.com/content/image/1-s2.0-S00928674183044 6 X-
mmc4.zip) and fragment files for the scATAC-seq data from Chen
et al”? (https://github.com/pinellolab/scATAC-benchmarking/tree/
master/Real_Data/Buenrostro_2018). For the scATAC-seq data, we
mapped the fragments into 23,347,540 bins with length of 1000bp.
Next, we mapped 1 kb bins to the nearest gene and extracted cells with
cell barcodes labeled as HSC, CMP, GMP, and Mono. Next, we filtered
out genes with sum of counts in all samples less than 100, producing a
processed scATAC-seq dataset with 54,344 genes and 1315 cells across
the four cell types. We extracted the count matrix of scRNA-seq from
these four cell types; note that CMP cells were in three different clus-
ters: CMPO, CMP1, and CMP2. After filtering out genes with non-zero
expression in less than 5 cells, the scRNA-seq data had 12,558 genes and
4165 cells. We normalized the count matrix for depth and variance
stabilization based on the pagoda pipeline”. We kept 12,393 common
genes between scATAC-seq and scRNA-seq data and applied LIGER* to
define integrated cell populations. We applied LIGER with k € 8, 10, 12,
15, 20 factors and found k =10 to be most appropriate. Cluster C8 was
mainly composed of HSCs, C6 was mainly composed of GMP cells, C7
was mainly CMPO cells, C1 was composed of Monocyte cells, and the
rest of the clusters were a combination of several cell types. C5 had too
few RNA cells (22 cells) so we excluded it from further analysis. Since
the composition of C1 (73 cells) and C4 (37 cells) are very similar,
mainly GMP and Mono cells, we combined these two clusters as C1. We
inferred a cell lineage tree from the 8 cell clusters using a minimal
spanning tree (MST) approach using the python package scipy.-
sparse.csgraph. Briefly, we used the mean expression profiles
across samples of these cell clusters and computed the Euclidean
distance between every pair of cell clusters. Then, we inferred the MST
from the distance matrix using scipy.sparse.csgraph.

To derive the prior network for each cell cluster we created
cluster-specific bam files from the scATAC-seq data using the LIGER
clusters. We pooled these bam files to generate pseudo bulk accessi-
bility coverage and applied MACS2 (v2.1.0) to identify scATAC-seq
peaks for each cell cluster’®. We obtained sequence-specific motifs
from the Cis-BP database (http://cisbp.ccbr.utoronto.ca/)” and used
the script pwmmatch.exact.r available from the PIQ toolkit”® to
identify significant motif instances genome-wide using the human
genome assembly of hgl9. We mapped motifs to each scATAC-seq
peak and mapped the peak to a gene if it was within + 5000 bp of the
transcription start site (TSS) of a gene. In this case, we connect all
motifs to a TSS that are mapped to the same scATAC-seq peak. We
used the maximum motif score from pwmmatch.exact.r for each
motif-TSS pair and took the maximum value among all TSSs of a gene
as the value for each motif-gene pair. The motif instance score is the

log ratio of the Position Weight Matrix (PWM) match score to a uni-
form background. Finally, to generate the edge weight for each TF-
gene pair, we used the max score among all motifs mapped to the same
TF. To normalize the edge weights across TFs, we converted these
weights into percentile scores and selected the top 20% of edges as
prior edges.

Mouse cellular reprogramming data. We generated an scATAC-seq
time course dataset for cellular reprogramming from mouse
embryonic fibroblast (MEFs) to induced pluripotent cells (iPSCs). The
dataset contains a total of 6 time points corresponding to the starting
MEF, the end pluripotent state (mESC), and four intermediate time-
points of day 3, day 6, day 9 and day 12. The mice used to generate the
MEFs used for reprogramming were housed in a facility that rana12 h
light/12 h dark cycle, had an ambient temperature 72 *F and maintained
humidity between 20-50%. Mice were maintained in agreement with
our UW-Madison Institutional Animal Care and Use Committee
(IACUC) approved protocol (ID M005180-R03). Male and female mice
of breeding age (at least 6-8 weeks old) from a mixed 129/Bl6 back-
ground that are homozygous for the Oct4-2A-Klf4-2A-IRES-S0x2-2A-c-
Myc (OKSM) transgene at the Collal locus and heterozygous for the
reverse tetracycline transactivator (rtTA) allele at the Rosa26 locus
were time-mated, from which MEFs were isolated at E13.5. On E13.5, the
pregnant female mouse is carefully dissected and all embryos are
removed. The head and neck region of the embryo is separated from
the rest of the body and any organ tissues present are also removed,
leaving only the fibroblasts. The remaining fibroblast tissue is emulsi-
fied and plated onto a 15cm. The cells are passaged 1-2 additional
times before being collected and stored in liquid nitrogen until the
start of the experiment. In this study, MEFs with a homozygous gen-
otype for the OSKM transgene and rtTA allele were used for repro-
gramming experiments. Male neonatal human foreskin fibroblasts
(HFFs) from American Type Culture Collection (HFF-1SCRC-1041) were
used as feeders for our reprogramming cells. HFFs were passaged and
expanded -5 times prior to being irradiated. HFFs were irradiated at a
level of 80 Gray prior to being used as feeders for the reprogramming
MEFs. The process of somatic cell reprogramming is unaffected and is
not influenced by the sex of the starting cell population, so the sex of
the MEFs used in this experiment is unknown as it is irrelevant to the
observed results.

On Day -2, E13.5 reprogrammable MEFs were thawed and on Day
-1, they were plated in gelatinized 6-well plates at a seeding density of
5000 cells per well. Reprogramming was induced on Day O by adding
2ug/ml doxycycline (Sigma-Aldrich D9891) to each well, which
induced OKSM expression, as well as irradiated DR4 feeder MEFs.
Reprogramming cells were maintained in ESC media (knockout DMEM
(Gibco #10829-018), 15% FBS (Biowest S1620), L-glutamine (Gibco
#15140-122), Pen/Strep (Gibco #33050-061), NEAA (Gibco #11140-050),
2-mercaptoethanol (Sigma-Aldrich #M6250) and leukemia inhibitory
factor (Sigma-Aldrich #L5158)). Media was changed every two days.
Cells were collected and prepared in a single-cell suspension on days 3,
6,9, and 12. To generate single-cell suspensions, cells in the wells were
washed 5X with DPBS (Gibco #14190-144) and dissociated from plate
using 0.25% Trypsin-EDTA (Gibco #25200-072). Trypsin was neu-
tralized with soybean trypsin inhibitor (Sigma-Aldrich #T6522), cells
were filtered through a 40um filter, and spun down for 3min at 300xg
(RT). Cells were then resuspended in 1ml of 0.1% BSA-PBS (prepared by
diluting 7.5% Bovine Albumin Fraction V solution (Gibco #15260-037)
to 0.1% with DPBS) and pipetted up and down 50X. 6 ml of 0.1% BSA-
PBS were added to cells and spun down again at 300 x g for 3 min. Cells
were finally resuspended in 1 ml of 0.1% BSA-PBS. Cell concentration
was determined using an Invitrogen Countess Il cell counter prior to
nuclei isolation, transposition, and single-cell ATAC-sequencing.

scATAC-seq data were generated using the 10x Genomics plat-
form with a targeted nuclei recovery of 4000 and targeted read depth
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of 25k reads per nucleus. Sequencing was performed using the lllumina
NovaSeq 6000 machine and samples were loaded onto a S1 flow cell.
The scATAC-seq data was first processed through CellRanger ATAC
pipeline (version 1.1.0) to provide the fragments file. We binned the
genome at non-overlapping 1kb bin and computed the number of
fragments mapped to each 1kb bin. Next, we mapped 1kb bins to the
nearest gene for all of the samples. The processed scATAC-seq data
contains 25,824 genes and 30,344 cells.

We downloaded scRNA-seq datasets (GEO: GSE108222) for the

same time points from ref. 32. We concatenated the expression data
from two replicates at each time point and normalized the con-
catenated matrix for depth and variance stabilization based on a sim-
plified implementation of the pagoda pipeline’. Next, for each time
point, we removed genes with expression in less than 5 cells. We took
the union of genes among all time points and concatenated the
expression data across all time points as our final scRNA-seq data
matrix. The processed scRNA-seq dataset contains 14,953 genes and
3460 cells. We had a total of 11,926 genes in common between the two
datasets, which were used for downstream analysis. We applied LIGER
with k€ 8, 10, 12, 15, 20 and found k=8 to provide the optimal clus-
tering of the scRNA-seq and scATAC-seq data determined based on the
clustering of the accessibility and transcriptome of the MEF and ESC
time points. We inferred a minimal spanning tree from the distance
matrix of the pseudobulk expression profiles of each cluster using
scipy.sparse.csgraph, similar to the Buenrostro et al. hemato-
poiesis dataset, and used it as the cell lineage tree. The prior motif was
generated in the same way as for the hematopoiesis differentiation
dataset using motifs for mouse from the CisBP database’. We used the
10 mm mouse genome assembly for this analysis.
Human fetal hematopoietic differentiation data. Ranzoni et al.””
measured scRNA-seq and scATAC-seq data to study the regulatory
dynamics during human developmental hematopoiesis for multiple
immunophenotypic blood cell types from fetal liver and bone marrow.
We obtained the scRNA-seq (gene by cell) and scATAC-seq data (peak
by cell) matrices from https://gitlab.com/cvejic-group/integrative-
scrna-scatac-human-foetal. We used the annotated cell clusters in
ref. 77 for the scRNA-seq data: HSCs/MPPs combined with cycling
HSCs/MPPs (HSCs-MPPs), lymphoid-myeloid progenitors (LMPs), MK-
erythroid-mast progenitors combined with cycling MEMPs (MEMPs),
granulocytic progenitors (GPs), granulocytes, erythroid cells, mega-
karyocytes, mast cells, monocytes, plasmacytoid dendritic cells (pDCs)
and B cells. We took the union of genes among all cell types and
concatenated the expression data as our final scRNA-seq data matrix.
We normalized this concatenated matrix for depth and performed
variance stabilization based on the pagoda pipeline” and removed
genes with expression in less than 20 cells. The labeling provided by
Ranzoni et al. for the scATAC-seq data omitted many of these cell types
making it challenging to determine cell-type specific priors. To over-
come this challenge we utilized a label transfer technique based on the
method provided in the Seurat v3 package’®. Briefly, we embedded the
scRNA-seq and scATAC-seq cells (after mapping peaks to gene pro-
moters) into a shared lower dimensional embedding (k =10) utilizing
LIGER”. We next defined “anchors”, which are pairs of cells that pro-
vide a correspondence between the scRNA-seq and scATAC-seq
modalities. Each anchor is defined as a mutual nearest neighbor in
the lower dimensional space and has an anchor score computed based
on the overlap of within and between dataset neighborhoods as spe-
cified in the Seurat v3 package. Once the anchor scores are established,
we computed the anchor weights for each cell in the scATAC-seq data
and transferred labels based on a linear combination of the anchor
weights and labels associated with the scRNA-seq cells. Each scATAC-
seq cell with a label score greater than 0.3 was assigned the maximally
scoring label. Cells with score below 0.3 were not used to generate the
prior network.

To derive the prior network for each cell type, we extracted
scATAC-seq peaks present in each cell type derived from our label
transfer method. For LMPs, as there are no cells in the scATAC-seq data
labeled as LMPs, we took the union of peaks across LMP’s derived cell
types (monocytes, pDCs, and B cells) as the scATAC-seq peaks for
LMPs. We used a similar strategy as the Buenrostro et al. dataset to
generate the prior network. Briefly, we used the same sequence-
specific motifs from the Cis-BP database’ as the Buenrostro et al. data,
mapped motifs to each scATAC-seq peak and mapped the peak to a
gene if it was within £ 5000 bp of the gene TSS. For the coarse cell
lineage tree, we merged all derived cell types from each parent cell
type to produce four cell populations as follows: monocytes, pDCs, NK
cells and B cells were merged with the LMP cells; erythroid cells,
megakaryocytes, and mast cells were merged with MEMPs; and Gran-
ulocytes were merged with GPs. We applied the same approach as the
fine tree to prepare the scRNA-seq expression data and prior networks
for each cell type using union of scATAC-seq peaks in each cell type
and its derived cell types.

Application of network inference algorithms on simulated
datasets

We used the simulated datasets to perform benchmarking of the dif-
ferent network inference algorithms. We also used this dataset to study
the sensitivity of the algorithms to the different parameter settings.
Below we describe each of the algorithms as well as the parameters
used for each of the algorithms for the simulated datasets. For all three
simulation datasets, we applied all algorithms other than SCENIC
within a stability selection framework to estimate the confidence score
for each edge in the predicted networks. For stability selection, we
subsampled each dataset 20 times randomly using half of the cells and
all genes. SCENIC has its own internal sub-sampling and directly out-
puts the edge importance. scMTNI and baseline methods require list of
regulators and target genes information as input. This information is
provided to all methods under comparison.

SCMTNI: scMTNI has five hyper-parameters: p,, probability of
having an edge in the starting cell type; p{’, probability of gaining an
edgein a child cell type d; pﬁﬂ) the probability of maintaining an edge in
d from its immediate predecessor cell type; a sparsity penalty B, that
controls penalty for adding edges; f;, that controls the strength of
incorporating prior network. We tested different configurations of the
hyper-parameters: p, € {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}, and
P € {0.05, 01, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}, and pf € {0.55,
0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9}, o € {-0.005, -0.01, -0.05, -0.1,
-0.5}. B; was set to O as there is no prior network in the simulations. If
the size of the predicted network for a parameter setting was smaller
than the size of the simulated network, we disregarded this parameter
setting for comparison. We used the area under the precision-recall
curve (AUPR) to compare the scMTNI inferred networks to simulated
networks. We also computed F-score on top K edges ranked by the
confidence score (where K is the number of edges in the simulated
network, Cl: K=202, C2: K=217, C3: K=239). Overall performance of
SCMTNI was stable across different parameter configurations (Sup-
plementary Fig. 36, Supplementary Methods). To compare against
methods, we used values from the best parameter settings for each
dataset and cell type as well as all parameter settings (Supplementary
Figs. 1, 2).

MRTLE: Multi-species regulatory network learning (MRTLE)® is a
probabilistic graphical model-based algorithm that uses phylogenetic
structure, transcriptomic data for multiple species, and sequence-
specific motifs to infer the genome-scale regulatory networks across
these species simultaneously. It was developed for bulk transcriptomic
data and uses a dependency network model to specify the directed
relationship among regulators to target genes. Sequence-specific
motif instances can be incorporated as prior knowledge to favor edges
supported with the presence of motifs. The multi-task learning
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framework is embedded in the phylogenetic prior, which captures the
evolutionary dynamics of regulatory edge gain and loss guided by the
phylogenetic structure. The MRTLE algorithm has four parameters: p,,
the probability of gaining an edge in a child species s that is not in the
ancestor species; p,,, the probability of maintaining an edge in a spe-
cies sgivenitis also ins’'simmediate ancestor of s; B, a sparsity penalty
that controls penalty for adding edges, and a penalty S, that controls
the strength of motif prior. In the simulation case, we examined dif-
ferent parameter configurations: p, € {0.05, 0.1, 0.15, 0.2, 0.3, 0.4},
pm€{0.5, 055, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85}, B, € {-0.005, -0.01,
-0.05, -0.1, -0.5, -1}. B; was set to 0. The overall performance of
MRTLE was stable across different parameter configurations (Supple-
mentary Fig. 37). Similar to scMTNI, we used the AUPR and F-score of
top K edges to select the best parameter setting. The best parameter
setting and all parameter settings were used to compare against other
algorithms.

GNAT: The GNAT?® algorithm uses a hierarchy of tissues to share
information between related tissue and infers tissue-specific gene co-
expression networks. It was developed for bulk transcriptomic data.
GNAT models each network using a Gaussian Markov Random Field
(GMREF). It has two parameters: the L; penalty A; that controls the
sparsity of the network, and the L, penalty A, that encourages the
precision matrix of children to be similar to its parent precision matrix.
It initially learns a co-expression network for each leaf tissue. Then it
infers the networks in internal nodes using the networks in the leaf
nodes and updates the networks in leaf nodes iteratively until con-
vergence. Since GNAT learns undirected networks, we transformed
them to directed networks by adding edges from a regulator to a
target. If the nodes of an edge are both candidate regulators, we out-
put the edge in both directions. We tested different parameter con-
figurations of As and A,. For data 1 (n=2000), A, were set to {30, 31,
32,..., 37}, and A, were set to {30, 31, 32,..., 40}. For data 2 (n=1000), A,
were set to {18, 19,.., 22}, and A, were set to {18, 19,..., 25}. For data 3
(n=200), A were set to {5, 6, 7, 8}, and A, were set to {5, 6, 7, 8}. We
found that A; dominates the performance and under the same A,
changing A, does not change the performance substantially (Supple-
mentary Fig. 38). If the size of the predicted network for a parameter
setting is smaller than the size of the simulated network, we removed
this parameter setting. The ranges of A;and A,, are slightly different and
varying across different datasets. We used AUPR and F-score of top K
edges to select the best parameter settings. We compared the algo-
rithms using the best and all parameter settings.

Ontogenet: The Ontogenet” algorithm was developed to recon-
struct lineage-specific regulatory networks using cell type-specific
gene expression data across cell lineages. It was developed for bulk
transcriptomic data. To infer the regulatory networks for each cell
type, Ontogenet uses a fused LASSO framework combined with an
additional L, penalty. The L; penalty is introduced to control the
sparsity of regulators, while the L, penalty is used to select correlated
predictors. The multi-task learning uses a fused LASSO framework with
an additional L, penalty on the difference of the regression weight of
related cell types, which encourage the consistency of regulatory
programs between related cell types. The Ontogenet algorithm has
three parameters: the L; penalty A that controls the sparsity of the
network, the L, penalty k that handles correlated predictors, and y that
encourages the similarity of regulatory programs between related cell
types. We tested different parameter configurations of A, y and «. For
data 1 (n=2000), A were set to {1000, 1250, 1500, 1750, 2000, 2250,
2500}, and y were set to {1000, 1250, 1500, 1750, 2000, 2250, 2500}.
For data 2 (n=1000), A were set to {500, 1000, 2000, 3000}, and y
were set to {500,1000, 2000, 3000}. For data 3 (n = 200), A were set to
{475, 500, 525}, and y were set to {475, 500, 525}. k was set to {1, 5, 10}
for each of the datasets. We found that A and y dominate the perfor-
mance, while changing k does not change the performance sig-
nificantly (Supplementary Fig. 39). If the size of the predicted network

for a parameter setting is smaller than the size of the simulated net-
work, we removed this parameter setting. The ranges of A and y are
slightly different and vary across different datasets in order to infer
similarly sized networks for different datasets. We used AUPR and
F-score of top K edges to select the best parameter settings. We
compared the algorithms using the best and all parameter settings.

AMUuSR: The Inferelator-AMuSR?® algorithm uses sparse block-
sparse regression to estimate the activities of transcription factors
and infer gene regulatory networks from expression datasets. The
multi-task learning approach decomposes the model coefficients
matrix into a dataset-specific component using a sparse penalty and
a conserved component using a block-sparse penalty to capture both
conserved interactions and dataset-unique interactions. It is able to
incorporate prior knowledge from multiple resources and robust to
false interactions in the prior network. For our simulation setting,
we applied AMuSR without TFA estimation by setting work-
er.set_tfa(tfa_driver = False) in the SingleCellWorkflow from Infer-
elator 3.0 package. To be comparable across different algorithms,
AMuSR was applied on the same subsample of the three simulation
datasets within a stability selection framework to estimate the con-
fidence score for each edge in the AMuSR networks. The AMuSR
algorithm has two sparsity parameters: As that controls the sparsity of
the network for each dataset, the block-sparse penalty A, that con-
trols the sparsity of the conserved network across all datasets.
AMUuSR has its own parameter selection framework (see ref. 28 for
details) and uses extended Bayesian information criterion (EBIC) to
select the optimal (A Ap). We additionally externally tuned the
parameters by setting ¢ to {0.01, 0.02154435, 0.04641589, 0.1,
0.21544347, 0.46415888, 1, 2.15443469, 4.64158883,10} and set
Ay =c*y/41980) 35 suggested in the paper, where d is the number of
cell types, n is the number of samples and p is the number of genes.
However, by setting 1, to 0 and A to O (the lowest sparsity settings),
we found that the inferred networks are too sparse with 7-100 edges
for data 1, and 71-129 edges for data 2. We kept two settings for
AMuSR, one using our criteria to select the best setting based on
AUPR and F-scores among different ¢ settings (AMuSR_tuned) and
another version using AMuSR’s default optimal parameter selection
(AMUuSR _default). We computed AUPR and F-score of top K edges
(where K is the number of edges in the simulated network) for
AMuSR inferred networks with optimal parameter settings for com-
parison with other algorithms. We compared the algorithms using
the optimal and all parameter settings.

INDEP: The INDEP algorithm is the single-task framework of
scMTNI which does not have the prior for sharing information across
cell types and infers a regulatory network for each cell type indepen-
dently. Similar to scMTNI, it models each network using a dependency
network. INDEP learns the graphs for each cell type using a greedy
graph learning algorithm with a score-based search, where the score
contains only the data likelihood. At each iteration, the algorithm
computes the change in data likelihood score? for all candidate reg-
ulators for each target gene, selects the best regulator for the target
gene and adds this (regulator, target) edge to the current graph. INDEP
has two parameters in the model: a sparsity penalty B, that controls
penalty for adding edges, and a penalty S; that controls the strength of
motif prior. In the simulation case, Sy were set to {~0.005, -0.01,
-0.05, -0.1, -0.5, -1}, and B; were set to 0. AUPR and F-score of top K
edges were used to select the best parameter settings (Supplementary
Fig. 40). If the size of the predicted network for a parameter setting is
smaller than the size of the simulated network, we removed this
parameter setting. As mentioned above, we compared INDEP to other
algorithms using best and all parameter settings for a dataset.

LASSO: The LASSO method uses linear regression with L; reg-
ularization. For each gene, we use the expression profiles of candidate
regulators to predict the expression profiles of this gene. The reg-
ulators with non-zero coefficients are inferred as the regulators for this
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Table 2 | The statistics of the real datasets and the size of the prior networks in mouse cellular reprogramming data, human
hematopoietic data from Buenrostro et al., and human fetal hematopoiesis data from Ranzoni et al.

Real dataset

Prior network

Dataset # regulators # genes avg. # of regulators avg. # of genes avg. # of edges
Cellular reprogramming 2036 12216 397 11290 892666

Adult hematopoiesis 1999 11994 324 10283 665931

Fetal hematopoiesis (fine tree) 2195 16737 255 9403 541813

Fetal hematopoiesis (coarse tree) 2227 17425 328 12308 865983

The averages are computed across the cell clusters or cell types for each dataset (cellular reprogramming data: n=7, adult hematopoiesis data: n =8, fetal hematopoiesis (fine tree): n=11, fetal

hematopoiesis (coarse tree): n=4).

gene and these edges are added to the gene regulatory network. We
used MATLAB implementation of LASSO regression. Similar to
SCMTNI, GNAT, INDEP, Ontogenet, AMuSR, LASSO was run on the
same subsample of the three simulation datasets within a stability
selection framework to estimate the confidence score for each edge in
the networks. LASSO has only the L; penalty A that controls the sparsity
of the network. In the simulation case, A were set to {0.01, 0.02, 0.03,
0.04, 0.05, 0.06}. AUPR and F-score of top K edges were used to select
the best parameter settings (Supplementary Fig. 41). If the size of the
predicted network for a parameter setting is smaller than the size of
the simulated network, we removed this parameter setting. We com-
pared LASSO to other algorithms using the best and all parameter
settings.

SCENIC: The SCENIC* algorithm uses GENIE3 or GRNBoost2 to
infer TF-target relationships available as part of the Arboreto
framework’. We used the GRNBoost2 algorithm with default para-
meters for network inference. SCENIC is based on an ensemble of trees
with its own bootstrapping and hence was directly applied to each cell
type-specific dataset in the simulation. SCENIC uses the feature
importance score of each edge to rank the edges in the inferred net-
work. We computed AUPR and F-score of top K edges (where K is the
number of edges in the simulated network) for SCENIC inferred net-
works for comparison with other algorithms.

Application of network inference algorithms to cellular repro-
gramming data
We applied scMTNI, scMTNI+Prior, INDEP, INDEP+Prior, SCENIC, and
CellOracle to the cellular reprogramming data, which contains 12,216
genes and 2036 potential regulators (Table 2). All of these methods
require list of regulators and target genes information provided as
input, and the same information is provided to all methods under
comparison. The CellOracle algorithm is a new method that can
integrate scRNA-seq profiles with non-transcriptomic data (such as
bulk ATAC-seq and scATAC-seq profiles) to infer cell type-specific
GRNs?.. The algorithm is based on a regularized linear regression
model and implemented in a Bayesian Ridge or Bagging Ridge fra-
mework to improve stability and reproducibility. CellOracle uses
scATAC-seq data or bulk ATAC-seq data to identify accessible pro-
moters and enhancers, and then scans TF motifs to construct a
context-independent “base GRN”. Subsequently, for each context,
CellOracle assigns edge weights to the edges of the base GRN with
the help of the context-specific sScRNA-seq profiles. To infer the edge
weights, CellOracle builds a regularized linear regression model to
predict the expression of target gene using expression of candidate
regulators. The inferred GRNs are context-specific weighted directed
graphs with regression coefficients corresponding to the strength of
the connections.

scMTNI and INDEP algorithms were applied within a stability
selection framework to estimate edge confidence. In the stability
selection framework, we subsampled the data 50 times, each with
12,216 genes and % of the cells, applied the algorithms to each

subsample and used the inferred networks to estimate the confidence
score for each TF-target edge in the predicted networks. In both
ScMTNI and scMTNI+Prior, we used the following hyper-parameter
settings for the lineage structure prior p,=0.2, p(gd) =0.2and p%) =0.8.
For the sparsity prior we set o =-0.9 for scMTNI, and S, € {-0.9, -2,
-3, -4} for scMTNI+Prior. To generate the prior network, we used the
matched scATAC-seq clusters to obtain TF-target prior interactions for
each scRNA-seq cluster. For scMTNI+Prior which uses the scATAC-seq
prior, we set f; € {2, 4}. INDEP and INDEP+Prior were applied on the
same subsampled data followed by edge confidence estimation. We
used the same settings for 5o and ; for INDEP as scMTNI. Final results
of scMTNI+Prior used o = —4 and S; =4, which was determined by the
distribution of edges at different confidences. Final results for INDEP
+Prior used o =-4 and ;=4. scMTNI and INDEP were run in parallel
by splitting the target gene set into subsets, e.g., of 50 genes while
keeping the regulator list and other settings the same. The inferred
networks of each subset target genes were concatenated as the final
inferred network. The average runtime and memory usage of scMTNI
and scMTNI+Prior for this dataset are reported in Supplementary
Table 2. SCENIC has its own subsampling framework which can esti-
mate an edge importance, and was applied to the entire dataset with
default parameter settings. CellOracle was applied using the Bagging
Ridge regression model, which has its own bootstrapping to estimate
edge importance. CellOracle was applied to the entire dataset with
default parameter settings and the same prior networks as for INDEP
+Prior and scMTNI+Prior to enable a fair comparison of their GRN
inference capabilities.

Application of network inference algorithms to human adult
hematopoietic differentiation data

We used a similar workflow for the human hematopoietic differ-
entiation dataset as the reprogramming system. This dataset had
11,994 genes and 1999 potential regulators (Table 2). We sub-
sampled the scRNA-seq data for each cell cluster 50 times, each with
11,994 genes and £ of the cells, and applied scMTNI, scMTNI+Prior,
INDEP, INDEP+Prior on each subsample to estimate the edge con-
fidence of the GRNs. For scMTNI and scMTNI+Prior, the lineage
structure prior parameters were set as follows: p,=0.2, pé,d):O.Z,
p9=0.8. The sparsity prior S, was set to 0.9 for scMTNI. For
ScMTNI+Prior, the sparsity prior was set Bo € {-0.9, -2, -3, -4} and
S1 € {2, 4}. For INDEP and INDEP+Prior, we used the same settings
for Bo and B; as scMTNI and scMTNI+Prior respectively. Final results
of scMTNI+Prior are with fo=-4 and B;=4 and final results for
INDEP+Prior are using Bo=—4 and ;= 4. The runtime and memory
usage of scMTNI and scMTNI+Prior for this dataset are reported
Supplementary Table 2. SCENIC was applied to the entire dataset
with default parameter settings. CellOracle was applied to the entire
dataset with default parameter settings using the same prior net-
works as for scMTNI+Prior and INDEP+Prior. The same list of reg-
ulators and target genes are provided to all methods under
comparison.
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Application of network inference algorithms to human fetal
hematopoiesis data

We applied scMTNI, scMTNI+Prior, INDEP, INDEP+Prior and CellOracle
to the fine-grained lineage version of this dataset using a similar
workflow as the other datasets. We applied scMTNI+Prior and Cel-
I0racle to this dataset when using the coarse lineage structure. For the
fine-grained lineage, there are 16,737 genes and 2195 potential reg-
ulators. For the coarse lineage, there are 17,425 genes and 2227
potential regulators (Table 2). We subsampled the scRNA-seq data for
each cell cluster 50 times, each with all genes and % of the cells, and
applied scMTNI, scMTNI+Prior, INDEP, INDEP+Prior on each sub-
sample to estimate the edge confidence of the GRNs. For scMTNI and
ScMTNI+Prior, the lineage structure prior parameters were set as fol-
lows: p,=0.2, pi" =0.2, pis = 0.8. The sparsity prior S, was set to —0.9
for scMTNI. Final results of scMTNI+Prior are with fo=-4 and ;=4
and final results for INDEP+Prior are using 8o = —4 and 3; = 4. INDEP and
INDEP+Prior used the same settings for 8y and S, for as scMTNI and
SCMTNI+Prior, respectively. The runtime performance and memory
usage of scMTNI and scMTNI+Prior are reported in Supplementary
Table 2. CellOracle was applied to the entire dataset with default
parameter settings with the same prior networks as scMTNI+Prior and
INDEP+Prior. The same list of regulators and target genes are provided
to all methods under comparison.

Evaluation

Gold standard datasets. To evaluate the predicted networks of dif-
ferent inference algorithms on real data, we downloaded and pro-
cessed several gold standard datasets (Table 1). For mouse
reprogramming study, we curated multiple experimentally derived
networks of regulatory interactions from the literature and existing
databases. The statistics of the gold standard datasets are provided in
Table 1. One of these datasets is ChIP-chip or ChIP-seq based gold
standard (referred to as “ChIP”) from ESCAPE (http://www.maayanlab.
net/ESCAPE/) or ENCODE databases®** (https://www.encodeproject.
org/), which contains ChIP-chip or ChIP-seq experiments in mouse
ESCs. The second dataset is a knock down-based gold standard
(referred to as “Perturb”), which is derived from regulator perturbation
followed by global transcriptome profiling*>. We took a union of the
networks from LOGOF (loss or gain of function) based gold standard
networks from the ESCAPE database** and the networks from
Nishiyama et al.*® as the perturbation interactions. Finally, we took the
intersection of the interactions between ChIP and knock-down based
gold standards to create the third gold standard network referred to as
“ChIP+Perturb”.

For human hematopoietic cell types, we have five gold standard
datasets. Two gold standard datasets were a ChIP-based (Cus_ChlIP)
and a regulator knock down-based (Cus KO) dataset in GM12878
lymphoblastoid cell line downloaded from Cusanovich et al.*’. For the
knock down dataset, we had TF-target relationships at two p-value
thresholds, 0.01 and 0.05. We used the TF-target relationships at 0.01
to have a more stringent gold standard. The third gold standard was
from human hematopoietic cell types from the UniBind database
(https://unibind.uio.no/)*¢, which has high confidence TF binding site
predictions from ChIP-seq experiments. To obtain the TF-gene net-
work, we mapped TF binding sites to the nearest gene if there is
overlap between the TF binding sites and the promoter of the gene
defined by +5000 bp of the gene TSS. If multiple ChIP-seq datasets
were available for the same TF in a given cell type, we took the union of
TF-gene edges for the same cell type. We took the union of these
individual cell type-specific gold standards to create our Unibind gold
standard (UniBind). Finally, we took the intersection of the ChIP-based
gold standards with the knock down based gold standards, to
produce the fourth and fifth gold standards, Unibind+Cus KO and
CusChIP+Cus_KO. The statistics of the gold standard datasets are
provided in Table 1.

Area under the precision recall curve. To evaluate the performance
of scMTNI and other algorithms, we compared the inferred networks
to the simulated networks or interactions from the gold standard
datasets based on Area under the precision recall curve (AUPR). Edge
weights for all but the SCENIC and CellOracle algorithms were
obtained using stability selection. Both SCENIC and CellOracle
have internal bootstrapping or bagging approaches to estimate con-
fidence in the inferred edges. In our stability selection framework, we
generated N random subsamples of the data, inferred a network for
each subsample, and calculated a confidence score for each edge as
the fraction of how many times this edge was present in the inferred
networks across all subsamples. Next, we ranked the edges by the
confidence score and estimated precision and recall as a function of
edge confidence. Precision Pis defined as the fraction of the number of
edges that are true positives among the total number of predicted
edges. Recall R is defined as the fraction of the number of edges that
are true positives among the total number of true edges. Then, we
plotted the precision recall curve and estimated the area under this
curve using the AUCCalculator package developed by Davis et al.*.
The area under the precision recall curve is computed as an overall
assessment of the inferred networks compared to “true” networks. The
higher AUPR, the better the performance. For the real scRNA-seq
datasets, we filtered the inferred networks to include TFs and targets
that were in the gold standard.

F-score. While AUPR uses a ranking of the edges, F-score is a metric to
compare a set of predicted edges to a set of “true” edges. F-score is
defined as the harmonic mean of the precision (P) and recall (R),
F — score= ZER F-score enables us to control for the number of edges
across network inference algorithms as these can vary significantly
across algorithms. To control for number of edges in the predicted
networks, we ranked the predicted network by the confidence score or
edge weight, selected top K edges and computed F-score compared to
simulated networks or gold standard networks. K in the simulated
datasets corresponded to the size of the simulated networks. For the
real datasets, we considered top 500, 1000, 2000 edges. We obtained
the top K edges after filtering the inferred networks based on the TFs
and targets in the gold standard networks. The higher the F-score, the
better the performance.

Predictable transcription factors (TFs). Predictable TFs was defined
based on the gold standard datasets similar to McCalla et al.’®. For
each TF’s target set in the gold standard network, we computed its
overlap with the predicted targets in the inferred network and used
the hypergeometric test to assess the significance of overlap. We
consider a TF to be predictable if the P-value <0.05. We count the
total number of predictable TFs for each algorithm as a metric of
evaluation. The higher the number of predictable TFs, the better the
performance.

Examining network dynamics on cell lineages

We used several global and subnetwork-level methods to examine how
regulatory networks change on a cell lineage. These include F-score
based comparison of all pairs of networks on the lineage, k-means
based edge clustering and Latent Dirichlet Allocation (LDA) model.

F-score based analysis of inferred network change along cell
lineage tree. To examine the overall conservation and divergence
between the inferred cell type-specific networks along the cell lineage
tree, we computed F-score on the predicted networks between each
pair of cell types and applied hierarchical clustering on the inferred
networks based on the F-score. To compute F-score, we selected top X
edges ranked by confidence score to obtain a reliable network for each
cell type. This was 4k in the mouse reprogramming dataset and 5k for
the hematopoietic differentiation datasets. We visualized the
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dendrogram obtained from the hierarchical clustering and compared
this to the original cell lineage tree.

k-means based edge clustering. For each cell cluster, we selected top
K edges, where K was close to the median number of edges with at least
80% confidence across all cell types. This corresponded to 4k edges for
the mouse reprogramming dataset, 5k edges for the hematopoietic
differentiation dataset from Buenrostro et al. and 5k and 1k edges for
the coarse and fine-grained lineage structure of the fetal hematopoi-
esis dataset from Ranzoni et al. We merged the confidence score of
each edge across all cell types as an edge by cell type matrix, each entry
corresponding to the edge confidence with as many edges as in the
union of top K edges from any cell type. We applied k-means clustering
on this matrix to find subnetworks with different patterns of con-
servation. We examined a range of number of clusters from k=5 to 30
and selected the smallest k at which silhouette coefficient was high.

Latent Dirichlet Allocation (LDA) model for regulatory network
rewiring. We adopted Latent Dirichlet Allocation (LDA) to examine
subnetwork level rewiring as described in TopicNet*’. LDA was origin-
ally developed to cluster documents based on their word distributions.
Each document, i is assumed to have a certain composition of topics, as
captured by a 6; parameter and each topic, k, is assumed to have a
specific distribution of words denoted by a ¢, parameter. In the
application of LDA to a regulatory network, we first concatenated the
TF by target network across cell types to have as many rows as there are
TFs times the number of cell types. Each TF in a cell type is treated as a
document and its targets are treated as words in the document. The
topic distribution for all documents constitutes a Mx K matrix for
document-topic distribution, where M is the total number of TFs in any
of the networks and K is the total number of topics. The distribution of
words (genes) in each topic is captured by a K x VV matrix for V genes.
Each gene can be assigned to a topic based on its maximum probability
across topics. We applied LDA to the 80% confidence networks of all
cell clusters or types inferred from scMTNI+Prior with 10 or 15 topics
and found 10 topics to be suitable for all three datasets. We extracted
the subnetworks in each cell type associated with each topic by
obtaining the induced graph for the genes and regulators associated
with each topic and visualized the giant components of each network to
identify change across cell clusters within the same topic. To interpret
the topics in each cell type, we tested the genes in the cell type-specific
subnetwork for each topic for enrichment of gene ontology (GO)*
processes using a hypergeometric test with FDR correction. We define
the gene set for each topic to include the cell-type specific regulators
and targets per cell type. We used an FDR <0.01 to determine sig-
nificant enrichment (Supplementary Figs. 11, 21, 29). These results are
described in Supplementary Figs. 8-10 for mouse cellular reprogram-
ming, in Supplementary Figs. 18-20 for the hematopoietic differentia-
tion data from Buenrostro et al., in Supplementary Figs. 25-28 for the
fetal hematopoiesis fine-grained lineage and in Supplementary
Figs. 31-35 for the fetal hematopoiesis coarse lineage data.

Statistics and reproducibility. In the scATAC-seq reprogramming
experiment, six samples representing different time points of the
reprogramming study were used. The sample size is the number of
biological samples. We chose six samples to analyze because these
specific timepoints, along with MEFs and ESCs, provide sufficient
coverage on the various states and progression of cells during the
reprogramming process. One biological replicate for each sample data
was used for analysis. Previous experiments were conducted in which
cells were reprogrammed using identical conditions and reagents (see
Tran et al.*). The setup of experiments in this paper assume that one
experimental replicate and one scATAC-seq submission for each
sample reflects the same reprogramming time course observed in our
previous experiments. For randomization, MEFs from a single embryo

were randomly seeded at a density of 5000 cells per well in 6-well
plates. Blinding was not applicable to this study as no portion of this
data can be skewed based on participant’s knowledge of the experi-
ment. All cells from the reprogramming plates were collected during
SCATAC-seq submission and the scATAC library prep and sequencing
portions were performed by unbiased third parties who have no
knowledge of any experimental details.

Network inference was done in a stability selection mode where
we drew multiple subsamples from the original data. Each subsample’s
size was set to 2/3 of the number of cells in the dataset. This number
was determined to enable sufficient number of cells for each sub-
sample. Subsamples were generated by selecting uniformly at random
samples from our full dataset. We have provided code, scripts, inputs
and outputs from our experiments to enable replication of our study.
For data exclusion, cells with low read depth and genes with fewer than
5 or 20 measurements were filtered from downstream analysis. Some
cell clusters were excluded if they had either no or too few scRNA-seq
cells. Cluster C1 for the hematopoietic differentiation data from
Buenrostro et al. was removed from evaluation using the gold stan-
dards due to very few TFs overlapping the gold standards compared to
the other cell clusters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The reprogramming scATAC-seq dataset generated in this study has
been deposited to Gene Expression Omnibus (GEO) with accession ID
GSE208620. The scRNA-seq datasets for the same time points from
Tran et al.*> were downloaded from Gene Expression Omnibus (GEO)
with accession ID GSE108222. The processed cluster-specific SCRNA-
seq matrices and the prior networks for reprogramming study are
available at Zenodo https://zenodo.org/record/7879228%.

The scRNA-seq data for human hematopoietic differentiation from
Buenrostro et al. were downloaded from Data S2 of Buenrostro et al.
(https://ars.els-cdn.com/content/image/1-s2.0-S00928674183044 6 X-
mmc4.zip) and the scATAC-seq data were downloaded from Chen
et al’> (https://github.com/pinellolab/scATAC-benchmarking/tree/
master/Real_Data/Buenrostro_2018). The scATAC-seq data are also
available from GEO accession GSE96772. The scRNA-seq data (Data S2
from Buenrostro et al.,) and the scATAC-seq data have been additionally
uploaded to Zenodo https://zenodo.org/record/7879228. The pro-
cessed datasets for human hematopoietic differentiation are available
at Zenodo https://zenodo.org/record/7879228.

The scRNA-seq (gene by cell) and scATAC-seq (peak by cell) data
matrices for the human fetal hematopoietic differentiation data from
Ranzoni et al. were obtained from https://gitlab.com/cvejic-group/
integrative-scrna-scatac-human-foetal. These are also available at
ArrayExpress: E-MTAB-9067 for scRNA-seq and E-MTAB-9068 for
SCATAC-seq. The cluster-specific sScRNA-seq matrices and the prior
networks are available at Zenodo https://zenodo.org/record/7879228.

For the mouse reprogramming study, the ChIP-based gold stan-
dard datasets were downloaded from ESCAPE (http://www.maayanlab.
net/ESCAPE/) and ENCODE databases®* (https://www.encodeproject.
org/). The Perturbation-based gold standard networks were con-
structed from a union of the networks from LOGOF (loss or gain of
function) based gold standard networks from ESCAPE database* and
the networks from Nishiyama et al.**. The mouse gold standard data-
sets are available at Zenodo https://zenodo.org/record/7879228.

For the human hematopoietic data, two gold standard datasets
were a ChIP-based (Cus_ChIP) and a regulator knock down-based
(Cus_KO) dataset in GM12878 lymphoblastoid cell line downloaded
from Cusanovich et al.”. The third gold standard from ChIP-seq
experiments in human hematopoietic cell types was downloaded from
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the UniBind database (https://unibind.uio.no/)**. The human gold
standard datasets are available at Zenodo https://zenodo.org/record/
7879228.

The source data underlying Figs. 2-8, Supplementary Figs. 2, 3, 5,
7-10, 12, 14, 15, 17-20, 22, 24-28, 20-29, 30-49, the cluster-specific
scRNA-seq matrices and the prior networks for all datasets and scMTNI
inferred consensus networks are available at Zenodo https://zenodo.
org/record/7879228%. All other relevant data supporting the key
findings of this study are available within the article and its Supple-
mentary Information files or from the corresponding author upon
reasonable request. Source data are provided with this paper.

Code availability

The scMTNI code and custom scripts to process data and compute
various validation metrics and perform dynamic network analysis are
available at https://github.com/Roy-lab/scMTNI and Zenodo https://
doi.org/10.5281/zenodo.7854535%. Custom scripts include shell
scripts, python scripts, R scripts and MATLAB scripts and we used R
version 3.5.1, MATLAB version R2014b, and Python version 3.6.12 to
perform data analysis. The scATAC-seq data was processed through
CellRanger ATAC pipeline (Version 1.1.0). The simplified implementa-
tion of the pagoda pipeline for normalizing scRNA-seq data for depth
and variance stabilization is available at https://github.com/Roy-lab/
scMTNI/blob/master/Scripts/Integration/adjustVariance_depth_
Generic.R. R package rliger version 1.0.0 was used to integrate SCRNA-
seq and scATAC-seq data, and the R script is available at https://github.
com/Roy-lab/scMTNI/tree/master/Scripts/Integration/. To generate
prior networks, we used MACS v2.1.0 to call ATAC-seq peaks to gen-
erate prior networks and used custom code for mapping TF binding
peaks to genes, which is available at https://github.com/Roy-lab/
scMTNI/tree/master/Scripts/genPriorNetwork/. The scripts for eva-
luation based on AUPR and F-score are available at https://github.com/
Roy-lab/scMTNI/tree/master/Evaluation/. The scripts for dynamic
network analysis are available at https://github.com/Roy-lab/scMTNI/
tree/master/Scripts/Network_Analysis/.
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