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Abstract

Inflammation is an essential immune response critical for responding to infection, injury and 

maintenance of tissue homeostasis. Upon injury, regenerative inflammation promotes tissue 

repair by a timed and coordinated infiltration of diverse cell types and the secretion of 

growth factors, cytokines and lipids mediators. Remarkably, throughout evolution as well as 

mammalian development, this type of physiological inflammation is highly associated with 

immunosuppression. For instance, regenerative inflammation is the consequence of an in situ 
macrophage polarization resulting in a transition from pro-inflammatory to anti-inflammatory/pro-

regenerative response. Immune cells are the first responders upon injury, infiltrating the damaged 

tissue and initiating a pro-inflammatory response depleting cell debris and necrotic cells. After 

phagocytosis, macrophages undergo multiple coordinated metabolic and transcriptional changes 

allowing the transition and dictating the initiation of the regenerative phase. Differences between 

a highly efficient, complete ad integrum tissue repair, such as, acute skeletal muscle injury, and 

insufficient regenerative inflammation, as the one developing in Duchenne Muscular Dystrophy 

(DMD), highlight the importance of a coordinated response orchestrated by immune cells. 

During regenerative inflammation, these cells interact with others and alter the niche, affecting 
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the character of inflammation itself and, therefore, the progression of tissue repair. Comparing 

acute muscle injury and chronic inflammation in DMD, we review how the same cells and 

molecules in different numbers, concentration and timing contribute to very different outcomes. 

Thus, it is important to understand and identify the distinct functions and secreted molecules of 

macrophages, and potentially other immune cells, during tissue repair, and the contributors to the 

macrophage switch leveraging this knowledge in treating diseases.
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The crosstalk between inflammation and regeneration

Tissue repair and regeneration are conserved biological processes critical for survival. 

All species are able to regenerate [1], allowing the renewal and restoration of damaged 

cells, tissues, organs and even entire body parts. It is mediated by the differentiation and 

specification capacity of adult stem cells [2–4] and the contribution of cell proliferation 

of both, progenitors and fully differentiated cells. One example of this phenomenon is 

observed in amphibian limb regeneration after amputation [5,6]. Similarly, in mammals, 

upon injury or trauma liver repair depends on multipotent liver stem cells [7] and the 

induction of proliferation of hepatocytes that in basal conditions are low-proliferating cells 

[8]. However, these processes are late events responsible for the replacement of lost tissue. 

Prior to renewal, immune cells carry out functions essential for proper tissue repair, such 

as clearance of the injured area [9] and a subsequent inflammation, termed, regenerative 

inflammation [10–12]. Regenerative inflammation is associated with an immunosuppressive 

and pro-regenerative response generated by monocyte-derived macrophages that promote 

tissue repair. This unique type of inflammation is characterized by the secretion of growth 

factors such as platelet-derived growth factor [13], insulin-like growth factor 1 (IGF-1) [14], 

growth differentiation factor 3 (GDF3) [15] and GDF15 [16], vascular endothelial growth 

factor-α [17] and transforming growth factor beta (TGF-β) [18] supporting the remodelling 

of the tissue and the production of anti-inflammatory cytokines like interleukin-10 (IL-10) 

[19].

The targeted depletion of monocyte and macrophages during tissue repair from salamander 

[20] to mammals [21,22] highlights the essential role of these cells as orchestrators of 

regeneration and tissue repair. Upon damage, monocyte-derived macrophages together with 

neutrophils phagocytize necrotic, dead cells and debris. Additionally, macrophages are 

known to interact with other cells promoting the proliferation of adult stem cells at early 

stages post-trauma [10]. Importantly, macrophages undergo an in-situ specification into 

two subpopulations, first during an initial pro-inflammatory phase that converts into an 

anti-inflammatory/pro-regenerative one later [23,24]. This functional switch of macrophages 

tightly follows and most likely induces regenerative inflammation, a process that foments 

the growth and differentiation of adult stem cells allowing the replacement of the empty 

space in the injured area [10].
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Key remaining questions in the field are what molecular mechanisms actively regulate 

the macrophage transitional switch and how different functional subtypes of macrophages 

affect regenerative processes. To answer both, several studies compared the two phases 

of the macrophage switch (pro-inflammatory and regenerative) with the well-known in 
vitro characterization of M1/M2 macrophages [25–27]. There are similarities in the 

cytokine production of M1 macrophages and the initial pro-inflammatory monocyte-derived 

macrophages, whereas the repair macrophages are more alike to M2 macrophages [28]. 

Nonetheless, single cell RNA sequencing (Sc.RNASeq) in lung [29,30], liver [31] or 

skeletal muscle [16,32–35] suggests that the molecular profile, the response and the 

functional heterogeneity found in vivo is much more complex as the broad classification 

of M1/M2. Therefore, the subclassification of macrophages, their distinct functions and 

secreted molecules and localization are actively pursued inquiries in the tissue repair field.

In this review, we will focus on how the immunosuppressive response is conserved 

throughout evolution and mammalian development and how it is highly correlated with 

an increasing regenerative capacity. In the same vein, we cover the differences during 

regenerative inflammation across an acute physiological condition and chronic pathological 

process using skeletal muscle as our example. Skeletal muscle is a tissue of great interest 

in regenerative medicine for its highly efficient regeneration and repair capacity upon acute 

injury. However, Duchenne Muscular Dystrophy (DMD) is characterized by progressive 

muscle loss and weakness due to the alterations of the protein dystrophin and an induced 

ongoing regenerative inflammation. The comparison of these two processes can be used 

effectively for the identification of targetable pathways and molecules playing roles in 

regenerative inflammation potentially answering why the acute and the chronic progression 

have entirely completely different impacts on muscle regeneration.

Immunosuppressive immune response correlates with a higher 

regenerative capacity: Examples from evolution to development

Regenerative inflammation and its immunosuppressive response are conserved processes 

present from metazoans and salamanders with a primitive immune system to organisms with 

a highly evolved immune systems like mammals. This is exemplified by the remarkable 

regenerative capacity of simple organisms [36,37] that possess an immune system with low 

immunocompetence during tissue repair [38,39]. It is further accentuated by the fact that 

organisms with a more complex immune system acquire a much broader role in self-defence 

while their regeneration capacity is gradually lost [40]. This suggests that the ability of 

immune cells to recognize and react to external agents contrasts with their support in tissue 

repair.

For instance, planarian or annelid worms are able to rebuild their entire body [41,42] 

with an immune system based on phagocytic cells and immunomodulators used as 

immunosuppressive therapy in humans [43]. Alike the immune system in humans, 

salamanders possess a complex network of innate and adaptive immune cells [44]. 

However, it still has low specificity against pathogens and the regulatory pathways are 

rather rudimentary compared to mammalians [45]. Interestingly, this translates into higher 
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regenerative capacity compared to mammals but lower than metazoans being able to 

regenerate some body parts: lens, retina, heart, central nervous system and appendages 

after amputation [20]. The contribution of the adaptive immune system in regeneration 

has been described in Zebrafish as well. This animal model has been used to study tissue 

repair for the animals’ ability to repair spinal cord [46], heart [47], brain [48] and skin 

[49]. As it has been shown also in mammals, the role of T cells, in particular, regulatory 

T cells is to contribute to immunosuppression and to promote the macrophage switch 

[50,51]. Both events correlate with the regenerative phase, nonetheless, regeneration in 

this animal model relays on the initial infiltration of neutrophils [52,53] as well as the 

role of macrophages [54,55] during the entire process. In sharp contrast, mammals with 

highly efficient immune systems to combat pathogens can only regenerate efficiently injured 

skeletal muscles, peripheral nervous system and liver [56], and to a very limited capacity, 

other organs (Fig. 1). All these findings suggest that the immunosuppressive response of 

regenerative inflammation is linked with the regenerative ability and, at the same time, 

inversely correlates with immunocompetence.

Similarly, during mammalian development, embryos, neonates and adult immune cells 

have different origins, functions and responses [57]. Embryos and neonates have a more 

immunosuppressive immune system in order to avoid an immunogenic response to maternal 

alloantigens [58], while the immune system is more specialized and has a potent immune 

response during childhood and adulthood to eliminate harmful substances. Through lifespan, 

the origin, function and immune response of immune cells change dramatically declining 

during ageing [57].

Strikingly, as in evolution, the lower immunocompetence in embryos and neonates correlates 

with higher regeneration capacity [38,39] as reported by the scar-free healing capacity in 

skin [59,60] or heart in the early stages of life (Fig. 1). Scarring is a consequence of a 

fibrotic process regulated by regenerative inflammation. In the last phase of regenerative 

inflammation macrophages [61] and other cell types like fibroblast or endothelial cells 

secrete TFG-β [62] promoting a controlled production of extracellular matrix to rebuild the 

normal tissue structure [51]. However, when regenerative inflammation fails the connective 

tissue replaces normal parenchymal tissue, a mechanism that is well tolerated during adult 

wound healing, but it may lead to loss of function and death in organs like heart [63] or 

lung [64]. Surprisingly, in mammals, scaring is not observed in embryos and neonates. For 

instance, in mice, wounds can repair scar-free until E18.5, and in humans up to 24 weeks 

[59].

Another example of scarless tissue repair is observed in heart [65]. Both neonatal and 

adult cardiac repair are highly dependent on the coordinated response in regenerative 

inflammation in which macrophages have a major role [66,67]. However, in neonates, 

cardiac repair is determined by resident macrophages derived from the yolk sac with self-

renewal properties while in adults it is regulated by monocyte-derived macrophages [66]. 

These two types of macrophages are qualitatively and quantitatively different, explaining the 

correlation between the higher regenerative capacity and the immunosuppressive response in 

neonatal cardiac repair [66,67]. On the contrary, in adults, monocyte-derived macrophages 

promote differentiation of fibroblast and proliferation of stromal cells, increasing the 
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production of extracellular matrix, and therefore, causing fibrosis [68]. Neonates can repair 

scar-free cardiac tissue until day 7 after birth [67], the difference between scar-free repair 

and the fibrotic process is an increasing concentration of proinflammatory cytokines such 

as Ccl2, Ccl3, Ccl4 and Cxcl2 [67]. As the result, regenerative inflammation is affected by 

the dynamic changes in gene regulation and adaptation of immune cells through lifespan as 

shown by the differences between resident macrophages in neonates and monocyte-derived 

macrophages in adults and the different outcomes in the progression of cardiac repair [66].

With ageing immune response goes through a series of transformations including immune 

senescence, maladaptation of tissues and a tendency to pro-inflammatory response with 

deviations from a normal inflammation [69]. This results in, for example, chronic low-

grade inflammation in mice and human lungs, where prolonged inflammation hinders 

intrinsic cellular repair after injury and exacerbates organ damage. Pulmonary fibrosis is 

characterized by weakened anti-inflammatory activation, and aberrant resolution leading to 

excessive production and disorderly deposition of extracellular matrix proteins and collagen 

[70].

All these findings illustrate the strong correlation between highly efficient regeneration 

and an anti-inflammatory response. In the same manner, highly complex organisms pay 

the evolutionary price of having lower tissue repair capacity at the expense of extensive 

protection against infections. One wonders if the initial pro-inflammatory phase is necessary 

for tissue repair, or it is partly inhibiting regeneration. However, depletion of circulating 

or infiltrating monocytes in charge of this response results in impaired regeneration from 

salamanders [20] to mammals [21,71]. This highlights that tissue repair is a complex process 

orchestrated by the adaptation, polarization and secreted factors of immune cells highly 

coordinated regarding the amount in space and time.

Skeletal muscle, a highly regenerative tissue upon acute injury

Skeletal muscle has an astonishing regenerative capacity upon acute injury. In various sports, 

athletes are frequently exposed to different lesions (e.g. lacerations, strains, and contusions) 

[72]. However, in most cases, only time is needed to completely recover the function of the 

tissue with no further consequences. As previously mentioned, lung or heart regenerative 

inflammation undergoes a fibrotic process leading to clinical complications or even death, 

but upon acute injury, fibrosis is rarely observed in skeletal muscle (Fig. 1). One contributor 

to the highly efficient muscle repair are muscle satellite cells (MuSCs), adult stem cells 

that, upon injury, leave their quiescent state to form myoblasts that ultimately rinse to small 

centrally nucleated fibres replacing the lost tissue [73]. Although MuSCs commitment to 

myogenic lineage plays a crucial role in muscle regeneration, the interplay between these 

cells and the neighbouring ones, including immune cells [23], fibroblasts and vascular cells, 

like endothelial cells [74], is also necessary for proper tissue regeneration.

Regenerative inflammation is regulated by highly coordinated switches

Different murine acute injury models have been used to study muscle regeneration [75,76]. 

All of them can replicate the regeneration process common in humans, starting with 
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necrosis of muscle fibres, followed by a pro-inflammatory response, and finishing with 

regenerative inflammation [77]. However, there are some differences in terms of kinetics 

of regeneration, loss of satellite cells and the effect on immune cells [75,76]. Specifically, 

the use of cardiotoxin (CTX) injection can induce a higher infiltration rate of immune cells 

[78] compared to other models. Thus, CTX is used in studies describing the ad integrum 
regeneration and its physiological inflammatory response.

Upon muscle injury, ‘damage-associated molecular patterns’ (DAMPs), molecules released 

by necrotic cells, are recognized by immune cells as an alarm signal. Some examples 

of DAMPs are proteins from the extracellular matrix such as biglycan, versican and 

heparan sulfate, free DNA product of netosis, intracellular proteins such as histones, 

high-mobility group box 1, S100 proteins and heat-shock proteins or plasma proteins 

such as β2-Glycoprotein I [79]. The recognition of DAMPs through ‘pattern recognition 

receptor’ promotes the recruitment and activation of circulating innate immune cells, 

being neutrophils and monocytes the first ones to infiltrate the damaged tissue [80]. 

From there the dynamic process of muscle repair can be distinguished into three stages: 

(a) pro-inflammatory (b) resolution and (c) repair (Fig. 2). The initial pro-inflammatory 

response is characterized by the clearance of necrotic, dead cells and debris. Resolution 

and remodelling are two stages of regenerative inflammation. Days post-injury, macrophage 

polarization and the subsequent in situ specification convert the inflammatory response 

to immunosuppressive starting with a series of metabolic, epigenetic and transcriptional 

changes characteristic of the resolution phase. During repairing, macrophages secrete 

cytokines such as IL-10 [81,82] or TFG-β [83], growth factors such as IGF-1 [14], GDF3 

[15,84] and GDF15 [16] and lipids mediators such as Resolvin D2 [85] changing the niche 

and promoting regeneration.

Specifically in the muscle, the pro-inflammatory stage starts few hours after injury, 

and it is kept until day 2–3 post-injury. It overlaps with the neutrophilic infiltration 

which reaches its peak at 12–24 h post-injury and is present until 3–4 days post-injury 

[86]. Depletion of neutrophils delays muscle regeneration [87] underpinning their role in 

phagocytosis of necrotic material and recruitment of monocytes. However, monocytes and 

macrophages have a large impact on tissue repair, depletion of monocytes by liposome-

mediated monocyte/macrophage depletion [88,89] or Cd11b + monocytes/macrophages in 

CD11b-DTR (diphtheria toxin receptor) mice [59,90]. In the same manner, the inhibition 

of monocyte infiltration applying Ccr2 knock-out mice [91,92] mouse model or the 

neutralization of granulocyte/macrophage colony-stimulating factor receptor [93] results in 

impaired muscle repair showing the indispensable role of macrophages as orchestrators of 

muscle regeneration. Among all immune cells, monocytes and later macrophages are the 

major cell compartments present across the whole process.

Monocytes infiltrate the tissue after a few hours and differentiate towards macrophages. 

Bulk RNASeq from sorted Ly6Chi F4/80+ (pro-inflammatory monocyte-derived 

macrophages) show high expression of tumour necrosis factor alpha (TNFα) and interleukin 

1 beta (IL-1β) [94,95]. However, regenerative inflammation is determined by the transient 

conversion into Ly6Clow F4/80+ (repair anti-inflammatory monocyte-derived macrophages) 

with high expressing levels of IL-10 [94,95]. This macrophage polarization, termed, 
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macrophage switch starts at day 2 post-injury and it is completed at day 4 post-injury (Fig. 

2) leading to the development of distinct effector functions on macrophages. The initiation 

of the immunosuppressive response correlates with the start of regenerative capacity, and 

it is maintained until the full recovery of the tissue at day 8 post-injury, according to 

histological analysis [95]. Although the macrophage switch has a direct effect on tissue 

repair it also has an indirect effect by changing the niche and cell–cell interactions. For 

instance, repair macrophages’ peak number overlaps with the highest number of T cells, 

mostly regulatory T cells (Tregs). Depletion of these cells delays muscle repair and prolongs 

inflammation [96–98]. This suggests that regenerative inflammation promotes an extensive 

immunosuppressive response which correlates with the regenerative ability.

Using skeletal muscle acute repair as a model of complete, ad integrum or physiological 

repair, we can conclude that successful repair depends on the coordinated response of 

immune cells. Especially important is the macrophage switch determining the transition 

from pro-inflammatory response to regenerative inflammation. Therefore, to understand 

regenerative inflammation it is crucial to identify the factors governing macrophage 

polarization. The macrophage switch is the result of rapid transcriptional and metabolic 

changes [99,100] (Fig. 3) modifying gene expression, and therefore the effector functions. 

Metabolic changes across macrophage switch are mostly studied in vitro by the comparison 

of M1/M2 macrophages leaving uncertainty on the processes taking place in vivo [101]. 

While pro-inflammatory M1 macrophages are associated with glycolytic metabolism and 

impaired mitochondrial oxidative phosphorylation (OXPHOS), M2s are characterized by an 

upregulation of genes involved in glutamine metabolism, associated with OXPHOS [102] 

and the secretion of iron [103]. All these changes meet the requirements and adaptation to 

the different functions carried out by the distinct subpopulations of macrophages (Fig. 3). 

For instance, some of these in vitro findings can be extrapolated to Ly6Chi and Ly6Clow 

F4/80+ macrophage populations in vivo [104,105]. In cancer, myeloid-derived suppressor 

cells (MDSCs) can differentiate into M1 and M2-like macrophages showing differences 

in the metabolic pathways between the two subpopulations [105]. During maturation and 

activation, these tumour-derived MDSCs exhibit an increase in central carbon metabolism, 

including glycolysis, the pentose-phosphate pathway, and the TCA cycle enhanced with 

the production of anti-bactericidal substances like ROS. Additionally, two breaks on the 

TCA cycle result in the accumulation of itaconate and succinate stabilizing the expression 

of HIF1-α and the subsequent production of IL1-β [104,105]. This population correlates 

with the Ly6ChiF4/80+ at days 1 and 2 post-injury when infiltrating monocytes differentiate 

into macrophages and the clearances of necrotic fibres take place [101,104]. However, 

more precise depletion models are needed to further characterize these changes in the 

muscle environment. On the contrary, during resolution, Ly6Clow F4/80+ macrophages 

are characterized by a strong upregulation of genes involved in glutamine metabolism, 

associated with oxidative metabolism increasing the production of ATP and affecting lipid 

metabolism. Correspondingly, the ratio of AMP/ATP via AMPKα1 pathway has a role 

during macrophage polarization [106].

However, the metabolic variations alone cannot explain the magnitude of changes in gene 

expression observed by bulk RNASeq. Transcriptional regulation through transcription 

factors such as, C/EBPβ [107], STAT3 [108], NFIX [109], PPARγ [84] or BACH1 [110] 
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and epigenetic changes [111–113] have been shown to contribute to the macrophage switch 

modifying macrophage gene expression, products and function. As a result of transcriptional 

changes, several signalling pathways involving cytokines [interleukin-6 (IL-6), IL-10], 

growth factors (IGF1) and lipid mediators (RvD1, RvD2, RvE1) [10,114] enhance further 

modifications necessary for the macrophage switch.

Macrophage switch translates into diverse cellular functions

Although gene expression changes between pro and repair macrophages have been identified 

by bulk RNASeq studies [94], FACS-sorted populations are not sufficient to characterize the 

different functions adopted by macrophages after specification. In this regard, Sc.RNASeq 

experiments have been able to deconvolute the cell types into populations classifying them 

by function and secreting molecules. These technologies have helped to elucidate the 

complexity of skeletal muscle repair, distinguishing cell types and their relative abundance 

[115]. In principle, uninjured and injured muscle is formed by the same cell types: satellite 

cells, fibroadipogenic (FAPs), pericytes, endothelial, immune and smooth muscle cells (Fig. 

2). However, the number, the source of cells and their functions are constantly changing 

after injury until returning to ad integrum homeostasis.

The dynamic changes have been documented by several studies and the use of Sc.RNASeq 

on uninjured and injured mice at different time points posttreatment [16,32–35]. Focusing 

on the immune component, these studies clearly show the kinetics of regeneration, revealing 

the presence of immune cells from early onset injury until full recovery orchestrating 

the regeneration process. However, most of these studies have been carried out using the 

whole muscle which dramatically reduces the resolution of immune cells impeding the 

characterization of new populations. Our recent work [16] contributed to solve this issue 

by analysing exclusively CD45+ cell populations in Sc.RNASeq experiment and being 

able to identify four populations of macrophage subtypes at day 4 post-injury. These are, 

resolution macrophages, growth factor producing, pro-inflammatory and antigen presenting. 

Remarkably, these newly assigned functions can explain secondary effects observed in 

other studies. For instance, antigen-presenting capacity overlaps with T-cell infiltration peak 

while growth factors have been previously identified to induce and accelerate the growth of 

MCPs descendent cells of MuSC [71]. In the same manner, resolution macrophages highly 

express MerTK a gene associated with phagocytosis and Tgb1r the receptor of TFG-β 
influencing the polarization of the few remaining pro-inflammatory macrophages [116]. 

Given the limitation of single-cell approach other or more clusters can also be called, but 

this alignment between the features of the four clusters and the needed effector functions 

suggest that these are very likely the main macrophage populations.

Macrophages as conductors of tissue repair

Macrophage along with the onset of regenerative inflammation brings about changes 

between cell–cell interaction to the niche through changes in the microenvironment with 

great relevance to tissue repair [117]. Pro-inflammatory macrophages are known to induce 

adult stem cell proliferation before the macrophage switch while after they promote the 

growth and differentiation [10]. This fact highlights the importance of understanding not 
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only the different functions of macrophages but how the secreted cytokines, growth factors 

and lipids affect other cells, especially, adult stem cells.

During acute injury, pro-inflammatory cytokines produced by neutrophils and Ly6Chi 

macrophages play an essential role in the clearance of debris and dead cells. TNFα is 

one of the first cytokines secreted activating the expression of pro-inflammatory genes 

in macrophages and correlates with ROS production [118]. The inhibition of TNFα 
cause impaired muscle regeneration [119]. Its signalling has a direct effect on MuSCs by 

epigenetically repressing Notch1 and Pax7 expression [120]. Additionally, Notch expression 

is also inhibited by ADAMTS1, a metalloproteinase secreted by Ly6Chi [121]. Notch 

signalling is required for the maintenance of MuSCs in a quiescent state, and its repression 

leads to the commitment of MuSCs to MPCs [122–124]. In conclusion, the expression of 

TNFα by monocyte-derived macrophages promotes MuSCs proliferation while inhibiting 

their differentiation. The secretion of TNFα at the early stages of the injury also contributes 

to regulate the number of FAPs inducing their apoptosis [125] (Fig. 2). Interestingly, 

IL-6 is highly expressed by infiltrating monocytes/macrophages from day 1 post-injury, 

and its expression continues up to day 7 [117,126]. Its depletion suppresses inflammation 

and impairs MPC proliferation and muscle regeneration [127,128]. This data suggests the 

important role of this cytokine throughout regeneration and transitional stages.

After the macrophage switch, the anti-inflammatory response associated with regenerative 

inflammation upregulates the expression IL-10 [129]. Interestingly, local delivery of this 

cytokine at early time points, when proinflammatory cytokine expression is predominant, 

reduced the size of newly forming fibres measured at day 7 post-injury. This indicates 

that the timely, sequential expression of pro- and anti-inflammatory cytokines produced by 

differentially activated macrophages is essential for proper tissue healing and regeneration. 

IL-10 production correlates with the deactivation of the pro-inflammatory macrophages and 

can the promote proliferation of non-myeloid cells. For instance, IL-10 cancelled the pro-

proliferative effect of TNFα on SCs when the cells were simultaneously treated with the two 

cytokines [81]. Together with IL-10, during regenerative inflammation, growth factors are 

also up-regulated regulating the differentiation and proliferation MuSCs and non-myeloid 

cells. For example, FAPs’ proliferation is enhanced by the secretion of TGF-β secreted by 

repair macrophages [130]. However, the uncontrolled secretion of this growth factor leads to 

muscle fibrosis (Fig. 2).

These findings highlight the relevance of macrophages as conductors of tissue repair. 

Successful regeneration must undergo as sequential steps tightly controlled by regenerative 

inflammation. Dysregulation of the cell number or alterations in the macrophage switch can 

affect to the cell function and secretome leading to maladaptive and pathological processes 

such as chronic inflammation. One prime example is DMD.

A disjointed degeneration-regeneration cycle in DMD leads to chronic 

inflammation and fibrosis

Duchenne muscular dystrophy is an X-linked disease that affects 1 in 5000 males (20 000 

cases per year) becoming the most commonly diagnosed dystrophy during childhood. The 
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affected coding protein is dystrophin [131], in charge of connecting the interior of the cell 

to the extracellular matrix. The loss of this protein results in fragile muscle cells that are 

susceptible to contraction-induced injury. This process of cycled injury and regeneration 

ends in the incapacity of SCs to function properly and the continuum inflammation 

aggravates muscle loss promoting the replacement of the muscle fibres with fibrous tissue 

(Fig. 2).

Currently, the standard care to alleviate the constant inflammation is steroid treatment. 

Among the broad spectrum of corticosteroids, prednisone prescribed for children prevent the 

fast development of the disease prolonging the lifespan of patients [132–134]. A promising 

approach for treating this disease is the transfer of the dystrophin gene to restore its 

expression using a safe, non-pathogenic viral vector called adeno-associated viral vector 

[135]. However, recovery after the trials has been mild converting the fatal DMD into 

a milder phenotype similar to Becker Muscular Dystrophy [136]. The genetic therapy 

has to be administered together with immunosuppressors like corticosteroids [137]. This 

highlights the influence of chronic inflammation on the course of DMD and the necessity 

of understanding the mechanism controlling the different switches mentioned above. In this 

regard, applying the knowledge acquired from studying acute muscle regeneration can be of 

great help in order to identify new target pathways within the inflammation process.

When comparing acute muscle repair with DMD the progression and outcome are quite 

distinct. The first symptoms of DMD start in early childhood, around the age of 2–3 years 

old in humans, with skeletal muscle degeneration and weakness being the primary cause of 

dystrophin deficiency. Collectively, repeated cycles of necrosis and regeneration of muscle 

fibres trigger a strong immune response [138]. As a consequence, patients lose the ability 

to walk by the age of 12 having a life expectancy of 30–40 due to cardiac or respiratory 

dysfunction [139]. The same progression of the disease can be observed in mouse models 

where inflammation can be categorized into four stages: (a) inflammatory pre-degenerative, 

(b) inflammatory degenerative, (c) post-degenerative fibrosis and (d) advanced fibrotic 

progression (Fig. 2).

There are several animal models lacking functional dystrophin but not all of them can 

replicate exactly the symptoms observed in humans. For instance, mdx mice have minimal 

clinical symptoms and their lifespan is only reduced by ~ 25%, in contrast with the 

reduction of approximately 75% in humans [140,141]. The background of mice also has 

an impact on the phenotype, while the dystrophin-deficient mdx mouse on the C57BL/10 

genetic background (B10.mdx) is mildly affected, a more severe muscle disease is observed 

when the mdx mutation is crossed onto the DBA/2 J genetic background (D2.mdx). Thus, 

the choice of model is critical to establish and study the desired mechanism. DBA/2-mdx 
mice are thought to better represent human disease because they display more fibrosis and 

less regeneration [142]. However, the DBA/2 strain carries mutations in at Tyrp1 (Tyrp1b), 

Gpnmb (GpnmbR150X), Klrd1 [143] and overexpression of TGF-β signalling [144], likely 

contributing to a changed immune milieu and more human-like disease progression.

Thus, DMD is characterized by an underlying chronic inflammation. Similar to acute 

muscle injury, the initial stages of DMD without damaging symptoms, is a necrotic 
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injury controlled by a macrophage switch from pro-inflammatory macrophages that within 

them acquire anti-inflammatory/resolution phase. Both immunophenotypes are present in 

high numbers as shown by the higher number of macrophages marked as F4/80+ and 

a higher ratio of Cd11bhigh/Cd11blow population [145] compared to WT. Similar results 

were observed by single nuclei RNASeq (Sn.RNASeq) in mice and in Sc.RNAseq in rats 

[146] where the incremental number of macrophages is also shown [147]. In addition, 

there are substantial subpopulations of intramuscular macrophages exhibiting a mixed 

population of pro-inflammatory and anti-inflammatory/resolution macrophages [148–150]. 

The continuous infiltration and the presence of both signalling responses (pro and anti-

inflammatory) end in an unbalanced number of cells. Additionally, the uncoordinated 

response causes multiple dysfunctions such as mitochondrial alterations, impairment in 

autophagy and angiogenesis. The alteration of these functions affects the metabolic and 

transcriptional reprogramming proper from the macrophage switch. As a result of the 

changes in macrophage polarization, the secreting molecules and how macrophages interact 

with the environment end in an aberrant regenerative inflammation influencing the outcome 

of the disease. Another major difference in inflammation comes from the adaptive immune 

response. Upon acute injury, the participation of the T-cell injury is limited to the 

infiltration of Tregs that enhance an immunosuppressive microenvironment and promote 

the macrophage switch. Recent studies based on depletion strategies also show the role 

of γδ T-cells during repair [151,152]. In ischaemic model, the depletion of these cells 

showed a higher number of pro-inflammatory macrophages and a reduction in endothelial 

cell proliferation, therefore, having an effect on angiogenesis [151] while in hindlimb CTX 

model, the depletion affected the proliferation of fibre prolonging the time of recovery [152]. 

However, the adaptive immune response in degenerating muscles like DMD, involves more 

subtypes of T cells incrementing the disturbances in the niche. Numerous observations have 

suggested that the presence of specific muscle autoantigens may drive the expansion of T 

lymphocytes and their activation [153].

The uncontrolled regenerative inflammation has qualitative and quantitative effects on 

cytokines and chemokines associated DMD pathology and disease progression. For instance, 

increased expression of TNFα, mainly produced by macrophages, was detected DMD 

muscle biopsies [154]. The high level of this cytokine correlates with histopathology damage 

observed in the diaphragm of mdx mice at the early stage (1 and 4 months of age) [155]. 

However, in dystrophic muscle the expression of TNFα is not inhibited differing from 

acute injury where TNFα is produced only in the first stage. Treatment with infliximab 

(a TNFα inhibitor) at late time-points shows a delayed appearance and improvement 

of muscle damage in DMD [156]. The opposite effect was observed after the complete 

depletion of TNFα in mdx [157]. These results show the important role of TNFα as it 

also has been proven in acute injury models, nonetheless, a high concentration of this 

cytokine in inadequate timing inhibits muscle regeneration. Other examples of exacerbated 

expression of pro-inflammatory cytokines by Ly6Chi macrophages in DMD are IL-1β and 

IL-6. Specifically, blockade of IL-6 with monoclonal antibody increase inflammation in mdx 

mice [158] while increased levels of IL-6 exacerbate the dystrophic muscle phenotype in 

mdx mice [159].
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TGF-β plays important roles in inflammation, cell growth and tissue repair but it also 

contributes to the fibrotic process and accumulation of extracellular matrix which is a 

distinct process in muscular dystrophies but not acute injury. The elevated expressions 

of TGF-β, produced by CD206+ repair macrophages, are consistently reported in many 

studies [160,161], in an age-related manner increases of TGF-β causing increased fibrotic 

replacement of dystrophic tissue [162]. Interestingly, TGF-β also acts as a significant 

suppressor of the immune response in dystrophic muscles, as determined by antibody-

mediated depletions of TGF-β which results in a dramatic increase in CD4+ T cells 

concentration in mdx diaphragm muscles. Thus, the elevated expression of TGF-β may 

suppress the inflammatory response in dystrophic muscle, but ultimately contribute to 

muscle fibrosis [163]. In addition, TGF-β secretion promotes the proliferation of FAPs 

during acute muscle injury. FAPs are also able to secrete high levels of TGF-β exacerbating 

the fibrotic progression (Fig. 2).

Regeneration and diseases beyond muscle

Although muscle is a great example to compare acute and chronic regenerative 

inflammation, it is not the only tissue where regenerative inflammation contributes to 

resolve regeneration. Every organ is susceptible to be impacted by damage, from infection 

to pathogen-free injury such as soft tissue damage affecting muscles, ligaments and tendons, 

by sprain, strain or contusion, ischemia or environmental conditions like ‘skin burn’ after 

high exposure to UVA and UVB ray. After these perturbances, successful regeneration 

requires a balanced immune cell response, with the recruitment of accurately polarized 

immune cells in an appropriate quantity. For instance, liver regeneration [164], heart 

repair after myocardial infraction [165] or wound repair [166–168] are also dependent 

on an initial pro-inflammatory response followed by a pro-regenerative one in a process 

orchestrated by macrophages and other immune cells. However, the immune system does 

not always perform a complementary role in regeneration and alterations in timing course 

can cause an unresolved or ongoing inflammation that could result in fibrosis or, in severe 

cases, chronic diseases [169]. For instance, resident macrophages are capable to recognize 

exogenous agents, such as iron oxide [170,171], silica dioxide or asbestos [172] generating 

an increasing amount of ROS. Although ROS is an effective way to eradicate pathogens, in 

sterile inflammation results in tissue destruction, fibroblast proliferation, aberrant collagen 

accumulation and finally, fibrosis [173].

Other compounds like calcium pyrophosphate or monosodium urate can crystalize inside 

the joins being recognized and external dangerous agents by neutrophils and monocytes 

derived-macrophages. This ends in inflammatory response, as it happens in other tissues 

and there is an abnormal tissue repair monocyte-derived macrophages can promote the 

differentiation of fibroblast in an uncontrolled manner which causes fibrosis and cartilage 

destruction, over time, the recurrent inflammatory response can damage the affected joint 

leading to chronic arthritis [174,175]. Endogenous molecules can be also recognized by 

the immune cells. For example, cholesterol crystals are phagocytized by macrophages, 

activating and recruiting immune cells, that, together with endothelial cell dysfunction 

and plaque formation end in atherosclerosis [176]. Ischaemia–reperfusion is considered 

an injury caused by the change in oxygen influx to cardiomyocytes endlessly affecting a 
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normal mitochondria function therefore energy consumption which is key for the myofibril 

contraction of the heart. In response to the trauma, there is a neutrophil infiltration at the 

ischemic area, producing ROS, this excavates the injury causing microvascular obstruction 

and local and eventually systemic inflammation [177,178]. In other cases, the cause of 

the inflammation is an abnormal function of the tissue that results in an imbalance of 

one or several physiological properties and harms the homeostasis of the tissue. That is 

the case of diabetes type 2 [179] or DMD in which the inflammation could persist for 

months or years. This prolonged continuous inflammation has consequences systemically 

leading to impaired regeneration capacity. For instance, diseases like diabetes type II or 

unhealthy metabolic conditions like obesity are associated with impaired wound healing 

[180], and muscular atrophy or dystrophy [181]. As in DMD, the unbalanced inflammation 

may result in fibrosis and affects essential functions such as, hypoxia response [182,183] or 

macrophage polarization [184].

Obesity is also linked with sarcopenia, an age-related loss of muscle mass and function, 

cellular senescence being a common process during obesity and ageing. Accelerated cellular 

senescence may impact macrophages, fibroblasts or endothelial cells [185] resulting in 

multiple changes such as telomere shortening, accumulated DNA damage or oxidative 

stress. These cells secrete distinct factors that contribute to increase oxidative stress, 

multiplying their number and perpetuating inflammation. Although the immune system 

is responsible for eliminating senescent cells, but its elimination capacity also decreases 

with ageing and maladaptive metabolic conditions such as obesity, as a result, homeostasis 

becomes unbalanced leading to an increase in cells with senescent phenotype creating 

a vicious cycle [186,187]. Under these conditions, one potential therapeutic approach 

is to complement the missing key components of the innate immune system such as 

macrophages or their secreted products to revert the aged inflammatory environment and 

milieu to a healthy, physiological one. An example is provided by our work studying aged 

mice (24–28 months old ones). Ageing causes a decrease in the number of regenerative 

macrophages and their production of the growth factors such as GDF3, which in turn results 

in delayed regeneration of skeletal muscle of these mice after CTX injury. Recombinant 

GDF3 supplementation alone can restore muscle function, therefore, it constitutes a 

potentially new therapeutic approach [15]. Additionally, accumulating evidence suggests 

that reprogramming or elimination of senescent cells could delay or even prevent several 

age-related diseases [188].

Conclusions and future perspective

Inflammation is commonly known as the process of self-protection through the recognition 

and reaction to external agents like bacteria or viruses. However, little is known 

about regenerative inflammation which participates in tissue building and promotes 

tissue repair after trauma and injury. Interestingly, many of the mechanisms that link 

inflammation to damage repair and regeneration in mammals are also observed in 

lower organisms, suggesting that it is an evolutionarily conserved process. Surprisingly, 

the immunosuppressive inflammatory response in lower organism as well as in early 

developmental stages (embryos and neonates) is linked with a higher regenerative capacity, 

Caballero-Sánchez et al. Page 13

FEBS J. Author manuscript; available in PMC 2024 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whereas in adults, regeneration is tightly controlled by an initial pro-inflammatory response 

followed by the conversion of macrophages into anti-inflammatory resolution phase.

In regenerative medicine, there is an increasing need to identify cells and regulators 

implicated in regenerative inflammation. Macrophages have a major role in this type of 

inflammation being candidates for therapy [189]. However, there are many uncertainties in 

how macrophages can coordinate the response and how it can be triggered. A priority in 

the field is the identification and characterization of subpopulations based on their function 

and the understanding of the biological niche regulated by the different subpopulations 

using various single-cell and in vivo imaging technologies. Nonetheless, newer technologies 

like spatial transcriptomics could bring new information about cell localization and their 

interaction. Another important question are the mediators responsible for the macrophage 

switch. Using muscle acute muscle injury as a model timed switched with two distinct 

macrophage populations (pro and anti-inflammatory/repair) can be used to understand 

aberrant regenerative inflammation leading to fibrosis and disease like, in DMD. In 
vivo studies at different timepoints using commonly used technologies in metabolomics 

like NMR, gas chromatography–mass spectrometry or capillary electrophoresis–mass 

spectrometry could reveal important metabolic changes throughout the macrophage switch. 

In the same manner, sc.ATACSeq in combination with sc.RNASeq could be used to 

identify transcriptional changes and their regulators during macrophage polarization. The 

new advances can lead to the finding of new biomarkers and target molecules for precise 

therapy instead of using general drugs like immunosuppressors that inhibit the necessary 

inflammation.
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Abbreviations

AAV adeno-associated viral

BACH1 BTB and CNC homology 1

C/EBP Ccaat-enhancer-binding proteins

CCL chemokine (C-C motif) ligand

CTX cardiotoxin

CXCL2 Chemokine (C-X-C motif) ligand 2

DAMPs damage-associated molecular patterns

DMD Duchenne muscular dystrophy
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FAPs fibroadipogenic

GDF3/15 Growth Differentiation Factor 3/15

IGF-1 Insulin-like growth factor 1

IL-10 Interleukin-10

IL-1β Interleukin 1 beta

IL-6 Interleukin-6

INF Interferon

MDSCs myeloid-derived suppressor cells

MuSCs muscle satellite cells

NFIX Nuclear factor 1 X-type

OXPHOS oxidative phosphorylation

PPARγ Peroxisome Proliferator-Activated Receptor gamma

STAT3 Signal Transducer and Activator of Transcription 3

TGF-β Transforming Growth Factor beta

TNFα Tumour Necrosis Factor alpha

VEGF-α Vascular endothelial growth factor
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Fig. 1. 
Regenerative inflammation across species (amphibians and mammals) and developmental 

stages. Comparing different organisms and their immune system as well as different 

stages during the lifespan in different organs suggests an inverse correlation between 

immunocompetence and tissue repair. Therefore, regenerative inflammation may be 

associated with an anti-inflammatory response besides the pro-regenerative capacity by the 

secretion of growth factors, cytokines, and lipid mediators from immune cells.
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Fig. 2. 
Regenerative inflammation changes after recurrent damage. Schematic representation 

of efficient physiological (acute muscle injury) and unresolved, chronic regenerative 

inflammation (DMD). While in acute muscle injury, regenerative inflammation consists 

of the coordinated response of immune cells, a timed macrophage polarization and the 

interaction of different macrophage subsets with other cell types, in DMD the response is 

completely disjointed and out of synchronization. After several cycles of regeneration and 

repair, skeletal muscle repair enters in a degenerative inflammation result of the continuous 

infiltration of monocyte and the exhaustion of MuSCs. The ongoing inflammation and the 

uncoordinated opposing signalling results in a fibrotic process and eventually muscle loss.
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Fig. 3. 
Mediators of the macrophage switch. A series of metabolic and transcriptional changes drive 

the conversion from pro-inflammatory monocyte-derived macrophages to anti-inflammatory 

pro-regenerative macrophages promoting tissue repair.
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