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A B S T R A C T   

There is currently a lack of studies on residential waste collection during COVID-19 in North America. SARIMA 
models were developed to predict residential waste collection rates (RWCR) across four North American juris-
dictions before and during the pandemic. Unlike waste disposal rates, RWCR is relatively less sensitive to the 
changes in COVID-19 regulatory policies and administrative measures, making RWCR more appropriate for 
cross-jurisdictional comparisons. It is hypothesized that the use of RWCR in forecasting models will help us to 
better understand the residential waste generation behaviors in North America. Both SARIMA models performed 
satisfactorily in predicting Regina’s RWCR. The SARIMA DCV model’s performance is noticeably better during 
COVID-19, with a 15.7% lower RMSE than that of the benchmark model (SARIMA BCV). The skewness of 
overprediction ratios was noticeably different between jurisdictions, and modeling errors were generally lower in 
less populated cities. Conflicting behavioral changes might have altered the residential waste generation char-
acteristics and recycling behaviors differently across the jurisdictions. Overall, SARIMA DCV performed better in 
the Canadian jurisdiction than in U.S. jurisdictions, likely due to the model’s bias on a less variable input dataset. 
The use of RWCR in forecasting models helps us to better understand the residential waste generation behaviors 
in North America and better prepare us for a future global pandemic.   

1. Introduction 

An outbreak of a novel coronavirus (SARS-CoV-2) with rapid trans-
mission has attracted global attention since December 2019, and 
COVID-19 was declared a pandemic by the World Health Organization 
in March 2020. Many countries have restricted the movement of their 
citizens and have locked down populated areas to contain the spread of 
the virus (Cheng et al., 2022; Moosazadeh et al., 2022). COVID-19 has 
led to a dramatic loss of human life across the globe, posing unprece-
dented challenges to every aspect of our lives (Qadeer et al., 2022; 
Wang et al., 2021; Wang & Huang, 2021), including the sustainable 
management of municipal solid waste (MSW) (Mahyari et al., 2022). For 
instance, the elevated amount of personal protective equipment such as 
masks, disposable gloves, and face shields has brought major challenges 
to the operation of waste management systems, which have been well 
discussed in literatures (Hantoko et al., 2021; Wang et al., 2021; Pour-
ebrahimi, 2022). 

1.1. Effects of COVID-19 on solid MSW generation and collection 

Proper waste management promotes good public hygiene, helping us 
to better recover from a global pandemic and to build more resilient 
cities. Blasi et al. (2022) reviewed 9206 papers on smart cities and 
sustainable development goals (SDG) and found that “waste manage-
ment” were commonly discussed in SDG studies. Given its significance, 
many studies have reported the effects of COVID-19 on various waste 
management issues (Mahmud et al., 2022; Requena-Sanchez et al., 
2022; Sarmento et al., 2022). The literature suggest that the generation 
and collection of MSW emerged differently under different administra-
tive measures throughout the stages of pandemic. For instance, the re-
ported generation rates of plastic waste, food waste, and biomedical 
waste are not entirely consistent. An increase in plastic waste was 
attributed to the increased consumption of plastic packaged foods 
(Oliveira et al., 2021) and single-use plastics (Qadeer et al., 2022) 
during the COVID-19 pandemic. On the other hand, the economic 
recession and interrupted production considerably reduced plastic usage 
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in the automotive and aviation (Klemeš et al., 2020), transportation 
(Fan et al., 2021), and construction (Fan et al., 2021) industries. Similar 
inconsistencies have been observed in various food waste studies. For 
instance, conscious buying helped reduce food waste during COVID-19 
(Rodgers et al., 2021; Rai et al., 2023), whereas panic buying due to 
the fear of running out of supplies was responsible for increased food 
waste (Zhao & You, 2021). Inconsistencies in the literature are also 
observed in biomedical waste generation behaviors. An enhanced sense 
of hygiene (Sangkham, 2020; Katal et al., 2022) and increased number 
of COVID-19 infected cases (Valizadeh et al., 2021; Thakur, 2022) 
contributed to an increase in biomedical waste generation in some 
places. Conversely, avoiding hospitals and healthcare facilities as a 
vector for COVID-19 resulted in an abrupt decrease in biomedical waste 
generation, especially during the earlier waves of COVID-19 infections 
(Richter et al., 2021a; Singh et al., 2022a). The suspension of recycling 
programs (Zambrano-Monserrate et al., 2020; Olatayo et al., 2021) and 
restricted manual sorting (Hantoko et al., 2021; Penteado & Castro, 
2021) during COVID-19 could have artificially inflated MSW disposal 
rates, as less recyclable materials are being diverted from landfills. In-
consistencies in COVID-19 waste data trends make factor identification 
challenging, affecting the development of versatile forecasting models 
for effective waste management planning. 

Unlike MSW generation rates, the reported MSW collection rates in 
literatures are, however, much more consistent. In this study, MSW 
collection rate is defined as the amount of waste materials collected from 
residential areas by a municipal government via a publicly funded 
program or by a waste service provider on behalf of the local munici-
pality. In most municipalities, MSW collection rates are considerably 
less than MSW generation rates, as other waste streams (institutional, 
commercial, industrial, and construction and demolition wastes) are 
mostly excluded from the residential stream. According to a U.S. study, 
the amount of waste collected from residential areas increased by as 
much as 14% during the COVID-19 pandemic across three U.S. states, 
Florida, New York, and California (Pinto et al., 2022). In a Canadian 
capital city, a significant increase in residential waste was observed 
during the early waves of the pandemic (Richter et al., 2021b). The 
reported increase in the residential waste collection during COVID-19 
corresponds well with the regulators’ administrative measures restrict-
ing business operations and commercial activities (Zam-
brano-Monserrate et al., 2020; Sarmento et al., 2022). The widely 
adopted work-from-home arrangement, social distancing, restricted 
traveling, and self-isolation may have also resulted in more residential 
waste. For instance, Hantoko et al. (2021) studied COVID-19 waste 
management issues at a global level and argued that waste collection 
frequency should be increased to address the surges in residential waste. 

1.2. Quantitative waste forecasting during COVID-19 

The literature review suggests that COVID-19 waste forecasting 
studies are mostly focused on MSW disposal rates and not on MSW 
collection rates. Vu et al. (2021a) built a recurrent neural network 
(RNN) model using separated waste fractions to predict COVID-19 waste 
disposal rates in the City of Regina, Canada. Vu et al. (2021b) further 

improved the performance of the RNN waste disposal model by incor-
porating exogenous variables such as lagged inputs and achieved a mean 
absolute percentage error below 10%. More recently, Jassim et al. 
(2023) proposed a BiLSTM network model and predicted the waste 
disposal rates in Bahrain using historical landfill records. Modeling with 
MSW disposal rates could help us to understand the factors affecting the 
waste generation behaviors in a broader sense, as multiple waste streams 
are considered (Vu et al., 2021a). However, the MSW disposal rate is 
more sensitive to changes in waste management regulations and 
administrative measures. In North America and many other places, MSW 
is commonly quantified by weight. A small decrease in construction 
activities due to COVID-19 restrictions could have heavily skewed the 
MSW disposal rates given the density of construction and demolition 
waste, making data analysis of MSW disposal models more challenging. 

COVID-19 administrative measures vary temporally and spatially 
and largely depend on the socioeconomic status of a municipality (Ebner 
& Iacovidou, 2021; Mofijur et al., 2021). Conventional modeling of 
MSW disposal rate makes cross-jurisdictional comparisons challenging, 
given their sensitivities to administrative measures. Instead, the current 
study focuses on the modeling of the residential waste collection rate 
(RWCR). It is hypothesized that the modeling of RWCR could better 
capture the effects of COVID-19 on residential waste generation char-
acteristics. The use of RWCR in waste modeling is believed to be more 
advantageous during a pandemic as it allows rapid comparisons be-
tween jurisdictions with varying degrees of waste management regula-
tions and administrative measures. 

1.3. SARIMA models in waste forecasting 

Seasonal variations of MSW generation characteristics and recycling 
behaviors have been well documented and discussed (Denafas et al., 
2014; Edjabou et al., 2018), and various numerical models have been 
proposed (Adusei et al., 2022a, 2022b; Sarmento et al., 2022). Many 
waste researchers have applied Seasonal Autoregressive Integrated 
Moving Average (SARIMA) models in quantitative forecasting due to the 
model’s ability to capture seasonal and non-stationary behaviors of time 
series. Navarro-Esbrı ́ et al. (2002) examined datasets with strong sea-
sonal patterns and concluded that SARIMA models could achieve 20.0% 
lower relative errors than non-linear dynamic models regardless of the 
forecast horizon. Xu et al. (2013) reported that SARIMA-based models 
perform adequately when seasonal dynamics exist in time series. Their 
models’ absolute percentage errors were near or below 3.0% when 
applied in the case study in Xiamen, China (Xu et al., 2013). Sarmento 
et al. (2022) applied SARIMA models to predict COVID-19 residential 
waste collection rates in Lisbon, Italy and obtained satisfactory model 
performance. Sarmento et al. (2022)’s findings also suggested that 
COVID-19 administrative measures might play a role in restoring the 
seasonality in MSW collection trends. Since RWCR datasets are expected 
to exhibit seasonal patterns (Vu et al., 2020; Richter et al., 2021b), 
SARIMA models are adopted in the current study. 

1.4. Objectives, novelties, and implications 

The key study objectives are to [i] predict residential waste collec-
tion rate (RWCR) during COVID-19 period in a Canadian capital city 
using SARIMA models, and [ii] compare the SARIMA models’ perfor-
mance across the jurisdictions in North America. Unlike most waste 
modeling studies with a focus on MSW disposal rates (Adusei et al., 
2022b; Vu et al., 2022a; Jassim et al., 2023), this study focused solely on 
the RWCR derived from municipal programs. Conventional modeling of 
MSW disposal rates during the pandemic may be less applicable for 
cross-jurisdictional comparisons, given their sensitivity to COVID-19 
regulatory and administrative measures and diverse climatic condi-
tions. It is hypothesized that the use of RWCR in forecasting models will 
help us to better understand the residential waste generation behaviors 
in North America during a global pandemic. 

List of acronyms 

AVGa average or arithmetic mean of the dataset 
IQR Interquartile Range 
MSW Municipal Solid Waste 
RMSE Root Mean Square Error 
RWCR Residential Waste Collection Rate 
SARIMA Seasonal Autoregressive Moving Average 
SDa Standard Deviation  
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This study fills the knowledge gap on the effects of COVID-19 and its 
associated administrative measures on residential waste generation 
characteristics and recycling behaviors. Residential waste generation 
characteristics in North America were destabilized during earlier waves 
of COVID-19 (Ikiz et al., 2021; Richter et al., 2021b), yet studies on 
waste forecasting models seldom take waste collection rates into 
consideration. Variations in residential waste generation during 
COVID-19 could strain the efficient operation of a waste collection 
service (Kulkarni & Anantharama, 2020). As such, a more accurate 
RWCR forecast model could be useful in developing efficient and 
data-driven residential waste management policies for a future 
pandemic. 

2. Methodology 

Fig. 1 outlines the principal steps of the approach used in this study. 
An overview is provided here, and details are discussed in Sections 
2.1–2.3. A total of four North American cities are selected, and waste 
data are separately collected, verified, and processed. Two SARIMA 
models were first developed to model the RWCR in Regina, the capital 
city of Saskatchewan, Canada. The selected SARIMA model is then 
applied in three U.S. cities with different socioeconomic conditions to 
predict RWCR. Comparisons of model performance on accuracy and 
consistency were made across the Canadian and U.S. jurisdictions. The 
proposed analytical approach using RWCR contributes to our under-
standing of residential waste generation and recycling behaviors during 
a global pandemic. 

2.1. Study areas 

Regina, the capital city of Saskatchewan, Canada, was selected to 
develop the SARIMA models. The solid waste management system in 
Regina during and before the pandemic has been well documented 
(Richter et al., 2021a; Vu et al., 2021b; Mahmud et al., 2022) and is used 
to develop a benchmark model in the current study. Three additional U. 

S. cities (Austin, Seattle, and Buffalo) with different socioeconomic and 
climatic conditions were carefully selected for cross-jurisdictional 
comparisons. Given the health and safety concerns, accurate waste 
data are particularly scarce during the earlier waves of COVID-19 
(Wang et al. 2021b). All selected U.S. jurisdictions have publicly avail-
able and verifiable waste datasets (City of Austin, 2021; City of Buffalo, 
2022b; City of Seattle, 2022b). The model performances in all four ju-
risdictions were compared to test the limits of the SARIMA models in 
predicting RWCR. 

All four of the selected North American cities have their respective 
publicly-funded curbside waste collection programs during the study 
period. Regina has curbside pickup services for waste and recyclables for 
a majority of residential units city-wide (City of Regina, 2022). Austin 
Resource Recovery is responsible for collecting curbside residential 
waste, including garbage, organics, and recyclables in Austin City of 
Austin, (2020). The Sanitation Department and Recycling Department of 
the City of Buffalo deal with the collection of municipal refuse and re-
cyclables from residents (City of Buffalo, 2022a). In Seattle, residential 
waste collection is provided by two service providers, and the total 
tonnage of garbage, organics, and recyclables is reported (City of Seat-
tle, 2022a). 

2.2. Data collection and processing 

Minor inconsistencies in waste statistics are not uncommon in Can-
ada and were well reported (Wang et al., 2016; Chowdhury et al., 2017). 
The daily RWCR in Regina from 2013 to 2020 were collected and 
meticulously verified using historical waste records. The daily rates 
were then aggregated into monthly data, making Regina’s dataset 
comparable to the three U.S. datasets. The monthly Canadian dataset 
was used to develop two benchmark models (SARIMA BCV and DCV, as 
discussed in Section 2.3) to examine the effect of COVID restrictions and 
regulations in Regina. The best benchmark model in Regina was then 
applied to three other U.S. jurisdictions. The monthly RWCR from 2014 
to 2020 in Austin, Seattle, and Buffalo were separately collected from 

Fig. 1. Study approach (Note: “BCV” represents before COVID-19 and “DCV” represents during COVID-19).  
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their respective government portals (City of Austin, 2021; City of Seat-
tle, 2022b; City of Buffalo, 2022b). 

Each dataset contains 80 months of residential waste collection 
tonnages. A data partition of 70:15:15 was adopted for all four datasets 
(Hoque & Rahman, 2020; Ayeleru et al., 2021). About 70% of the data 
was allocated for model training. The remaining 30%of the data was 
split equally between the validation and testing phases. In other words, 
the model performance will be based on the differences between the 
estimated RWCR and the actual RWCR in 2020. These city-wide data 
were obtained to compare the performance of the SARIMA models 
across jurisdictions. 

2.3. SARIMA model building and prediction 

2.3.1. Model background 
SARIMA models are based on autoregression and moving average 

models that include a backshift for trend and seasonality while fore-
casting a time-series, and they are commonly adopted in waste studies 
(Xu et al., 2013; Sarmento et al., 2022; Wang et al., 2022). To predict a 
time-series {Yt}, SARIMA (p,d,q)(P,D,Q) model can be described by Eq. 
(1): 

ϕp(B)ϕP
(
BS)(1 − B)d( 1 − BS)DYt= θq(B)θQ

(
BS

)
εt (1)  

where: p, d, q = the order of autoregression, regular differencing order, 
and the order of moving average, respectively (non-seasonal). 

P, D, Q = the order of autoregression, seasonal differencing order, 
and the order of moving average, respectively (seasonal). 

εt = residuals 
S = periodicity of season 
B = backshift operator 
ϕp(B) = non seasonal autoregression component = 1 − ϕ1B −

ϕ2B2 − … − ϕpBp 

ϕP(BS) = seasonal autoregression component = 1 − ϕ1BS −

ϕ2B2S − … − ϕPBPS 

θq(B) = non seasonal moving average component = 1 − θ1B −

θ2B2 − … − θqBq 

θQ(BS) = seasonal moving average component = 1 − θ1BS −

θ2B2S − … − θQBQS 

2.3.2. Model development 
In this study, two SARIMA models - SARIMA (0,1,1)(0,1,0) and 

SARIMA (0,0,0)(0,1,0) were developed using the Canadian dataset to 
predict RWCR in 2019 and 2020, respectively. These two models are 
hereinafter referred to as “SARIMA BCV” and “SARIMA DCV”, respec-
tively. The use of the two distinct models will help us better understand 
residential waste generation characteristics before and during the 
implementation of COVID-19 regulatory and administrative measures. 
The effects of COVID-19 on MSW generation and recycling behaviors 
have been observed across the globe, and the development of a pre- 
COVID-19 benchmark model (the “SARIMA BCV”) helps us to verify 
the accuracy and precision of the SARIMA DCV model. All SARIMA 
models were developed using R (version 4.1.3), an open-source pro-
gramming environment used for statistical computing. In this study, the 
model best fit is determined by the auto.arima() function within the fpp2 
package (Hyndman & Athanasopoulos, 2018), available on the 
Comprehensive R Archive Network repository. The auto.arima() func-
tion has been customized to comb through possible models and select 
the best-fit model. The customization was done by setting arguments 
according to Hyndman and Athanasopoulos (2018). 

2.3.3. Model performance assessment 

2.3.3.1. Overprediction ratio. In this study, an overprediction ratio was 

used to compare both the accuracy and precision of SARIMA models. An 
overprediction ratio is defined by the predicted RWCR over the actual 
RWCR in the testing period, as shown in Eq. (2). The overprediction 
ratio is a dimensionless parameter, and it has been used in waste studies 
(Can, 2020; Vu et al., 2021a) when comparing the accuracy of the 
prediction of different forecasting models. A ratio of unity suggests 
perfect prediction. The precision of models can be obtained from com-
parisons of the ratios. 

Overprediction ratio =
Predicted RWCR (tonne/month)

Actual RWCR (tonne/month)
(2)  

2.3.3.2. Performance indicators. To compare the forecasting accuracy of 
SARIMA (p,d,q)(P,D,Q) models, both scale-dependent and scale- 
independent performance indicators were selected. As shown in Eq. 
(3), Root Mean Square Error (RMSE) is scale dependent, and a lower 
RMSE denotes a more accurate model. A coefficient of determination 
(R2) of unity indicates better agreement between the predicted and the 
actual values, as shown in Eq. (4). Both RMSE and R2 have been widely 
adopted in waste studies to assess the model performance (Ayeleru et al., 
2021; Karimi et al., 2021; Xu et al., 2021). The following equations were 
used to calculate these performance indicators. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
Yi

o− Yi
f

)2
√

(3)  

R2= 1 −

∑n
i=1

(
Yi

o− Yi
f

)2

∑n
i=1

(
Yi

o− Y
)2 (4)  

where: 
n = size of the sample 
Yi

0= observed residential waste collection rate 
Yi

f= forecasted residential waste collection rate 
Y = mean observed residential waste collection rate 
In addition, the sensitivity of SARIMA models’ performance to sta-

tistical and climatic variables is discussed separately to identify their 
impact on the models’ performance. The sensitivity was investigated 
using Pearson correlation analysis. A Pearson correlation coefficient 
closer to unity indicates a perfect linear correlation, whereas a near zero 
value implies that no linear correlation exists within the selected pair of 
variables. The statistical variables (i.e., SDa and AVGa) used in this study 
reveal the characteristics of the input dataset for SARIMA models. As 
shown in Eqs. (5) and (6), the standard deviation (SDa) and mean (AVGa) 
indicate the spread and average of the actual RWCR dataset, 
respectively. 

SDa =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Yi

o− Y
)2

n − 1

√

(5)  

AVGa =

∑n
i=1Yi

o

n
(6) 

Seasonality plays a key role in the accuracy of the SARIMA models. 
Previous studies documented the effect of climatological variables on 
the performance of waste prediction models (Vu et al., 2019, 2021b). 
Hence, the climatological data of each jurisdiction were collected to 
investigate their effect on SARIMA models’ performance. These climatic 
variables include temperature, precipitation, and humidity. The 
monthly average temperature and precipitation data of the Regina, 
Austin, Seattle, and Buffalo were collected from the Government of 
Canada (2022), National Weather Service (2022a), National Weather 
Service (2022b), and National Weather Service (2022c), respectively. 
The daily humidity data were collected from Weather Underground 
(2022a), Weather Underground (2022b), Weather Underground 
(2022c), and Weather Underground (2022d), respectively. The monthly 
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and daily climatological data were scaled to create a yearly dataset. 

3. Results and discussions 

3.1. SARIMA model performance, seasonality, and COVID-19 measures 

The SARIMA models’ performance indicators are shown in Fig. 2. 
SARIMA models appear to capture the residential waste collection in 
Regina well. Both models performed satisfactorily, with R2 values of 
0.78 and 0.89 for SARIMA BCV and SARIMA DCV, respectively (Fig. 2). 
Rosecký et al. (2021) reported that at a regional level, waste prediction 
models could be useful when R2 ranged from 0.32 to 0.86. A similar R2 

range was reported by Sarmento et al. (2022). It appears that the model 
performance improved during the COVID-19 period, and the SARIMA 
DCV model is able to capture the RWCR more accurately. Compared to 
the benchmark model in 2019 (SARIMA BCV), SARIMA DCV’s R2 value 
was 14.1% higher, and RMSE was 15.7% lower (Fig. 2). Sarmento et al. 
(2022) reported similar relationships between seasonality and MSW 
collection trends. 

Since the amount of waste generated in households varies seasonally 
(Adelodun et al., 2021; Yang et al., 2022), RWCRs are also expected to 
fluctuate throughout the year. In Fig. 3, the boxplots show the ratios of 
predicted and actual RWCR in Regina over the four seasons. A horizontal 
bar within the box represents the median, and an asterisk indicates the 
mean. The boxes’ lower and upper extremities correspond to the first 
and third quartiles, respectively. The minimum and maximum values 
are denoted by the whiskers outside the box. 

Fig. 3a shows the overprediction ratios of SARIMA BCV, while Fig. 3b 
depicts the same for SARIMA DCV. Both Regina models underestimated 
the RWCR, as the average overprediction ratios are slightly less than 1.0. 
In the case of SARIMA BCV (Fig. 3a), the average overprediction ratios 
ranged from 0.948 to 0.972, whereas the medians were between 0.917 
and 1.022. The Summer set appears normally distributed in Fig. 3a, with 
a mean of 0.972 and a median of 0.970. A consistent skewness of the 
SARIMA BCV sets is not observed among the four seasons. The sets were 
obviously skewed in Spring and Fall in 2019 but in the opposite direc-
tion. On the other hand, the averages of the overprediction ratios of 
SARIMA DCV in 2020 were more consistent, ranging between 0.917 and 
0.978 (Fig. 3b). The skewness of the sets was also consistent among the 
seasons. All sets appear negatively skewed, with medians higher than 
the mean. It appears that the COVID-19 work-from-home measures 
improved the seasonality of the residential waste generation behaviors. 
Compared to the benchmark (SARIMA BCV), less variations were 

generally observed in 2020 (Supplementary Fig. 1). The interquartile 
range (IQR) of the overprediction ratio varied significantly between 
SARIMA BCV in 2019 and SARIMA DCV in 2020. With the exception of 
Winter, less scattering is observed in 2020 (Fig. 3b) than in 2019 
(Fig. 3a), indicating higher precision of the SARIMA DCV. The IQR of 
SARIMA BCV’s overprediction ratio was 0.036 in Winter 2019 (Fig. 3a), 
about 2-times less than that of SARIMA DCV. One possible explanation is 
an unusually harsh Winter in 2019. A significant difference in average 
ambient temperature was observed between Winter 2019 (− 16 ◦C) and 
Winter 2020 (− 10 ◦C) in Regina (Government of Canada, 2022). As a 
result of the colder average temperature in Winter 2019, residents might 
have avoided outdoor activities and stayed indoors for a longer period 
(Vu et al., 2021b; Adusei et al., 2022a). Consistency in waste generators’ 
behaviors appears to improve both the accuracy and precision of the 
SARIMA BCV. The seasonal variations in waste generation behaviors are 
also reported in Adusei et al. (2022b). In general, RWCR predictions 
during COVID-19 were more consistent than those before COVID-19, 
probably due to the city-wide COVID-19 restrictions and measures. As 
such, the SARIMA DCV model is selected for cross-jurisdictional 
comparisons. 

3.2. RWCR during COVID-19 pandemic across Canadian and U.S. 
jurisdictions 

The boxplots in Fig. 4 compare the performance of SARIMA DCV 
models across different jurisdictions in 2020. The mean overprediction 
ratio of SARIMA DCV was between 0.862 and 0.984, and the median 
ranged from 0.864 to 1.018 across Canadian and U.S. jurisdictions. It 
appears that the SARIMA DCV consistently under-predicted RWCR dur-
ing COVID-19. This finding is consistent with a general increase in res-
idential waste in 2020 due to the work-from-home policies. 

Distinctive differences were observed in the mean overprediction 
ratios across the four jurisdictions; however, no obvious pattern was 
observed. With the exception of Buffalo, SARIMA DCV generally under-
predicted the RWCR during Spring and Summer more than it did during 
Winter. This could be due to abrupt changes in household waste 
composition and quantity during the early waves of COVID-19 in the 
Spring and Summer of 2020. The change in residential waste composi-
tion and quantity could be attributed to COVID-19-induced behavioral 
changes among waste generators, including panic buying (Lahath et al., 
2021; Tang et al. 2021), stockpiling (Babbitt et al., 2021; Tang et al. 
2021), online shopping (Filho et al., 2021; Mouratidis & Papagiannakis 
2021), and increased sense of hygiene (Patrício Silva et al., 2020; 

Fig. 2. Performance of the Seasonal Autoregressive Integrated Moving Average models using Regina dataset.  
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Shakibaei et al. 2021). It appears that as opposed to the short-term 
positive repercussions of COVID-19 administrative measures on the 
environment by reducing carbon emission (Wang & Wang, 2020) and 
water pollution (Qadeer et al., 2022), MSW management was adversely 
affected by the destabilization of the residential waste collection rates. 

The skewness of overprediction ratios was noticeably different be-
tween Canadian and U.S. jurisdictions. Unlike its U.S. counterparts, the 
Regina set is negatively skewed among the seasons. During the later 
waves of COVID-19 in 2020, the performance of SARIMA DCV varied 
across the jurisdictions, likely due to their differences in the evolution of 
residential waste generation characteristics and recycling behaviors. 
Even after the initial waves of COVID-19, continued reliance on online 
food delivery services and extensive use of PPE might have increased 
household waste towards the end of 2020 (Mallick et al., 2021; Haque & 
Fan, 2022). Similar negative impact of waste generators’ behavioral 
changes on household waste has also been reported in other parts of the 
world (Argentiero et al., 2022; Singh et al., 2022b). On the contrary, 

adaptation to precautionary health measures (Burlea-Schiopoiu et al., 
2021; Blazy et al., 2021) might have helped reduce residential waste 
during the later waves of COVID-19. These conflicting behavioral 
changes might have altered the RWCR differently across the jurisdic-
tions and affected the predictability of SARIMA DCV. 

The variability of the overprediction ratio might also be sensitive to 
the duration of COVID-19 lockdowns. All of these North American cities 
implemented lockdowns and other similar regulatory measures in the 
Spring of 2020. The IQR of the overprediction ratio in Austin was 3 to 4 
times higher than in Seattle, Buffalo, and Regina (green boxes, Fig. 4). 
Since the COVID-19 lockdown in the City of Austin was withdrawn 
shortly (Moreland et al., 2020), more outdoor activities during late 
spring might have impacted the residential waste composition and 
quantity and increased the variability of SARIMA DCV predictions in 
Austin. 

Fig. 3. Effects of seasonality on model accuracy and precision using (a) SARIMA BCV and (b) SARIMA DCV.  
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3.3. Overall performance of Sarima models in predicting RWCR during 
COVID-19 across North American jurisdictions 

A summary of the performance of SARIMA DCV across different Ca-
nadian and American jurisdictions is shown in Fig. 5. Different RMSEs 
are obtained due to the differences in residential waste tonnages across 
the jurisdictions. Modeling errors are considerably lower in less popu-
lated cities (i.e., Regina and Buffalo). A relatively wide range of R2 from 
0.51 to 0.89 is observed (Fig. 5). Among the selected jurisdictions, 
SARIMA DCV performed best in the Canadian jurisdiction. The Regina 
model’s R2 is about 24− 76% higher than that of the American juris-
dictions. Some studies (Kannangara et al., 2018; Hu et al., 2021) re-
ported an association between the size of the dataset and the 
performance of prediction models. However, a consistent size of datasets 
is used in this study. The statistical and climatic factors affecting 

SARIMA DCV model performance will be further discussed in the next 
section. 

3.3. Statistical and climatic factors of model performance 

The results of the Pearson correlation analysis for the statistical and 
climatological variables are shown in Fig. 6. The blue-colored cells 
indicate a positive relationship, and the red ones represent a negative 
relationship. The corresponding statistical significance is denoted by an 
asterisk above the correlation coefficient. The asterisks are in an incre-
mental order, indicating p < 0.05, p < 0.01, and p < 0.001. 

The average yearly humidity and total precipitation do not seem to 
significantly affect the performance of SARIMA DCV (row 5 & 7 of col-
umn 2 & 3 in Fig. 6). However, the average yearly temperature was 
found to have a statistically significant negative correlation with the 

Fig. 4. Accuracy and precision of SARIMA DCV in four North American cities.  

Fig. 5. Model performance of SARIMA DCV across North American cities.  
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performance indicator, R2 of the SARIMA DCV (coefficient = − 0.98, p- 
value<0.05). Residents usually avoid outdoor activities on colder days 
(Lin & Ling, 2021; Paukaeva et al., 2021), which might make household 
waste generation behaviors more uniform, resulting in a more consistent 
residential waste collection dataset. Ambient temperature is identified 
as a significant factor on residential waste collection rates. Similar re-
sults are observed in SARIMA BCV (Supplementary Fig. 2). 

The characteristics of the dataset appear to be important to the 
performance of the model. The standard deviation (SDa) is positively 
correlated with RMSE (coefficient = +0.99, p-value<0.05). Similarly, 
the AVGa is positively correlated with the RMSE (coefficient = +0.99, p- 
value<0.01). These findings suggest that SARIMA DCV’s bias is sensitive 
toward the distribution of waste data. Similar findings are observed in 
the SARIMA BCV (Supplementary Fig. 2). As such, the models might be 
more suitable for jurisdictions with a less variable residential waste 
collection dataset. Vu et al. (2022b) examined the waste disposal model 
in Regina and reported that variations in the datasets lead to significant 
variations in model performance. 

4. Conclusions 

Most waste studies focused on “generation rates” estimated from 
recycling data and landfill disposal records, which are sensitive to 
COVID-19 regulatory and administrative measures. The literature re-
view suggests that there is a lack of COVID-19 waste studies on resi-
dential waste collection in North America. RWCR is relatively less 
susceptible to the changes in local waste management policies and is 
more appropriate for cross-jurisdictional comparisons. As such, this 
study predicted RWCR using SARIMA models across different North 

American jurisdictions before and during the pandemic. 
Both SARIMA models performed satisfactorily in predicting Regina’s 

RWCR with R2 > 0.70. The SARIMA DCV model’s performance is 
noticeably better during COVID-19, with a 15.7% lower RMSE than that 
of the benchmark model (SARIMA BCV). Higher consistencies of the 
SARIMA DCV’s average overprediction ratios between 0.917 and 0.978 
were observed, likely due to the elevated RWCR during the lock-downs 
and the work-from-home orders. Different skewness and variability in 
the overprediction ratios between SARIMA BCV and SARIMA DCV were 
observed. The IQRs of the overprediction ratio of SARIMA DCV’s were 
nearly 2 to 5 times lower than SARIMA BCV. SARIMA DCV generally 
underestimated RWCR during COVID-19, perhaps due to an overall in-
crease in RWCR in Spring 2020. With the exception of the City of Buf-
falo, the mean overprediction ratios were lower (i.e., between 0.892 and 
0.950) during the early waves of COVID-19 in Spring and Summer 2020 
than that in Winter 2020. The early COVID-19 administrative measures 
caused an abrupt increase in RWCR, affecting the model accuracy. The 
skewness of overprediction ratios was noticeably different between ju-
risdictions. Unlike its U.S. counterparts, the Regina set is negatively 
skewed among the seasons. Modeling errors are considerably lower in 
less populated cities. Conflicting behavioral changes might have altered 
the residential waste generation characteristics and recycling behaviors 
differently across the jurisdictions. 

Overall, SARIMA DCV performed better in the Canadian jurisdiction 
than in U.S. jurisdictions, with a 24%− 76% higher R2 and 56%− 84% 
lower RMSE, likely due to the sensitivity of the model’s bias on the 
variability of waste dataset. Hence, attention should be given while 
interpreting the results of SARIMA models for highly variable input sets. 
The use of RWCR in waste modeling studies are recommended. This 

Fig. 6. Correlation between statistical variables, climatic variables, and performance indicators of SARIMA DCV.  
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study calls for more research on residential waste generation behaviours 
during a global pandemic, which has received very little attention. 
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Predictive modelling as a tool for effective municipal waste management policy at 
different territorial levels. Journal of Environmental Management, 291, Article 
112584. https://doi.org/10.1016/j.jenvman.2021.112584 

Sangkham, S. (2020). Face mask and medical waste disposal during the novel COVID-19 
pandemic in Asia. Case Studies in Chemical and Environmental Engineering, 2, Article 
100052. https://doi.org/10.1016/j.cscee.2020.100052 

Sarmento, P., Motta, M., Scott, I. J., Pinheiro, F. L., & de Castro Neto, M (2022). Impact of 
COVID-19 lockdown measures on waste production behavior in Lisbon. Waste 
Management, 138, 189–198. https://doi.org/10.1016/j.wasman.2021.12.002 

Shakibaei, S., De Jong, G., Alpkokin, P., & Rashidi, T. H. (2021). Impact of the COVID-19 
pandemic on travel behavior in Istanbul: A panel data analysis. Sustainable Cities and 
Society, 65, Article 102619. https://doi.org/10.1016/j.scs.2020.102619 

Singh, M., Karimi, N., Ng, K. T. W., Mensah, D., Stilling, D., & Adusei, K. (2022a). 
Hospital waste generation during the first wave of COVID-19 pandemic – A case 
study in Delhi. Environmental Science and Pollution Research, 29, 50780–50789. 
https://doi.org/10.1007/s11356-022-19487-2 

Singh, E., Kumar, A., Mishra, R., & Kumar, S. (2022b). Solid waste management during 
COVID-19 pandemic: Recovery techniques and responses. Chemosphere, 288, Article 
132451. https://doi.org/10.1016/j.chemosphere.2021.132451 

Tang, X., Li, Z., Hu, X., Xu, Z., & Peng, L. (2021). Self-correcting error-based prediction 
model for the COVID-19 pandemic and analysis of economic impacts. Sustainable 
Cities and Society, 74, Article 103219. https://doi.org/10.1016/j.scs.2021.103219 

Thakur, V. (2022). Locating temporary waste treatment facilities in the cities to handle 
the explosive growth of HCWs during pandemics: A novel Grey-AHP-OCRA hybrid 
approach. Sustainable Cities and Society, 82, Article 103907. https://doi.org/ 
10.1016/j.scs.2022.103907 

Valizadeh, J., Hafezalkotob, A., Alizadeh, S., & Mozafari, P. (2021). Hazardous infectious 
waste collection and government aid distribution during COVID-19: A robust 
mathematical leader-follower model approach. Sustainable Cities and Society, 69, 
Article 102814. https://doi.org/10.1016/j.scs.2021.102814 

Vu, H. L., Ng, K. T. W., & Bolingbroke, D. (2019). Time-lagged effects of weekly climatic 
and socio-economic factors on ANN municipal yard waste prediction models. Waste 
Management, 84, 129–140. https://doi.org/10.1016/j.wasman.2018.11.038 

Vu, H. L., Ng, K. T. W., Fallah, B., Richter, A., & Kabir, G. (2020). Interactions of 
residential waste composition and collection truck compartment design on GIS route 
optimization. Waste Management, 102, 613–623. https://doi.org/10.1016/j. 
wasman.2019.11.028 

Vu, H. L., Ng, K. T. W., Richter, A., Karimi, N., & Kabir, G. (2021a). Modeling of 
municipal waste disposal rates during COVID-19 using separated waste fraction 
models. Science of The Total Environment, 789, Article 148024. https://doi.org/ 
10.1016/j.scitotenv.2021.148024 

Vu, H. L., Ng, K. T. W., Richter, A., & An, C. (2022a). Analysis of input set characteristics 
and variances on k-fold cross validation for a Recurrent Neural Network model on 
waste disposal rate estimation. Journal of Environmental Management, 311(114869), 
1–10. https://doi.org/10.1016/j.jenvman.2022.114869. 

Vu, H. L., Ng, K. T. W., Richter, A., & Kabir, G. (2021b). The use of a recurrent neural 
network model with separated time-series and lagged daily inputs for waste disposal 
rates modeling during COVID-19. Sustainable Cities and Society, 75, Article 103339. 
https://doi.org/10.1016/j.scs.2021.103339 

Wang, Q., & Wang, S. (2020). Preventing carbon emission retaliatory rebound post- 
COVID-19 requires expanding free trade and improving energy efficiency. Science of 
the Total Environment, 746, Article 141158. https://doi.org/10.1016/j. 
scitotenv.2020.141158 

Weather Underground. (2022a). Regina, Canada weather history. retrieved from 
https://www.wunderground.com/history/monthly/ca/regina/CYQR (Accessed 22 
June 2022). 

Weather Underground. (2022b). Austin, TX weather history. retrieved from https://www. 
wunderground.com/history/monthly/us/tx/austin/KAUS (Accessed 22 June 2022). 

Weather Underground. (2022c). SeaTac, WA weather history. retrieved from https://www 
.wunderground.com/history/monthly/us/wa/seatac/KSEA (Accessed 22 June 
2022). 

Weather Underground. (2022d). Cheektowaga, NY weather history. retrieved from https:// 
www.wunderground.com/history/monthly/us/ny/cheektowaga/KBUF (Accessed 
22 June 2022). 

Vu, H. L., Ng, K. T. W., Richter, A., Li, J., & Hosseinipooya, S. A. (2022b). Impacts of 
nested forward validation techniques on machine learning and regression waste 
disposal time series models. Ecological Informatics, 72, Article 101897. https://doi. 
org/10.1016/j.ecoinf.2022.101897 

Wang, F., Liu, Q., Yu, L., & Wang, Y. (2022). Multi-data source-based recycling value 
estimation of wasted domestic electrical storage water heater in China. Waste 
Management, 140, 63–73. https://doi.org/10.1016/j.wasman.2022.01.011 

T.S. Mahmud et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.spc.2021.06.008
https://doi.org/10.1016/j.enbuild.2021.111262
https://doi.org/10.1016/j.scs.2022.104219
https://doi.org/10.1016/j.scitotenv.2022.155829
https://doi.org/10.1016/j.scitotenv.2022.155829
https://doi.org/10.1016/j.scitotenv.2021.148951
https://doi.org/10.1016/j.spc.2020.10.016
https://doi.org/10.1016/j.spc.2020.10.016
https://doi.org/10.1016/j.scs.2022.103990
https://www.cdc.gov/mmwr/volumes/69/wr/mm6935a2.htm
https://www.cdc.gov/mmwr/volumes/69/wr/mm6935a2.htm
https://doi.org/10.1016/j.scs.2021.103182
https://doi.org/10.1016/s0921-3449(02)00002-2
https://doi.org/10.1016/s0921-3449(02)00002-2
https://www.weather.gov/wrh/Climate?wfo=ewx
https://www.weather.gov/wrh/Climate?wfo=sew
https://www.weather.gov/wrh/Climate?wfo=buf
https://www.weather.gov/wrh/Climate?wfo=buf
https://doi.org/10.1016/j.tifs.2021.05.027
https://doi.org/10.1016/j.tifs.2021.05.027
https://doi.org/10.1016/j.scitotenv.2021.148190
https://doi.org/10.1016/j.scitotenv.2021.148190
https://doi.org/10.1016/j.resconrec.2020.105152
https://doi.org/10.1016/j.resconrec.2020.105152
https://doi.org/10.1016/j.scitotenv.2020.140565
https://doi.org/10.1016/j.scitotenv.2020.140565
https://doi.org/10.1016/j.cities.2021.103303
https://doi.org/10.1016/j.cities.2021.103303
https://doi.org/10.3390/su14084834
https://doi.org/10.3390/su14084834
https://doi.org/10.1016/j.scitotenv.2022.158396
https://doi.org/10.1016/j.scs.2022.103962
https://doi.org/10.1016/j.scs.2022.103962
https://doi.org/10.1016/j.scitotenv.2022.159880
https://doi.org/10.1007/s00267-022-01610-1
https://doi.org/10.1007/s00267-022-01610-1
https://doi.org/10.1016/j.wasman.2021.01.004
https://doi.org/10.1016/j.jenvman.2021.112663
https://doi.org/10.1016/j.appet.2021.105110
https://doi.org/10.1016/j.jenvman.2021.112584
https://doi.org/10.1016/j.cscee.2020.100052
https://doi.org/10.1016/j.wasman.2021.12.002
https://doi.org/10.1016/j.scs.2020.102619
https://doi.org/10.1007/s11356-022-19487-2
https://doi.org/10.1016/j.chemosphere.2021.132451
https://doi.org/10.1016/j.scs.2021.103219
https://doi.org/10.1016/j.scs.2022.103907
https://doi.org/10.1016/j.scs.2022.103907
https://doi.org/10.1016/j.scs.2021.102814
https://doi.org/10.1016/j.wasman.2018.11.038
https://doi.org/10.1016/j.wasman.2019.11.028
https://doi.org/10.1016/j.wasman.2019.11.028
https://doi.org/10.1016/j.scitotenv.2021.148024
https://doi.org/10.1016/j.scitotenv.2021.148024
https://doi.org/10.1016/j.jenvman.2022.114869
https://doi.org/10.1016/j.scs.2021.103339
https://doi.org/10.1016/j.scitotenv.2020.141158
https://doi.org/10.1016/j.scitotenv.2020.141158
https://www.wunderground.com/history/monthly/ca/regina/CYQR
https://www.wunderground.com/history/monthly/us/tx/austin/KAUS
https://www.wunderground.com/history/monthly/us/tx/austin/KAUS
https://www.wunderground.com/history/monthly/us/wa/seatac/KSEA
https://www.wunderground.com/history/monthly/us/wa/seatac/KSEA
https://www.wunderground.com/history/monthly/us/ny/cheektowaga/KBUF
https://www.wunderground.com/history/monthly/us/ny/cheektowaga/KBUF
https://doi.org/10.1016/j.ecoinf.2022.101897
https://doi.org/10.1016/j.ecoinf.2022.101897
https://doi.org/10.1016/j.wasman.2022.01.011


Sustainable Cities and Society 96 (2023) 104685

11

Wang, Y., Ng, K. T. W., & Asha, A. Z. (2016). Non-hazardous waste generation 
characteristics and recycling practices in Saskatchewan and Manitoba, Canada. 
Journal of Material Cycles and Waste Management, 18(4), 715–724. https://doi.org/ 
10.1007/s10163-015-0373-z 

Wang, Q., & Huang, R. (2021). The impact of COVID-19 pandemic on sustainable 
development goals – A survey. Environmental Research, 202, Article 111637. https:// 
doi.org/10.1016/j.envres.2021.111637 

Wang, Q., Yang, X., & Li, R. (2021b). The impact of the COVID-19 pandemic on the 
energy market – A comparative relationship between oil and coal. Energy Strategy 
Reviews, 39, Article 100761. https://doi.org/10.1016/j.esr.2021.100761 

Wang, Z., Guy, C., Ng, K. T. W., & An, C. (2021). A new challenge for the management 
and disposal of personal protective equipment waste during the COVID-19 
pandemic. Sustainability, 13(13), 7034. https://doi.org/10.3390/su13137034 

Xu, L., Gao, P., Cui, S., & Liu, C. (2013). A hybrid procedure for MSW generation 
forecasting at multiple time scales in Xiamen City, China. Waste Management, 33(6), 
1324–1331. https://doi.org/10.1016/j.wasman.2013.02.012 

Xu, A., Chang, H., Xu, Y., Li, R., Li, X., & Zhao, Y. (2021). Applying artificial neural 
networks (ANNs) to solve solid waste-related issues: A critical review. Waste 
Management, 124, 385–402. https://doi.org/10.1016/j.wasman.2021.02.029 

Yang, J., Jiang, P., Zheng, M., Zhou, J., & Liu, X. (2022). Investigating the influencing 
factors of incentive-based household waste recycling using structural equation 
modelling. Waste Management, 142, 120–131. https://doi.org/10.1016/j. 
wasman.2022.02.014 

Zhao, N., & You, F. (2021). Food-energy-water-waste nexus systems optimization for 
New York State under the COVID-19 pandemic to alleviate health and environmental 
concerns. Applied Energy, 282, Article 116181. https://doi.org/10.1016/j. 
apenergy.2020.116181 

Zambrano-Monserrate, M. A., Ruano, M. A., & Sanchez-Alcalde, L. (2020). Indirect 
effects of COVID-19 on the environment. Science of The Total Environment, 728, 
Article 138813. https://doi.org/10.1016/j.scitotenv.2020.138813 

T.S. Mahmud et al.                                                                                                                                                                                                                             

https://doi.org/10.1007/s10163-015-0373-z
https://doi.org/10.1007/s10163-015-0373-z
https://doi.org/10.1016/j.envres.2021.111637
https://doi.org/10.1016/j.envres.2021.111637
https://doi.org/10.1016/j.esr.2021.100761
https://doi.org/10.3390/su13137034
https://doi.org/10.1016/j.wasman.2013.02.012
https://doi.org/10.1016/j.wasman.2021.02.029
https://doi.org/10.1016/j.wasman.2022.02.014
https://doi.org/10.1016/j.wasman.2022.02.014
https://doi.org/10.1016/j.apenergy.2020.116181
https://doi.org/10.1016/j.apenergy.2020.116181
https://doi.org/10.1016/j.scitotenv.2020.138813

	A cross-jurisdictional comparison on residential waste collection rates during earlier waves of COVID-19
	1 Introduction
	1.1 Effects of COVID-19 on solid MSW generation and collection
	1.2 Quantitative waste forecasting during COVID-19
	1.3 SARIMA models in waste forecasting
	1.4 Objectives, novelties, and implications

	2 Methodology
	2.1 Study areas
	2.2 Data collection and processing
	2.3 SARIMA model building and prediction
	2.3.1 Model background
	2.3.2 Model development
	2.3.3 Model performance assessment
	2.3.3.1 Overprediction ratio
	2.3.3.2 Performance indicators



	3 Results and discussions
	3.1 SARIMA model performance, seasonality, and COVID-19 measures
	3.2 RWCR during COVID-19 pandemic across Canadian and U.S. jurisdictions
	3.3 Overall performance of Sarima models in predicting RWCR during COVID-19 across North American jurisdictions
	3.3 Statistical and climatic factors of model performance

	4 Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Supplementary materials
	References


