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Abstract
Background: Previous studies have linked gut microbiota with cancer etiology, 
but the associations for specific gut microbiota are causal or owing to bias remain 
to be elucidated.
Methods: We performed a two-sample Mendelian randomization (MR) 
analysis to assess the causal effect of gut microbiota on cancer risk. Five 
common cancers, including breast, endometrial, lung, ovarian, and pros-
tate cancer as well as their subtypes (sample sizes ranging from 27,209 to 
228,951) were included as the outcomes. Genetic information for gut micro-
biota was obtained from a genome-wide association study (GWAS) compris-
ing 18,340 participants. In univariable MR (UVMR) analysis, the inverse 
variance weighted (IVW) method was conducted as the primary method, 
with the robust adjusted profile scores, weighted median, and MR Egger 
used as supplementary methods for causal inference. Sensitivity analyses 
including the Cochran Q test, Egger intercept test, and leave-one-out analy-
sis were performed to verify the robustness of the MR results. Multivariable 
MR (MVMR) was performed to evaluate the direct causal effects of gut mi-
crobiota on the risk of cancers.
Results: UVMR detected a higher abundance of genus Sellimonas pre-
dicted a higher risk of estrogen receptor-positive breast cancer (OR = 1.09, 
95% CI 1.05–1.14, p  =  2.01 × 10−5), and a higher abundance of class 
Alphaproteobacteria was associated with a lower risk of prostate cancer 
(OR  =  0.84, 95% CI 0.75–0.93, p  =  1.11 × 10−3). Sensitivity analysis found 
little evidence of bias in the current study. MVMR further confirmed that 
genus Sellimonas exerted a direct effect on breast cancer, while the effect of 
class Alphaproteobacteria on prostate cancer was driven by the common risk 
factors of prostate cancer.
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1   |   INTRODUCTION

The global burden of cancer incidence and mortality is 
rapidly growing.1 It has been predicted that the global can-
cer burden in the next 20 years would rise by nearly 50%.2 
According to Cancer Statistics 2022, prostate cancer alone 
accounts for 27% of diagnoses in men and breast cancer 
accounts for almost one-third in women, while lung can-
cer remains the leading cause in terms of cancer deaths 
in both male and female.3 Given the enormous threat 
brought to human health and the accompanying eco-
nomic burden on human beings caused by cancer, early 
cancer screening and prevention is of great importance.4

Within the past 15 years, investigation of the gut mi-
crobiota in the issue of human health has increased expo-
nentially.5 Disruption of gut microbiota balance has been 
linked with various disease states, like obesity, psychiatry 
disorders, and autoimmunity diseases.6–8 A majority of 
the literature has also reported the potential influence of 
gut microbiota exerting on human health via microbiota-
derived metabolites, modulation of host immunity and 
metabolism.9–12 Hence, there might be tight contact of 
dysbiosis with host health conditions, for which dysbiosis 
might act as a cause or consequence.

To date, accumulation of evidence has implicated po-
tential associations between gut microbiota profiles and 
cancer risk.13 If such associations are causal, then gut 
microbiota might be a novel target for cancer screen-
ing and prevention. Previous studies, based on animal 
models, have reported gut microbiota participated in 
tumor development through various signal pathways.14,15 
Observational studies also supported the involvement 
of gut microbiota in certain cancers. In a case–control 
study, Goedert et al. observed altered composition of gut 

microbiota in patients with breast cancer.16 Another pro-
spective study found a higher abundance of Bacteroides 
massiliensis in patients with prostate cancer compared 
to healthy controls.17 Nevertheless, a conclusive cancer-
causing microbiota community composition has not been 
determined. Notably, it is not yet enough to draw a firm 
conclusion about the potential causality between gut mi-
crobiota and cancer risk based on the existing evidence 
derived from observational studies. Conventional observa-
tional studies were limited by inherent defects, including 
resident confounding, reverse causality, and inadequate 
attention to variation by histology of cancers.18 Besides, 
it should be noted that some treatments, like antibiotic 
usage, chemotherapy, and surgery, could also influence 
the profiles of host gut microbiota, leading to a tremen-
dous impact on the accuracy of the results.19–21 Therefore, 
it is difficult to distinguish whether bacterial disruption 
acted as a cause or consequence of cancer. The causal ef-
fect of gut microbiota on cancer risk remains to be eluci-
dated. While randomized controlled trial (RCT) is the gold 
standard in determining causality, the long incubation 
period from certain microbiota exposure to oncogenesis 
makes it impractical in clinical settings.22 In this context, a 
novel way to investigate the causal effect of gut microbiota 
on cancer risk is warranted.

Mendelian randomization (MR) is a recently de-
veloped method typically used for causal inference.23 
In MR, single nucleotide polymorphisms (SNPs) were 
utilized as unconfounded instrumental variants (IVs) 
to proxy exposure phenotypes.24 An MR design mim-
ics an RCT since genetic variants are randomly allo-
cated during fertilization, hence making confounding 
less likely.25,26 In addition, genotype formation is prior 
to disease onset and is generally unaffected by disease 
onset of progression, thereby less vulnerable to reverse 

Conclusion: Our study implies the involvement of gut microbiota in cancer de-
velopment, which provides a novel potential target for cancer screening and pre-
vention, and might have an implication for future functional analysis.
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causality. In this study, we performed a two-sample 
multivariable MR study to investigate the causal effect 
of genetically predicted gut microbiota on five common 
cancers, including breast cancer (BC), endometrial can-
cer (EC), lung cancer (LC), ovarian cancer (OC), pros-
tate cancer (PC), and their histologic subtypes.

2   |   METHODS

2.1  |  Study design

Leveraging a two-sample Mendelian randomization 
framework, we assessed the causal effect of gut micro-
biota on five common cancers, including BC, EC, LC, 
OC, and PC as well as their subtypes. To comprehen-
sively investigate the role of gut microbiota in the issue 
of cancer incidence, the MR analyses were conducted 
at five distinct feature levels, including phylum, class, 
order, family, and genus. The study design accompanied 
by the fundamental MR assumptions was presented in 
Figure 1.

2.2  |  Data sources

The genetic information of gut microbiota was accessed 
from a largest GWAS conducted by the MiBioGen con-
sortium, comprising 18,340 participants from 24 cohorts 
(~78% Europeans).27 Totally 211 taxa were included in the 
GWAS (9 phyla, 16 classes, 20 orders, 36 families, and 131 
genera). Specifically, three different regions within the 
16 S rRNA gene were targeted to profile the microbial com-
position. Before exploring the effect of host genes on the 
abundance of bacterial taxa, age, sex, technical covariates, 
and genetic principal components were adjusted. Further 
information about the microbiota data was described else-
where,27 and the GWAS data could be obtained at https://
mibio​gen.gcc.rug.nl/.

The summary GWAS data for BC was obtained from 
the Breast Cancer Association Consortium (BCAC) con-
sisting of 122,977 cases and 105,974 controls, and all the 
participants were of European ancestry.28 Given that sum-
mary statistics of the two subtypes [estrogen receptor-
positive (ER+) and negative (ER-) BC] were also available, 
subgroup analysis was performed.

Summary data for EC and its histologic subtypes 
(endometrioid and non-endometrioid subtypes) were 
obtained from a large-scale GWAS consisting of the 
Endometrial Cancer Association Consortium (ECAC), 
the Epidemiology of Endometrial Cancer Consortium 
(E2C2), and the UK Biobank, involving up to 12,906 cases 
and 108,979 health controls from European ancestry.29

We obtained summary-level statistics of LC from the 
International Lung Cancer Consortium (ILCCO) compris-
ing 11,348 patients with lung cancer and 15,861 controls 
(all were European descents).30 The genetic information 
of the two histologic subtypes, including lung adenocarci-
noma (LUAD) and lung squamous cell carcinoma (LUSC), 
was extracted for MR subgroup analysis.

For overall invasive epithelial ovarian cancer, we used 
the GWAS statistics from the Ovarian Cancer Association 
Consortium (OCAC), comprising up to 25,509 cases and 
40,941 controls of European ancestry.31 We also conducted 
subgroup analysis for the histologic subtypes, including 
high-grade serous, low-grade serous, endometrioid, clear 
cell, and invasive mucinous ovarian cancer.

The associations of SNPs with PC were obtained from 
the GWAS study from the Prostate Cancer Association 
Group to Investigate Cancer-Associated Alterations in the 
Genome (PRACTICAL) Consortium, consisting of 79,148 
cases diagnosed with prostate cancer and 61,106 controls 
of European descent.32 Only overall PC GWAS statistics 
were publicly available without any application.

Specifically, the GWAS data for these cancers were de-
posited at the Integrative Epidemiology Unit (IEU) Open 
GWAS Project (https://gwas.mrcieu.ac.uk/).

The GWAS summary data for the traditional risk fac-
tors of BC and PC, including age at menarche, age at 
menopause, body mass index, alcoholic drinking, and 
regular smoking, were obtained from corresponding 
consortia.33–36

2.3  |  Instruments selection

211 bacterial taxa were grouped into five taxonomic levels 
(phylum, class, order, family, and genus). Fifteen bacterial 
taxa were unknown and thereby were excluded from our 
study, making 196 bacterial taxa remained. Considering 
the limited number of SNPs available, we used the SNPs 
at a lenient p-value <1 × 10−5, which was widely used 
in the case of the limited number of SNPs available.37,38 
Concordant with previous research, we clumped the 
genetic variants within 500 kb at the threshold of link-
age disequilibrium (LD) r2 < 0.1, based on European an-
cestry reference data from the 1000 Genomes Project.39 
F-statistic for each SNP was calculated to quantify the 
statistical strength, and those with an F statistic <10 were 
discarded. The calculation of F-statistic was described 
in detail elsewhere.37 Then, SNPs were retrieved and ex-
tracted from the outcome data, and the SNPs significantly 
associated with the outcomes (p < 1 × 10−5) were elimi-
nated. If SNPs could not be found in the outcome data-
sets, proxies at the threshold of LD r2 > 0.8 were used if 
applicable. Finally, we aligned the effect alleles of the 

https://mibiogen.gcc.rug.nl/
https://mibiogen.gcc.rug.nl/
https://gwas.mrcieu.ac.uk/
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exposure- and outcome-SNPs through harmonization, 
and excluded those with incompatible alleles (e.g., A/C 
paired with A/G) or being palindromic with intermediate 
allele frequency.

2.4  |  Statistical analysis

For Univariable MR analysis (UVMR), the random-effects 
inverse-variance weighted (IVW) method was performed 
as the primary analysis for causality inference, for which 
the Wald ratio estimates were combined to elicit a pooled 
effect on the outcome.40 Several alternative models, 

including robust adjusted profile score (RAPS), weighted 
median, and MR-Egger, were utilized to evaluate the ro-
bustness of the MR results.41–43 Specifically, the RAPS 
method is relatively robust when existing weak instru-
ments.44 The weighted median method hypothesizes that 
less than 50% of the SNPs are invalid, and the statistical 
power is mildly weaker than the IVW method.45 For MR-
Egger, the power is weak and typically used for direction 
evaluation.46

For the primary MR results, multiple-testing sig-
nificance was determined at each feature level using 
Bonferroni correction (p < 0.05/n, where n is the number 
of bacterial taxa included in each feature level). Hence, the 

F I G U R E  1   Overview of the current Mendelian randomization (MR) study. BCAC, Beast Cancer Association Consortium; E2C2, 
Epidemiology of Endometrial Cancer Consortium; ECAC, Endometrial Cancer Association Consortium; ER-, estrogen receptor-negative; 
ER+, estrogen receptor-positive; ILLCO, International Lung Cancer Consortium; OCAC, Ovarian Cancer Association Consortium; 
PRACTICAL, Prostate Cancer Association Group to Investigate Cancer-Associated Alterations in the Genome Consortium. SNP, single 
nucleotide polymorphism; UKB, United Kingdom Biobank.
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multiple-testing significance was 5.56 × 10−3, 3.13× 10−3, 
2.5 × 10−3, 1.56 × 10−3, and 4.20 × 10−4, respectively, for 
phylum, class, order, family, and genus. We also consid-
ered a nominal significance level for the MR estimates at 
p < 0.05.

For both significant and nominal significant causal-
ities, we conducted sensitivity analyses using a series of 
statistical methods to detect whether the MR assumptions 
were violated. The leave one out (LOO) analysis was un-
dertaken to appraise whether the pooled estimation was 
biased by any high-influence point.47 The Cochran Q test 
was conducted to evaluate heterogeneity.48 The intercept 
term derived from MR-Egger regression was used to detect 
horizontal pleiotropy.43

Given that the composition of gut microbiota could be 
influenced by endocrine factors and diet habits, UVMR 
could not reflect a direct effect of gut microbiota on cancer 
incidence as these endocrine factors or diet habits could 
also influence cancer risk. To determine whether the ob-
served significant effect of bacterial taxa on cancer was a 
direct or indirect impact, we further conducted multivari-
able MR analysis (MVMR) accounting for the traditional 
risk factors of the cancers.49 Similarly, IVW, WM, and MR-
Egger regression were used for analysis, and the intercept 
derived from MR-Egger regression was used to detect po-
tential horizontal pleiotropy.

All analyses were performed based on the R program 
(version 4.0.0) using the “TwoSampleMR” package (ver-
sion 0.5.4) and the “Mendelian Randomization” package 
(version 0.5.1).

3   |   RESULTS

In total, 196 bacterial taxa (9 phyla, 16 classes, 20 orders, 
32 families, and 119 genera) were included for MR analy-
sis (Table S1). After rigorous instrument selection steps, 
the number of SNPs associated with each of the bacte-
rial taxa ranged from three to 22 (Table 1). All F-statistics 
were over 10, suggesting no weak instrumental variables 
were employed (Table S1).

3.1  |  UVMR analysis

The preliminary associations between bacterial taxa at 
distinct taxonomic levels and the five common cancers 
derived from IVW were presented in Figure 2.

Two significant associations were identified (Table 1; 
Figure  3). Genetic predicted a higher abundance of 
genus Sellimonas was significantly associated with 
an increased risk of ER+ BC (IVW OR  =  1.09, 95% 
CI 1.05–1.14, p  =  2.01 × 10−5). We also observed that 

a genetically predicted higher abundance of class 
Alphaproteobacteria was causally associated with a de-
creased risk of PC (IVW OR =  0.84, 95% CI 0.75–0.93, 
p = 1.11 × 10−3). The consistent direction and magnitude 
of the estimates from other MR models, including RAPS, 
WM, and MR-Egger regression, further supported the 
causal inferences (Table  1). Cochran Q test indicated 
no heterogeneity was detected (Table  S2). MR-Egger 
intercept analysis suggested that there was no potential 
horizontal pleiotropy (Table  S2). LOO analysis further 
supported that the causalities were not driven by any 
single SNP (Figure S1).

In addition, there were also suggestive causal effects 
of phylum Tenericutes, classes (Actinobacteria, Mollicutes, 
Clostridia), orders (Clostridiales, Rhodospirillales), fam-
ilies (Peptococcaceae, Alcaligenaceae, Streptococcaceae, 
Peptostreptococcaceae), and genera (Adlercreutzia, 
Alloprevotella, Christensenellaceae R7 group, Collinsella, 
Coprobacter, Dorea, Eubacterium Hallii group, 
Eubacterium xylanophilum group, Family XIIIAD3011 
group, Flavonifractor, Gordonibacter, Holdemanella, 
Lachnospiraceae NK4A136 group, Lactobacillus 
Erysipelatoclostridium, Parabacteroides, Ruminiclostridium 
5, Ruminiclostridium 6, Ruminococcus 1, Sellimonas) on at 
least one of the cancers (Table 1). No heterogeneity or plei-
otropy was detected in the sensitivity analysis (Table S2).

3.2  |  MVMR analysis

To determine whether genus Sellimonas or class 
Alphaproteobacteria exerted an impact on cancer risk di-
rectly or through common cancer risk factors, we further 
conducted an MVMR analysis. The effect of genetically 
predicted genus Sellimonas on ER+ BC remained after ac-
counting for age at menarche, age at menopause, BMI, al-
coholic drinks per week, and regular smoking (Figure 4). 
The causal inference was further supported by consist-
ent direction and magnitude from distinct MR models. 
Besides, the intercept term derived from MR-Egger did 
not detect potential horizontal pleiotropy.

However, the association between genetic predisposi-
tion toward class Alphaproteobacteria and PC was attenu-
ated with adjustment of BMI, alcoholic drinks per week, 
and regular smoking. The Egger intercept test indicated 
low risks of bias owing to horizontal pleiotropy.

4   |   DISCUSSION

Using MR design, we investigated the potential causal 
association between genetically proxied gut microbiota 
and five common cancers, including BC, EC, LC, OC, and 
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PC. We found that genetically predicted a higher abun-
dance of genus Sellimonas directly exerted a detrimental 
effect on the risk of ER+ BC after accounting for age at 
menarche, age at menopause, BMI, alcoholic drinks per 
week, and regular smoking; and that the protective role 
of a higher abundance of class Alphaproteobacteria on PC 
development might be driven BMI, drinking and smoking 

behaviors. Besides, nominal significant results also im-
plicated the heterogeneous impacts of gut microbiota on 
different cancers. To our knowledge, this is the first MR 
study to comprehensively investigate the role of gut mi-
crobiota in the issue of cancer risk in a causal way.

The associations of gut microbiota with cancers have 
been noted. The vast majority of literature focused on the 

F I G U R E  2   Preliminary associations between gut microbiota and cancers derived from the inverse variance weighted method. Estimates 
with p < 0.05 were shown in purple, and estimates with p > 0.05 were shown in white or yellow. BC, breast cancer; BCER+, breast cancer 
(estrogen receptor-positive); BCER-, breast cancer (estrogen receptor-negative); EC, endometrial cancer; ECEH, endometrial cancer 
(endometrioid histology); ECNEH, endometrial cancer (non-endometrioid histology); LC, lung cancer; LUAD, lung adenocarcinoma; LUSC, 
lung squamous carcinoma; OC, ovarian cancer; OCHGS, ovarian cancer (high-grade serous); OCLGS, ovarian cancer (low grade serous); 
OCED, ovarian cancer (endometrioid); OCCC, ovarian cancer (clear cell); OCIM, ovarian cancer (invasive mucinous); PC, prostate cancer.
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involvement of gut microbiota in gastrointestinal cancers 
as they share the same ecosystem, thereby prone to spec-
ulating potential relationships existing between them. 
However, accumulation of evidence endorsed a potential 
link between gut microbiota and cancers of other systems. 
Zheng et al. have reported that patients with lung cancer 
presented a significant shift in microbiota composition 
compared with controls.50 Zhu et al. also observed alter-
ation of the gut microbial community in breast cancer pa-
tients.51 Undoubtedly, the role of gut microbiota in cancer 
development is catching more attention. However, there is 
a paucity of convincing evidence on a cancer-causing gut 
microbial composition. Even though a few mechanisms 
have been proposed as the potential pathways from the 
gut microbiota to oncogenesis in animal models, the exact 
causality between gut microbiota and human cancer risk 
could not be fully determined owing to the intricate in-
teraction between gut flora and the human host. Previous 
conventional observational studies have also struggled 
to decipher the secrets of gut microbiota in modulating 
human health, but the inherent methodologic defects 
make the exact causal effect remains elucidating. Besides, 
intestinal bacterial communities can be disturbed by 
various factors, like diet, drugs, diseases, and other envi-
ronmental factors,52 which would make the observed as-
sociation of gut microbiota with cancers not convincing. 

Taken together, the role of gut microbiota in cancer devel-
opment remains to be explored by researchers. Inspired by 
the application of large-scale GWAS, which enabled us to 
utilize summary-level statistics for causal inference, this 
work concentrated on the causalities between gut micro-
biota and several common cancers and hoped to find some 
evidence of the existence of the axis linking the gut with 
other systems.

Using MR design, we found that genetically prox-
ied higher abundance of genus Sellimonas predicted a 
higher risk of ER+ BC. Besides, further MVMR analysis 
indicated a robust causality between genus Sellimonas 
and ER+ BC after accounting for age at menarche, age at 
menopause, BMI, smoking, and drinking behaviors. This 
strongly implicated that such a detrimental effect was, at 
least partially, independent of the common risk factors of 
BC. Previously, literature about Sellimonas was extremely 
limited. It has been reported Sellimonas was overrepre-
sented in fecal specimens from patients with more ag-
gressive tumors, suggesting a potential carcinogenic role 
of Sellimonas in human hosts. However, the underlying 
mechanism warrants future investigation. Further path-
ways from Sellimonas to ER+ BC could be expected in fu-
ture studies.

For PC, we observed a protective role of class 
Alphaproteobacteria in PC, which was concordant with 

F I G U R E  3   Scatterplot of two significant associations of two gut microbiota with ER+ breast cancer and prostate cancer. Scatterplot 
of genetic effects on genus Sellimonas versus the effects on ER+ breast cancer (A) and genetic effects of class Alphaproteobacteria versus 
the effects on prostate cancer (B), with corresponding standard errors denoted by horizontal and vertical lines. The slope of each line 
corresponds to the estimated effect from different models. ER+, estrogen receptor-positive; SNP, single nucleotide polymorphism.
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previous studies. MVMR analysis further revealed that the 
protective effect of Alphaproteobacteria on PC might be 
driven by BMI, smoking, and drinking behaviors. A previ-
ous study has reported that extracts from the member of 
Alphaproteobacteria could attenuate benign prostate hy-
perplasia that would potentially increase the risk of PC.53 
Another member of Alphaproteobacteria was reported to 
produce glionitrin B with an anti-invasion effect of PC 
when cocultured with another fungus.54 In terms of mech-
anisms, Sookoian et al. have reported that compared with 
morbidly obese patients, non-morbidly obese controls 
represented a higher abundance of Alphaproteobacteria, 
which might potentially mediate the occurrence of PC.55 
Notwithstanding, the links between Alphaproteobacteria 
and PC still warrant further investigation.

Our study should be evaluated in light of several impli-
cations. First, in the absence of RCT, our work expanded 
the current literature on the issue of the causal association 
between gut microbiota and cancers and provided robust 
evidence. Second, we would rather obtain indicators of 
disease risk from MR results than extrapolate MR results 

to an expected effect from intervention in clinical sets, 
which has been proposed by methodologists.37,56 From 
this perspective, the main finding of our study impli-
cated that stool examination might be a feasible strategy 
to identify populations at higher risk of BC and PC and 
to further advocate for more frequent cancer screening or 
undertaking more thorough examinations. Third, except 
for the significant estimates aforementioned, the current 
study also identified nominal significant associations be-
tween a range of gut microbiota and cancers. While the 
observed associations did not reach Bonferroni correction 
significance, the potential impact of these gut microbiota 
should not be ignored. Instead, these results might point 
to a potential cancer-causing bacterial composition that 
would help in evaluating cancer risk and provide candi-
date bacteria that might have an implication for investi-
gators to focus on certain specific gut microbiota in future 
functional studies.

Some limitations should be noted in this study. The 
first limitation that should be pointed out is that the 
major participants of our study were constrained to 

F I G U R E  4   Forest plot for the MVMR accounting for common risk factors of breast and prostate cancer. *Int.p refers to the p values 
derived from Egger intercepts. CI, confidence interval; ER+ BC, estrogen receptor-positive breast cancer; IVW, inverse variance weighted; 
OR, odds ratio; PC, prostate cancer; SNP, single nucleotide polymorphism.
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European ancestry. While this would limit bias owing 
to population heterogeneity, whether the MR results 
are general in other populations warrants future inves-
tigations. Second, we relaxed the p threshold between 
instruments and exposures to obtain a larger number 
of SNPs, which might increase the risk of violating the 
first assumption of MR design. However, the F statis-
tic for each SNP was over 10, indicating that no weak 
SNPs were included for MR estimation. Besides, the 
significant results were identified based on rigorous 
Bonferroni correction to lower the risk of false-positive 
results. Third, we failed to fully mitigate pleiotropy as 
specific biologic functions of the employed SNPs remain 
unknown to date. However, it is reassuring distinct MR 
models presented concordant estimates and sensitivity 
analyses based on various assumptions failed to detect 
any horizontal pleiotropy.

In conclusion, this MR study sheds light on a potential 
causal role of gut microbiota in cancer development. This 
would have an implication to clinicians that early stool ex-
amination might be a feasible practice for cancer screen-
ing to recognize populations at a higher risk of cancer, 
and in addition, conditioning of gut microbiota might be a 
potential treatment for cancer prevention. Future work is 
warranted to decipher the underlying mechanism.
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