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Abstract

Intracellular immune complexes known as inflammasomes sense breaches of cytosolic sanctity. 

Inflammasomes promote downstream proinflammatory events, including IL-1 family cytokine 

release and pyroptotic cell death. The NAIP/NLRC4 inflammasome is involved in a range of 

pathogenic and protective inflammatory processes in mammalian hosts. In particular, the NAIP/

NLRC4 inflammasome responds to flagellin and components of the virulence-associated type III 

secretion apparatus in the host cytosol, thereby allowing it to be a critical mediator of host defense 

during bacterial infection. Notable species- and cell type-specific differences exist in NAIP/

NLRC4 inflammasome responses to bacterial pathogens. With a focus on Salmonella enterica 
serovar Typhimurium as a model pathogen, we review differences between murine and human 

NAIP/NLRC4 inflammasome responses. Differences in NAIP/NLRC4 inflammasome responses 

across species and cell types may have arisen in part due to evolutionary pressures.
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Introduction

The mammalian innate immune system harbors pattern recognition receptors (PRRs) 

that sense and respond to pathogens by detecting pathogen-associated molecular patterns 

(PAMPs) [1,2]. A subset of cytosolic PRRs oligomerize into multiprotein structures termed 

inflammasomes upon sensing an insult within the cytosol, such as PAMPs or pathogenic 
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disruption of host processes [3–7]. After assembly, inflammasomes recruit and activate 

inflammatory caspases, such as caspase-1 [3–7]. Active caspase-1 cleaves and activates 

downstream substrates, including interleukin-1 (IL-1) family cytokines and the pore-forming 

protein gasdermin D, resulting in the maturation and release of IL-1 family cytokines and 

other alarmins and an inflammatory form of cell death termed pyroptosis [8–13].

Many inflammasomes are composed of nucleotide-binding leucine-rich repeat (NLR) 

family proteins. One such inflammasome is the NLR family, apoptosis inhibitory protein 

(NAIP)/NLR family, CARD domain-containing protein 4 (NLRC4) inflammasome. The 

NAIP/NLRC4 inflammasome is a key mediator of host defense against several bacterial 

pathogens. This inflammasome has also been implicated in pathological inflammation 

resulting from gain-of-function NLRC4 mutations in humans and a sepsis-like disease 

triggered by pathobionts in mice [14–20]. NAIP senses the cytosolic presence of 

evolutionarily related virulence-associated bacterial proteins, including type III secretion 

system (T3SS) structural proteins and flagellin, during infection [21–29]. Upon ligand 

binding, NAIP recruits the adaptor protein, NLRC4, which oligomerizes to form the active 

NAIP/NLRC4 inflammasome [30–32].

There are species- and cell type-specific differences in NAIP/NLRC4 inflammasome 

responses. Mice express several different NAIPs (mNAIPs), which have arisen as a result of 

gene duplication events, and each mNAIP recognizes a specific bacterial ligand [22–29,33]. 

In contrast, humans express only one functional NAIP (hNAIP), recently demonstrated to 

promiscuously recognize the various bacterial ligands detected by the individual mNAIPs 

[23,26,27,34–39] (Figure 1). In this review, we will discuss recent findings on NAIP/NLRC4 

inflammasome responses to bacterial pathogens in both murine and human cells, focusing on 

species- and cell type-specific differences in NAIP/NLRC4 inflammasome responses.

Murine NAIP/NLRC4 inflammasome responses to bacterial ligands

In mice, NAIP/NLRC4 inflammasome responses to bacterial pathogens have been 

extensively characterized. The first findings focused on understanding the genetic basis for 

the susceptibility or resistance of inbred mouse strains to the intracellular Gram-negative 

bacterial pathogen Legionella pneumophila, causative agent of the severe pneumonia 

Legionnaires’ disease. mNAIP5 contributed to restricting Legionella replication in mice 

and murine macrophages [40,41], and this restriction was dependent on caspase-1 and the 

Legionella Dot/Icm type IV secretion system, which delivers bacterial effectors into the 

host cell cytosol [42]. Separate studies showed that NLRC4 was required for inflammasome 

responses to the intracellular enteric pathogen Salmonella enterica serovar Typhimurium 

(Salmonella) in murine macrophages [43]. Interestingly, inflammasome responses to 

Salmonella required its T3SS, which delivers virulence factors into the host cell cytosol [43]. 

These results suggested a potential role for specific T3SS- or T4SS-translocated bacterial 

ligands in NAIP or NLRC4 inflammasome activation.

When investigating bacterial components that potentially activate murine NAIP or NLRC4, 

multiple groups independently found that flagellin, the major subunit of flagella, from 

both Legionella (FlaA) and Salmonella (FliC) induced inflammasome activation in murine 
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macrophages [21,24,25,44,45]. During infection, flagellin is thought to be injected into 

the host cell cytosol via bacterial secretion systems, as has been shown for Salmonella’s 

T3SS [46]. Still, a direct observation of endogenous flagellin being translocated into the 

host cell cytosol has yet to be reported and represents an important gap in knowledge. 

T3SS components themselves also induced inflammasome activation. T3SS inner rod 

proteins from several bacteria, including Salmonella (PrgJ) and Escherichia coli (EprJ and 

EscI), activated the NLRC4 inflammasome when delivered to the cytosol of murine bone 

marrow-derived macrophages (BMDMs) [21]. Salmonella’s T3SS needle protein (PrgI) 

was also detected, albeit poorly, in BMDMs in an NLRC4-dependent manner [21,26]. 

Non-immune cells can also detect bacterial ligands and mount inflammasome responses. 

Intestinal epithelial cells (IECs), the primary site of infection for enteric pathogens, undergo 

NAIP/NLRC4 inflammasome activation followed by pyroptosis and luminal expulsion in 

response to cytosolic delivery of Legionella’s flagellin using an anthrax-toxin based system 

(FlaTox) [47].

While NLRC4 was previously mischaracterized as the “sensor” of T3SS-related ligands, 

further studies found that NAIPs are generally the sensors that dictate ligand specificity, 

whereas NLRC4 is an adaptor protein [21–23,26–29,48,49]. mNAIP5 and mNAIP6 detect 

flagellin, while mNAIP2 detects T3SS inner rod proteins and mNAIP1 detects T3SS needle 

proteins [21–23,26–29,48] (Figure 2). Expression of the mNAIPs varies amongst different 

cell types, potentially yielding differential ligand detection. For example, expression of 

Naip1 is low in BMDMs, which poorly detect T3SS needle proteins, and is upregulated 

with IFN priming [26]. In contrast, peritoneal cavity (PerC) macrophages express higher 

Naip1 levels and readily detect cytosolic PrgI [26]. Intriguingly, a functional NLRC4 

inflammasome can assemble in the absence of the NAIPs in response to Anaplasma 
phagocytophilum infection through a mechanism involving prostaglandin E2 signaling [50].

In agreement with in vitro findings, bacterial ligands activate the NAIP/NLRC4 

inflammasome in vivo, with individual mNAIPs detecting their cognate ligands [15,28,29]. 

Intraperitoneal administration of FlaTox to mice resulted in NAIP/NLRC4-dependent 

diarrhea, circulatory collapse and ultimately mortality at high doses [15,28]. Furthermore, 

restricting Nlrc4 expression to either macrophages or IECs still resulted in mortality 

and circulatory collapse following FlaTox administration, due to caspase-1 activation and 

pathological release of eicosanoids [15,47]. These results highlight specific cell-intrinsic 

roles for NLRC4 in vivo (Figure 2).

Murine NAIP/NLRC4 inflammasome responses to Salmonella infection

While the findings highlighted above focused on NAIP/NLRC4 inflammasome activation 

by specific bacterial ligands, different bacterial components can activate distinct arms 

of the immune response. In turn, some bacterial pathogens downregulate expression of 

particular ligands to evade immune detection during infection. Thus, a number of studies 

have extensively characterized the role of the NAIP/NLRC4 inflammasome during bacterial 

infection. For this review, we will focus on Salmonella, which, as highlighted above, was 

recognized early on to activate the NLRC4 inflammasome in murine macrophages [43].
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Salmonella harbors two distinct T3SSs, known as the Salmonella pathogenicity island 

(SPI)-1 and SPI-2 T3SSs. While the SPI-1 T3SS is expressed early during infection to 

mediate invasion into host cells, the SPI-2 T3SS is expressed later to promote intracellular 

replication [51–59]. Interestingly, Salmonella grown under SPI-1-inducing conditions 

activates robust inflammasome responses in BMDMs in an NLRC4-dependent manner; 

however, Salmonella grown under SPI-2 inducing conditions does not [21]. While these 

data suggest that the SPI-2 T3SS evades inflammasome detection, Salmonella can induce 

SPI-1-independent inflammasome responses at later time points, namely between 17 and 20 

hours post-infection (hpi) [60]. Broz et al. characterized these late responses in BMDMs 

and found that Salmonella activates both the NAIP/NLRC4 inflammasome and the NLRP3 

inflammasome [61] (Figure 2), which responds to perturbations of cell physiology, such 

as potassium efflux as a result of plasma membrane damage [62–66]. Distinct Salmonella 
signals appear to activate these inflammasomes [61]. Additional studies corroborated these 

findings, suggesting that NAIP/NLRC4 and NLRP3 coordinate the inflammasome response 

to Salmonella by associating in the same macromolecular complex [67,68].

During in vivo Salmonella infection, the NAIP/NLRC4 inflammasome promotes 

inflammation to ultimately clear infection. Wild type (WT) and Nlrc4−/− mice on a BALB/c 

or C57BL/6 background displayed differences in mortality during orogastric challenge with 

Salmonella [69,70], in part due to NLRC4-promoted clearance of infection via neutrophil 

recruitment [69]. In contrast, C57BL/6 mice lacking NLRC4 displayed no differences in 

mortality compared to their WT counterparts during intraperitoneal Salmonella infection 

[21,69]. This may be in part due to differential Salmonella ligand expression during 

gastrointestinal versus systemic infection. Salmonella expresses PAMPs that activate the 

NAIP/NLRC4 inflammasome, including flagellin and the SPI-1 T3SS, most highly in the 

cecal epithelium and downregulates expression as it invades deeper tissues [71]. Salmonella 
ectopically expressing flagellin or PrgJ during systemic infection were attenuated compared 

to WT bacteria, and this was due to NLRC4 inflammasome activation [29,72]. These studies 

indicate an important role for the NAIP/NLRC4 inflammasome in responding to these 

ligands to control Salmonella in vivo.

Murine IECs, the primary site of gastrointestinal Salmonella infection, express high 

levels of Naip and Nlrc4 [71,73–76]. The NAIP/NLRC4 inflammasome limits Salmonella 
accumulation within IECs, in part by facilitating expulsion of infected IECs into the 

lumen and limiting cellular spread of bacteria [47,71,76]. This restriction mechanism 

is independent of IL-1 release. Furthermore, IEC-intrinsic Naip or Nlrc4 expression 

was both necessary and sufficient to restrict intraepithelial Salmonella loads, suggesting 

an intestinal epithelium-intrinsic role for the NAIP/NLRC4 inflammasome in restricting 

Salmonella [47,76]. Subsequent studies using intestinal enteroid models further elucidated 

this epithelium-intrinsic mechanism of restriction. Activation of epithelial NAIP/NLRC4, 

either via Salmonella infection or treatment with FlaTox, initiated focal contractions at the 

site of activation [77]. In addition to restricting intraepithelial bacterial loads, IEC-specific 

NAIP/NLRC4 inflammasome activation prevents bacterial dissemination to systemic sites, 

supporting an important role for the inflammasome in intestinal barrier defense [71] 

(Figure 2). Collectively, these findings in the murine system elucidating NAIP/NLRC4 

recognition of specific ligands and response to bacterial infection form a strong foundation 
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for understanding NAIP/NLRC4-mediated immune amplification. Clear differences exist 

between different cell types and organ systems at large, begging the question of what drives 

the evolution of varying responses downstream of a common infectious or inflammatory 

signal. For example, it is possible that IEC responses differ from macrophage responses due 

to a necessity to maintain barrier integrity as a physical component of immune defense. 

Studying these questions in the murine system offers a powerful way to examine whole body 

consequences of NAIP/NLRC4 inflammasome responses and deepen understanding in the 

field.

Human NAIP/NLRC4 inflammasome responses to bacterial pathogens

In contrast to mice and rats, humans and other animals express a single functional NAIP 

(hNAIP) [34,35]. Early studies found that T3SS needle proteins from various bacteria, 

including Salmonella (PrgI) and enterohemorrhagic Escherichia coli (EHEC) (EprI), induced 

NAIP/NLRC4 inflammasome activation in the human monocytic cell lines U937 and THP-1 

[23,26,27]. Strikingly, these same studies also found that U937 and THP-1 cells did not 

respond to cytosolic delivery of flagellin or certain T3SS inner rod proteins [23,26,27]. 

Thus, it appeared that hNAIP retained homologous function to mNAIP1, as it only detected 

the T3SS needle protein.

Subsequent studies found that hNAIP detects additional bacterial ligands. In primary human 

monocyte-derived macrophages (hMDMs), flagellin from Salmonella (FliC) or Legionella 
(FlaA) activated the NAIP inflammasome [36,37]. Subsequently, it was shown that hMDMs 

also undergo inflammasome responses to the T3SS inner rod protein from Salmonella (PrgJ) 

and other bacteria [37,39], and that this response was also dependent on hNAIP [37]. These 

apparent discrepancies compared to the earlier studies could be due to differences in ligand 

delivery systems and T3SS inner rod proteins used or lower expression of NAIP and NLRC4 
in U937 and THP-1 cells compared to primary human macrophages [36]. Importantly, 

the single hNAIP is sufficient to mediate inflammasome responses to the T3SS needle, 

inner rod, and flagellin proteins [37]. Furthermore, both NAIP and NLRC4 are required 

for inflammasome responses to these bacterial ligands [38,78]. These studies show that in 

contrast to mice, which have evolved multiple specialist NAIPs that each recognize only one 

ligand, humans express a generalist NAIP which has evolved to promiscuously recognize 

three structurally related but distinct bacterial ligands. The structural basis for this difference 

in ligand recognition by mNAIPs and hNAIP is unclear. Interestingly, rats, like mice, also 

retain multiple NAIPs that have arisen as a result of gene duplication events, suggesting 

that pathogen-imposed selective pressure in the rodent lineage resulted in the emergence of 

specialist NAIPs. In contrast, other mammals express a single functional NAIP, including 

non-human primates, cows, horses, and bats [34,35]. Future studies are needed to investigate 

whether the single NAIP in other mammals also behaves as a generalist like hNAIP and 

broadly recognizes multiple ligands.

While Salmonella’s SPI-1 T3SS structural components activate mNAIPs and hNAIP, 

Salmonella’s SPI-2 T3SS inner rod protein (SsaI) is not sensed by murine NAIP2 or hNAIP 

[21,37]. In addition, Salmonella SPI-2 activity suppresses SPI-1-induced inflammasome 

responses in human macrophages [79]. Thus, a prevailing model posits that Salmonella’s 
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SPI-2 T3SS evades inflammasome detection to promote Salmonella’s intracellular lifestyle. 

However, recent findings show that Salmonella’s SPI-2 T3SS needle protein (SsaG) is, 

in fact, sensed by hNAIP, leading to NAIP/NLRC4-dependent restriction of Salmonella 
replication within human macrophages [38] (Figure 3).

These critical differences between hNAIP and mNAIP recognition of bacterial ligands 

represent fascinating and fundamental distinctions between the two species, highlighting 

the importance of broadly conducting studies across different species. Much still remains 

unknown about hNAIP-mediated ligand detection, including the molecular determinants of 

hNAIP’s broad ligand detection, hNAIP’s binding affinity for each ligand, and the precise 

structure of ligand-bound hNAIP. These open questions present exciting opportunities for 

future expansion of the field of human inflammasome biology.

As noted previously, bacterial infections do not recapitulate purified ligand delivery, as 

they elicit more complex and nuanced inflammasome responses. As such, NAIP/NLRC4 

inflammasome responses to bacterial infection have been studied in human cells. hNAIP 

is required to restrict intracellular Legionella replication in both THP-1 macrophages 

and A549 lung epithelial cells [80]. Legionella T4SS activity also activates the NLRP3 

inflammasome and CASP4 inflammasome, which senses cytosolic LPS, in THP-1 cells and 

hMDMs [81]. Moreover, Salmonella infection induces robust inflammasome activation in 

human macrophages that requires SPI-1 T3SS or flagellin [27,36–38,78,79]. Salmonella 
elicits a multifactorial response in human macrophages, involving the NAIP/NLRC4, 

NLRP3, and CASP4/5 inflammasomes [38,78,79] (Figure 3). Furthermore, NLRC4 and 

NLRP3 co-localize to the same macromolecular complex upon in vitro Salmonella infection 

of human macrophages [68]. The recruitment of NLRC4 to punctate structures has also been 

reported in BMDMs during in vitro Legionella infection in an ASC-dependent manner [82]. 

Whether NLRC4 co-localizes with other inflammasome structures during in vivo infections 

remains unknown and requires further study. Finally, inflammasome activation mediates 

Salmonella control in human macrophages such that both the NAIP/NLRC4 and NLRP3 

inflammasomes restrict Salmonella replication within human macrophages [38].

Like murine IECs, human IECs can mount cell-intrinsic inflammasome responses to 

bacterial pathogens, including Salmonella. In response to Salmonella, human IECs 

undergo caspase-4 inflammasome-dependent pyroptosis, IL-18 cytokine release, restriction 

of bacterial replication, and extrusion of infected cells [83–85] (Figure 3). However, 

the role of the NAIP/NLRC4 inflammasome in human IECs during infection remained 

unclear. Surprisingly, unlike in murine IECs where the NAIP/NLRC4 inflammasome 

is functional [28,29,47], delivery of bacterial ligands failed to induce NAIP/NLRC4 

inflammasome activation in immortalized human IECs or human intestinal enteroids [86] 

(Figure 3). Furthermore, human NAIP−/− immortalized IECs had no defect in inflammasome 

responses to Salmonella. Immortalized human IECs and primary small intestinal enteroids 

express very low levels of NAIP and NLRC4 compared to human peripheral blood 

mononuclear cells [86], which potentially contributes to the lack of a functional NAIP/

NLRC4 inflammasome in human IECs in these in vitro models. Whether the NAIP/

NLRC4 inflammasome functions in human intestinal epithelium in vivo is unknown. It 

is possible that in vivo, host or microbial signals may upregulate NAIP/NLRC4 expression 
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in human IECs, or NAIP/NLRC4 may be expressed in a rare IEC subset not represented 

in in vitro models. Intriguingly, human patients with gain-of-function NLRC4 mutations 

display enterocolitis early in infancy, although gastrointestinal disease no longer presents 

in patients that survive infancy [17–20]. Whether infantile enterocolitis is caused by 

NLRC4 activation in IECs or another cell type is unclear. Together, these findings in 

human macrophages and IECs underscore important cell type-specific and species-specific 

differences that exist between mice and humans and the importance of broadening these 

studies to include multiple cell types. Recent advances in ex vivo culture systems, including 

organoids, represent exciting new avenues with which to study these questions and deepen 

understanding of cellular roles

Concluding remarks and remaining questions

In summary, the NAIP/NLRC4 inflammasome senses bacterial components in the host 

cell cytosol and induces a cascade of inflammatory events to mediate host defense 

against bacterial pathogens. Recent studies have revealed species-specific NAIP/NLRC4 

inflammasome responses. While mice express multiple NAIPs which each detect a specific 

ligand, humans harbor a single NAIP which broadly recognizes multiple ligands. We find 

this key difference between mice and humans compelling. It begs the question: is there a 

selective advantage or disadvantage to promiscuous ligand detection by human NAIP when 

compared to selective ligand detection by mouse NAIPs? Relative commensal and pathogen 

exposure by different species may have provided evolutionary pressures underlying selective 

versus promiscuous ligand detection. In addition, as previously highlighted, there are other 

non-human mammalian species that express a single NAIP; whether the single NAIP in 

these other species also promiscuously recognizes multiple ligands is unknown. Future 

studies more broadly comparing different species may help address these questions. Recent 

findings suggest cell type-specific differences in NAIP/NLRC4 inflammasome responses to 

bacteria that vary between mice and humans. For example, NAIP/NLRC4 inflammasome 

activation is both necessary and sufficient in IECs to control Salmonella infection in mice, 

whereas the NAIP/NLRC4 inflammasome appears to be nonfunctional in human IECs. In 

addition, there are also cell type-specific differences within a given species. While the NAIP/

NLRC4 inflammasome senses and responds to Salmonella infection in human macrophages, 

the inflammasome appears dispensable in human IECs. Thus, there exists differential NAIP/

NLRC4 inflammasome responses to pathogens that are species- and cell type-specific. We 

find the field of NAIP/NLRC4 inflammasome responses during bacterial infections to be 

an ever expanding and particularly fascinating one. While considerable work has been 

done to delineate these responses in mice and humans in various cell types, there are still 

many exciting unanswered questions in the realm of NAIP/NLRC4 biology that will be 

investigated for years to come.
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Highlights

• Mice express several different NAIPs, each recognizing a specific bacterial 

ligand

• Humans express one functional NAIP, which broadly detects multiple 

bacterial ligands

• Salmonella activation of the NAIP inflammasome in murine IECs promotes 

control of infection

• NAIP inflammasome is critical for controlling Salmonella in human 

macrophages but not in human IECs
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Figure 1: Species-specific NAIP/NLRC4 inflammasome responses to bacterial ligands
Mice and humans exhibit differences in NAIP/NLRC4 inflammasome responses to bacterial 

ligands. Mice express several different NAIPs (mNAIPs). Each mNAIP recognizes a distinct 

bacterial ligand: mNAIP5 and mNAIP6 detect flagellin, mNAIP2 detects T3SS inner rod 

proteins, and mNAIP1 detects T3SS needle proteins. Unlike mice, humans express a single 

NAIP (hNAIP), and this single hNAIP is capable of recognizing all three bacterial ligands 

that are individually recognized by the different mNAIPs. Upon ligand detection, NAIP 

recruits its adaptor, NLRC4 (murine NLRC4, mNRLC4; human NLRC4, hNLRC4), thereby 

forming the active NAIP/NLRC4 inflammasome.
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Figure 2: Murine cell type-specific inflammasome responses to Salmonella infection
Murine macrophages and intestinal epithelial cells (IECs) display distinct inflammasome 

responses to Salmonella infection. In murine macrophages, Salmonella infection induces 

both NLRP3 and NAIP/NLRC4 inflammasome responses, leading to IL-1 cytokine release 

and an inflammatory form of cell death, pyroptosis. In murine IECs, the NAIP/NLRC4 

inflammasome senses and responds to Salmonella infection, mediating IL-1 cytokine 

release, pyroptosis, and expulsion of cells, which ultimately leads to control of infection 

in vivo.
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Figure 3: Human cell type-specific inflammasome responses to Salmonella infection
While human macrophages employ a multifactorial inflammasome response to Salmonella 
infection, human intestinal epithelial cells (IECs) rely on a single inflammasome, 

the caspase-4/5 inflammasome, during Salmonella infection. In human macrophages, 

Salmonella infection induces NAIP/NLRC4, NLRP3, and caspase-4/5 inflammasome 

responses, facilitating IL-1 cytokine release, pyroptosis, and ultimately restriction of 

bacterial replication. In contrast, in human IECs undergo a caspase-4-dependent, NAIP/

NLRC4- and NLRP3-independent inflammasome response to Salmonella infection.
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