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Abstract

An altered metabolism of iron fuels cancer growth, invasion, metastasis, and recurrence. Ongoing 

research in cancer biology is delineating a complex iron-trafficking program involving both 

malignant cells and their support network of cancer stem cells, immune cells, and other stromal 

components in the tumor microenvironment. Iron-binding strategies in anticancer drug discovery 

are being pursued in clinical trials and in multiple programs at various levels of development. 

Polypharmacological mechanisms of action, combined with emerging iron-associated biomarkers 

and companion diagnostics, are poised to offer new therapeutic options. By targeting a 

fundamental player in cancer progression, iron-binding drug candidates (either alone or in 

combination therapy) have the potential to impact a broad range of cancer types and to address the 

major clinical problems of recurrence and resistance to therapy.
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1. Introduction

The biochemistry of iron impacts large areas of human physiology and pathology. The most 

abundant transition metal in the human body, iron is key to the function of a multitude 

of proteins at the basis of fundamental processes such as oxygen transport, respiration, 

and DNA synthesis. The redox chemistry of this trace element, which can access several 

oxidation states, is associated not only to the activity of numerous enzymes but also to the 

Fenton reaction and the generation of reactive oxygen species as well as the iron-dependent 

cell death pathway known as ferroptosis [1]. This complex, multifaceted role requires a 

highly orchestrated regulation of the acquisition, storage, transport, and recycling iron in all 

cell types. In the case of malignant cells, the hallmarks of rapid proliferation and sustained 

progression are fueled by a reprogrammed iron metabolism [2–5] that has been described as 

an “iron addiction” [6].

Cancer cell walls are generally characterized by upregulated expression of the transferrin 

receptor TfR1, leading to increased cellular uptake of the iron-transport protein transferrin 

(Tf) (Fig. 1). Other components of the iron uptake system, namely transporter DMT1 and 

metalloreductase STEAP3, are also upregulated in malignant cells (Fig. 1). Conversely, 

ferroportin (FPN), which is the only iron export protein, is downregulated in cancer cells and 

its negative regulator hepcidin is abundant – two effects that inhibit iron efflux and favor 

its accumulation (Fig. 1). Although hepcidin is primarily a systemic liver-derived hormone, 

recent work on colorectal cancer showed that the tumor epithelium serves as a local source 

of hepcidin to downregulate ferroportin and promote cancer growth [7]. Critically, multiple 

analyses of the gene expression of iron regulators has revealed convincing prognostic value 

in predicting distant-metastasis-free survival particularly in breast [8], ovarian [6], and renal 

[9] cancer.

Recent advances in our understanding of the tumor microenvironment are highlighting a key 

role of iron in the mechanisms by which immune cells and stromal components promote 

tumor progression and metastasis. In this context, macrophages are important players 

because they process large quantities of iron through phagocytosis of red blood cells. These 

immune cells display remarkable functional plasticity and adopt the alternatively activated 

M2 polarization in the tumor microenvironment, which promotes tissue regeneration and 

anti-inflammatory response [4,10]. The tumor-associated macrophages (TAMs) exhibit an 

iron-release phenotype that relies on upregulation of ferroportin and/or release of lipocalin 

2 (LCN2), an iron-transport protein that carries siderophore-bound iron to cancer cells [11]. 

Among the other immune cells associated to tumors, neutrophils were found to stimulate 

metastatic growth of breast cancer by secreting transferrin and hence contributing in a 

different way to the altered iron metabolism [12].

The crosstalk of neoplastic cells, immune cells, and other stromal components in the tumor 

microenvironment is not fully understood; however, iron has been repeatedly implicated in 

the complex program that supports growth, invasion, and metastasis [4,5,10]. Furthermore, 

the tumor microenvironment harbors cancer stem cells (CSCs), a minority population of 

cells that are characterized by their ability to both self-renew and differentiate, and are 

considered largely responsible for cancer recurrence. Notably, elevated iron content is 
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emerging as critical for stemness [13] and, consistent with the tumorigenic nature of CSCs, 

this effect has been delineated as a negative prognostic factor [14].

As the role of iron continues to be an area of intense investigation in cancer biology, its 

relevance to treatment has been widely recognized and reviewed [3,4,15,16]. This Opinion 
focuses on recent findings within small-molecule strategies that involve the coordination of 

iron. Targeting the complexity of iron biochemistry is both a challenge and an opportunity to 

impact in multiple ways a fundamental aspect of cancer.

2. Chelation approaches

Iron-binding pharmaceuticals DFO (Desferrioxamine, Desferal, Fig. 2) and DFX 

(Deferasirox, Exjade, Fig. 2) are employed routinely to treat iron overload and were 

among the first chelators to be tested in clinical trials for cancer indications [15]. 

Although these first-generation compounds target primarily systemic iron, current studies 

are exploring strategies for cancer applications. For instance, DFX has been employed 

in conjugates to confer selectivity to specific organelles [17,18] and in transmetalation 

approaches to incorporate the antiproliferative activity of titanium(IV) species [19]. In 

addition, these FDA-approved chelators are increasingly tested in combination with standard 

chemotherapeutics because the role of iron in cancer stemness [13] could be exploited to 

overcome resistance to chemotherapy. Both DFO [20] and DFX [21] were found to impact 

stemness markers and to have synergistic effects in combination with cisplatin.

Tridentate thiosemicarbazone Triapine (Fig. 2) is one of the best studied chelators for 

anticancer applications [22], and more recent analogs DpC [23,24] and COTI-2 [25,26] 

(Fig. 2) are currently under scrutiny for clinical development. Ongoing studies on these 

compounds and related analogs are revealing composite mechanisms of action that implicate 

not only iron sequestration and inhibition of iron-dependent enzyme ribonucleotide 

reductase but also coordination of other transition metals and oxidative damage [22,27]. 

A recent screen of ~80 thiosemicarbazones produced analog KS10076 (Fig. 2) of high 

cytotoxicity and good pharmacokinetic parameters, and genetic profiling on a large cancer 

cell panel indicated destabilization of the STAT3 pathway through the generation of reactive 

oxygen species (ROS) [28]. The formation of redox-active copper complexes is part of the 

mechanism of action of several antiproliferative thiosemicarbazones [29,30], and a ternary 

copper complex with COTI-2 and glutathione has been associated to drug resistance via 

efflux through the ATP-binding cassette (ABC) transporter ABCC1 [31]. Furthermore, the 

coordination of extracellular zinc has been associated with the anticancer activity of several 

thiosemicarbazones that serve as zinc metallochaperones to restore function of oncogenic 

p53 mutants [32].

Given the multifaceted roles of transition metals in cell biology, it is not surprising that 

metal-binding drugs present a polypharmacological profile. Indeed thiosemicarbazones are 

known to affect concurrently cancer growth, drug resistance, and metastasis [33]: for 

instance, through the upregulation of metastasis suppressor N-myc downstream-regulated 

gene-1 (NDRG1), these compounds inhibit multiple signaling pathways that affect both 

growth and metastasis [34]. For their ability to affect multiple tumor-supporting programs, 
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polypharmacological compounds are particularly appealing for combination therapy with 

anticancer agents that are prone to resistance. In this context, Triapine was selected as 

a ribonucleotide reductase inhibitor and adjuvant to be tested in a recent clinical trial in 

combination with cisplatin-radiotherapy in advanced uterine cervix or vaginal cancers [35]. 

Initial studies on combination therapy of DpC with several standard anticancer agents have 

shown promising results [36].

Although tridentate thiosemicarbazones are arguably the most studied class of chelators in 

cancer applications, several programs are currently pursuing other frameworks. Interestingly, 

two new iron-binding scaffolds in cancer drug discovery were produced by high-throughput 

screens, which underscored the efficacy of iron-binding strategies in this research arena. A 

screen of 10,000 compounds in multicellular spheroids identified VXL600 (Fig. 2) as toxic 

towards quiescent cells under conditions of nutrient starvation [37]. This iron chelator has 

since been tested in a phase I clinical trial that documented good tolerability in patients 

with refractory advanced solid tumors [38]. More recently, its ability to disrupt homologous 

recombination DNA repair has shown potential for synergistic effects with cisplatin in 

ovarian cancer [39]. A high-throughput screen targeting activity against experimentally 

induced CSCs identified polyether ionophore antibiotic salinomycin as a lead compound 

[40], and then its mechanism of action was found to involve iron sequestration and ROS 

generation in lysosomes [41]. The analogous compound ironomycin (Fig. 2) recently 

showed promising antiproliferative and ferroptotic activity in primary cells from diffuse 

large B-cell lymphoma patients [42].

3. Prochelation strategies

The data accrued from multiple clinical trials have highlighted the promise as well 

as the challenges of chelators as anticancer agents. For example, methemoglobinemia 

(i.e., abnormal oxidation of hemoglobin in blood) is a well-documented consequence of 

the interaction of Triapine with systemic iron [27]. In addition, several antiproliferative 

thiosemicarbazones that form redox-active iron and copper complexes (e.g., Dp44mT) were 

found to present narrow therapeutic windows that prevented clinical development [22]. In 

this context, prochelation approaches are being pursued to release metal-binding species 

under specific conditions, thereby directing the coordination chemistry towards intracellular 

metals (relative to systemic metals) and/or preferentially targeting malignant cells (relative 

to normal tissue) [43,44].

The carboxylate donor of tridentate chelator deferitrin (Fig. 3) was masked as an ethyl ester 

to be activated through hydrolysis by intracellular esterases [45]. This prototype, which 

also included a cleavable polyamine to facilitate cellular uptake, showed improved activity 

relative to the parent chelator and showcased the advantages of the prochelation design.

The tridentate binding units of thiosemicarbazones and aroylhydrazones have been masked 

with disulfide switches that release the metal-binding thiolate upon intracellular reduction 

(e.g., (TC1-S)2, Fig. 3). Indeed the high concentration of reduced glutathione (GSH) in the 

cytosol (1–10 mM) relative to that in blood plasma (2–20 μM) ensures the intracellular 

activation of these prochelators, which present antiproliferative activities at low micromolar 
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levels in several cell lines [46]. The disulfide mask has also been employed to connect 

carbohydrate moieties (e.g., G6AH1, Fig. 3), which render the constructs rather hydrophilic 

and dependent on glucose transporters (e.g., GLUT1) for cellular uptake [47,48]. This 

prochelator design capitalizes on the overexpression of such transporters in various cancer 

cells and produces prochelators of improved therapeutic indexes. Two disulfide-based 

chelators featuring trimethyl thiosemicarbazone and imidazole-2-thione moieties (e.g., 

(IT1-S)2, Fig. 3) were found to form stable disulfide conjugates with serum albumin in 

the cell growth media [49]. The potential for albumin-mediated tumor accumulation and 

long lifetime in circulation makes these compounds attractive for preclinical development, 

particularly in light of their submicromolar antiproliferative activities in a panel of breast, 

ovarian, and colon cancer cell lines.

An alternative approach to intracellular activation employs the reactivity of arylsulfonates 

with GSH to release the phenolate donor of salicylaldehyde-based chelators (e.g., STC4, 

Fig. 3) [50]. In this approach, the rate of activation depends on the identity of the aryl group 

and could be tuned for specific conditions of high GSH levels characterizing a targeted 

cancer phenotype.

4. Effects within the tumor microenvironment

As new information emerges on oncogenic effects mediated by iron in the tumor 

microenvironment, interventions that modulate iron availability are revealing exciting 

opportunities to impact not only malignant cells but also their support network of immune 

cells, CSCs, and other stromal components.

The activation of metastasis suppressor NDRG1, which is a well-documented aspect of the 

activity of several thiosemicarbazones, has been recently implicated in the ability of DpC 

to inhibit the oncogenic crosstalk between pancreatic cancer cells and stromal stellate cells 

through the Wnt/β- catenin pathway [51].

The iron-releasing phenotype of TAMs, which correlate with poor prognosis, has been 

recognized as a potential target of chelators [52,53]. In a recent study aimed at examining 

iron distribution in renal cell carcinoma, iron secreted in extracellular fluids from primary 

tumors or in macrophage-conditioned media was found to promote the proliferation 

and migration of cancer cells. Notably, this effect was abolished in the presence of 

an extracellular chelator [54]. Overall, compounds that alter macrophage-mediated iron 

trafficking have the potential to impact cancer progression.

Iron is also critical to the survival of cancer cells in leptomeningeal metastases, which 

express LCN2 and its receptor SLC22A17 to grow in the nutrient-poor cerebrospinal fluid 

[55]. Consistent with a microenvironment that promotes cancer growth, the activation of 

this high-affinity system of iron acquisition is induced by inflammatory cytokines produced 

by macrophages. In a mouse model of leptomeningeal metastases from breast and lung 

cancers, treatment with DFO conferred a survival benefit and highlighted an opportunity for 

therapeutic intervention [55].
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In a study that examined drug resistance in estrogen receptor-positive (ER+) breast 

cancer, [56] malignant cells were found to acquire cancer stem-like phenotypes when 

cocultured with bone marrow mesenchymal stem cells, which conferred reduced sensitivity 

to antiestrogenic therapy. Critically, the resistant phenotype was associated with increased 

labile iron and several iron chelators (i.e., DFO, DFX, and ironomycin) sensitized the 

malignant cells to antiestrogenic drugs.

5. Outlook

Because of the prominent role of iron in cancer biology, small-molecule scavengers 

(chelators), which affect iron availability and redox chemistry in biological settings, provide 

opportunities for new therapeutic interventions. Although no chelator has been approved to 

date for clinical use in cancer chemotherapy, ongoing investigations increasingly reveal a 

potential to impact a broad spectrum of cancer types by targeting a fundamental player of 

malignant behavior. Furthermore, accumulating evidence documents the ability of chelators 

to affect the tumor-supporting network of stromal cells, including CSCs, and hence to 

confront the major problems of cancer recurrence and drug resistance. Consistently, studies 

in combination with standard-of-care chemotherapy are producing promising results in 

refractory cancers.

Although the concentration of labile iron in cells is significantly higher than that of 

other transition metals, the coordination of copper and zinc has been recognized as part 

of the intracellular agenda of several metal-binding drug candidates. Strategies aimed at 

manipulating iron availability in cancer progression should therefore consider the potential 

involvement of other metals. These investigations are likely to enrich both our fundamental 

understanding of metals in cancer biology and the associated translational efforts. Achieving 

specific metal recognition is less likely (and perhaps less important) than understanding the 

relevance of other metals to the overall mechanism of action.

The design and development of prochelation strategies have demonstrated significant 

advantages of improved cellular uptake and/or selectivity towards malignant cells; however, 

the biological characterization of prochelator systems is still in its early stages in cell culture 

settings. The assessment of these strategies in vivo is expected to produce compounds 

of improved pharmacological profiles (and possibly reduced unwanted side effects) when 

compared to the original chelators that potentially interfere with systemic metals.

Contemporary methods in biomarker development and companion diagnostics are likely to 

enhance the efficacy of preclinical and clinical studies targeting iron in cancer treatment. 

Analyses of the iron-associated gene expression profile of large cohorts of patients (i.e., 

the “iron score” [42]) will allow identification of phenotypes that are more likely to benefit 

from iron-binding strategies. This information will continue to build the prognostic value of 

the iron signature gene (e.g., expression of TfR1, FPN) and the validation of biomarkers, 

which could be incorporated in the design of clinical trials. Furthermore, bioimaging 

methods could serve as valuable companion diagnostic tools: for instance, the detection 

of endogenous iron by magnetic resonance imaging in TAMs has shown promise to monitor 

immunotherapeutic response in breast cancer [57]. Overall, coupling the assessment of 
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therapeutic regimens with iron-signature gene profiling and iron bioimaging techniques is 

likely provide precious information en route to new therapeutic options for cancer patients.
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Highlights

• Iron plays a critical role in cancer growth, metastasis, recurrence, and 

resistance to therapy

• Iron-modulating strategies affect not only cancer cells but also the tumor 

microenvironment

• Prochelation approaches offer opportunities to improve therapeutic windows 

and reduce unwanted side effects
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Figure 1. 
Simplified schematic showing the key components of the cellular iron import-export 

machinery. In cancer cells, a larger labile iron pool is maintained through the overexpression 

of the transferrin receptor TfR1, transporter DMT1, and STEAP metalloreductases, as well 

as through the downregulation of iron exporter FPN mediated by hormone hepcidin.
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Figure 2. 
Examples of iron chelators studied for anticancer applications with known iron-binding units 

shown in blue.
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Figure 3. 
Examples of iron prochelation strategies showing the activation reactions that release 

antiproliferative chelators (with confirmed binding units in blue).
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