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Abstract

The extracellular matrix (ECM) is an intricate network composed of various multi-domain 

macromolecules like collagen, proteoglycans, and fibronectin, etc., that form a structurally stable 

composite, contributing to the mechanical properties of tissue. However, matricellular proteins are 

non-structural, secretory extracellular matrix proteins, which modulate various cellular functions 

via interacting with cell surface receptors, proteases, hormones, and cell-matrix. They play 

essential roles in maintaining tissue homeostasis by regulating cell differentiation, proliferation, 

adhesion, migration, and several signal transduction pathways. Matricellular proteins display a 

broad functionality regulated by their multiple structural domains and their ability to interact 

with different extracellular substrates and/or cell surface receptors. The expression of these 

proteins is low in adults, however, gets upregulated following injuries, inflammation, and during 

tumor growth. The marked elevation in the expression of these proteins during atherosclerosis 

suggests a positive association between their expression and atherosclerotic lesion formation. The 

role of matricellular proteins in atherosclerosis development has remained an area of research 

interest in the last two decades and studies revealed these proteins as important players in 

governing vascular function, remodelling, and plaque formation. Despite extensive research, many 

aspects of the matrix protein biology in atherosclerosis are still unknown and future studies 

are required to investigate whether targeting pathways stimulated by these proteins represent 

viable therapeutic approaches for patients with atherosclerotic vascular diseases. This review 

summarizes the characteristics of distinct matricellular proteins, discusses the available literature 

on the involvement of matrix proteins in the pathogenesis of atherosclerosis and suggests new 

avenues for future research.
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1. Introduction

Although great progress has been made in the field of medicine, cardiovascular disease 

(CVD) remains the leading cause of morbidity and mortality globally [1]. Approximately, 

19 million deaths worldwide were associated with CVD in the year 2020, which indicates 

an almost 18.7% rise in CVD-related mortalities in comparison to the year 2010 [2]. In the 

year 2020, between the age of 30–79 years, approximately 28% people (over a billion) had 

abnormal carotid intima-media thickness of 1 mm or above, and 21% people (approximately 

816 million) and 1.5% individuals (approximately 58 million) were detected with carotid 

plaques and carotid stenosis, respectively. The incidence of these pathologies increases with 

age, and men are more susceptible to developing these diseases than women [3]. The World 

Health Organization in 2019 predicted that by 2030, almost 23.6 million people will die 

annually due to CVD.

The underlying cause of the majority of CVD is atherosclerosis, in which lipid accumulation 

takes place in the middle- and large-sized arteries. This lipid accumulation causes 

inflammation that ultimately may lead to clinical complications, myocardial infarction (MI), 

and stroke. Structurally, blood vessels are made up of three layers namely tunica intima, 

tunica media, and tunica adventitia. Tunica intima, the innermost layer, is constituted by a 

single layer of endothelial cells that facilitate the frictionless flow of blood, while tunica 

media is made up of elastic and vascular smooth muscle cells (VSMCs) that regulate the 

diameter of blood vessels [4]. Adventitial fibroblasts, immune cells, blood capillaries, and 

lymphatic vessels intricated together with ECM form tunica adventitia [5]. Atherosclerosis 

is characterized by intimal thickening and the formation of plaques, particularly at sites with 

endothelial cell injury and disturbed laminar flow [6]. It is mainly affected by the nature 

of the blood flow, as the regions that are subjected to laminar shear stress are protected 

from atherosclerosis and endothelial cells present at those sites have higher expression of 

atheroprotective genes [7]. Various inflammatory factors interact with vascular cells like 

endothelial cells, smooth muscle cells (SMCs), adventitial fibroblasts, resident macrophages, 

etc., and drive the progression of this devastating disease [8]. The abnormalities in the ECM 

structure and cellular behaviour lead to different vascular modalities. Matricellular proteins, 

a family of non-structural proteins that regulate the function of various ECM proteins, have 

emerged as important players in regulating vascular structure and function [9]. Over the past 

years, the involvement of various matricellular proteins in atherosclerosis development has 

been investigated. In this review, we will discuss the types of various matricellular proteins 

and summarize their role in the pathogenesis of atherosclerosis.

2. Development of atherosclerosis

The formation of fatty streaks is the first step in the development of atherosclerosis. It begins 

in the early ages usually in childhood and adolescence. In the subendothelial space and 

Pervaiz et al. Page 2

Matrix Biol. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



underlying smooth muscles, smaller cholesterol crystals start to deposit which leads to the 

initiation of plaque formation. Damage to the endothelial layer of arteries due to high blood 

pressure, smoking, elevated levels of circulating lipoproteins and diabetes makes the intimal 

layer leaky, which promotes the transport of plasma low-density lipoprotein (LDL) and TG-

rich lipoproteins to the subendothelial space either by trans-endothelial transport or diffusion 

at cell-cell junctions [10, 11] and these lipids undergo oxidation. This leads to the secretion 

of various proinflammatory molecules and increased expression of adhesion molecules on 

endothelial cells, which attract immune cells including T cells, neutrophils, monocytes, 

and mast cells, etc. [12, 13]. Monocytes bind to activated endothelial cells, transmigrate 

across the intima, and get differentiated into macrophages. These macrophages phagocytose 

lipids and become cholesterol-lengorged macrophages or foam cells. Further, in response 

to proinflammatory molecules and chemokines, VSMCs in the media transform from a 

contractile to a proliferative state and migrate into the intima, and subendothelial space, 

which leads to the formation of bulge resulting in the reduction of blood flow [14]. The 

continuous accumulation and coalescence of lipids lead to cell apoptosis and necrosis, which 

distorts and later disrupts the normal structure of intima. Failure to remove apoptotic cells 

results in the formation of lipid-rich necrotic cores, which is covered by fibrous cap [15]. 

In advanced atheroma, unchecked activity of proteolytic enzymes causes the weakening of 

the fibrous cap at certain places. This increases the chances of plaque rupture, thrombus 

formation, and blockage of blood supply to the heart or brain [15, 16]. Laboratory studies 

and clinical observations have greatly advanced our knowledge regarding the mechanisms 

involved in the pathogenesis of atherosclerosis. The pathogenesis of atherosclerosis has been 

reviewed earlier [17–20].

3. Matricellular proteins

The historic concept of “matricellular” was first given by Bornstein et al. while working 

on two novel proteins namely thrombospondin 1 (THBS1) and SPARC, which later 

became prototype members of this family known as matricellular proteins [21]. The term 

“matricellular” was coined in the year 1995 and consists of proteins that are a part of 

the ECM. ECM acts as a critical niche that regulates various cellular processes including 

survival, proliferation and migration, and thus contributes to the fundamental physiologic 

processes such as development, tissue homeostasis, and tissue remodeling [22]. This 

dynamic nature of ECM is regulated by secretory non-structural matricellular proteins in 

contrast to the classical ECM proteins such as collagens, fibronectin and laminin, etc., that 

play structural roles [23, 24]. Matricellular proteins modulate various cellular functions via 

interacting with cell surface receptors, proteases, hormones, and cell-matrix [25]. These 

proteins contain domains, which can enzymatically alter matrix components, modulate or 

sequester the activities of various growth factors. They are known to serve by bridging 

the functional gap between growth factors, proteases, cytokines, and macromolecules, 

and eventually function as modulators and adaptors of cell-matrix interactions [26–28]. 

The members of this family include thrombospondins, CCN proteins, SPARC, periostin, 

osteopontin, tenascins, etc. [29–32].
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4. Matricellular proteins in atherosclerosis

Most of the matricellular proteins have higher expression during embryogenesis, which 

diminishes abruptly after birth and becomes low to absent during normal adult life. Their 

expression again upregulates during tumor growth, vascular pathologies and after tissue 

injury [31], suggesting their essential role in the migration and proliferation of malignant 

cells, wound healing, and ECM remodeling. In this section, we will describe the scientific 

evidence for the presence and function of various matricellular proteins involved in the 

pathogenesis of atherosclerosis (Table 1 and Fig. 1).

4.1. Thrombospondins (THBSs)

In the year 1978, Lawler et al. characterized, decoded the microscopic appearance and the 

subcellular locations of THBS proteins [33]. The THBS family consists of the 5 subtypes 

viz THBS1 to 5 based on their molecular architecture and oligomerization status, which 

are encoded by five distinct genes namely THBS1 to 5 [34]. THBS1 is the most studied 

among all THBS proteins and plays significant roles in inflammatory responses, platelet 

aggregation, regulation of angiogenesis during tumor growth and wound healing. Most of 

these properties are also shared by THBS2 [35, 36]. The last member, THBS5 also called 

as cartilage oligomeric matrix protein (COMP) is involved in chondrocyte differentiation, 

attachment and in assembling cartilage ECM complex [37]. THBS1 and THBS2 function by 

binding to various receptors including syndecans [38, 39], LRP-1 [39], CD36 [40], CD47 

[41], calreticulin [42] and integrins (α9β1, α6β1, αvβ3 and αIIββ3) [43–47]. On the other 

hand, THBS4 binds to CD44 [48] and THBS5 modulates cellular processes via binding to 

integrins (α7β1, αvβ3, α5β1, α5β3) [49, 50] and CD47 [51].

4.1.1. Thrombospondin 1 (THBS1): THBS1 levels are low in healthy blood 

vessels; however, elevated THBS1 expression has been associated with CVD including 

injury-induced neointima formation and atherosclerosis [52–54]. After vascular injury, 

the expression of Thbs1 was found to be elevated in diabetic rats [55]. Consistently, 

the blockade of Thbs1-mediated signaling increased re-endothelialization and decreased 

neointima formation in the carotid arteries of rats following balloon-induced injury 

[56]. These studies have pointed out that inhibition of Thbs1-mediated signaling may 

be therapeutically beneficial in vascular injury-induced neointima formation. On the 

other hand, Apoe−/−/Thbs1−/− double knockout mice were observed to have increased 

atherosclerotic plaque maturation compared with control mice; however, this increase was 

observed only in the advanced stage of atherosclerosis [57]. In the initial stage, loss of 

Thbs1 reduced atherosclerotic lesion formation, while in the advanced stage, Thbs1 deletion 

was associated with elevated inflammation, defective phagocytosis and enhanced ECM 

remodeling that caused accelerated plaque maturation and necrosis [57].

Ganguly et al. reported reduced atherosclerotic plaque area and decreased collagen 

accumulation in aortic roots of Apoe−/−/Thbs1−/− double knockout mice compared with 

Apoe−/− mice after leptin stimulation [58]. Further, the deletion of Thbs1 in mice 

significantly decreased disturbed flow-stimulated carotid artery stiffness in comparison 

to wild-type controls, indicating that disturbed flow promotes arterial stiffening through 
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Thbs1-mediated signal transduction [59]. Moreover, hypoxia as found in atherosclerotic 

arteries has been shown to upregulate THBS1 expression in coronary artery SMCs, which 

in turn promotes their migration. This migration-stimulating effect of hypoxia was inhibited 

with THBS1-neutralizing antibody treatment, suggesting the involvement of THBS1 in the 

pathogenesis of atherosclerosis [60, 61]. Roth et al. demonstrated that THBS1-neutralizing 

antibody blocks PDGF- and cholesterol-stimulated aortic SMC proliferation, hinting the role 

of THBS1 in PDGF- and cholesterol-stimulated aortic SMC proliferation [62]. THBS has 

also been shown to bind with very-low-density lipoprotein (VLDL), which may facilitate 

THBS and VLDL incorporation into nascent atherosclerotic plaques [63].

THBS1 induces its downstream effects via binding to its cognate receptor CD47 

(also known as the integrin-associated receptor) [41] and governs leukocyte function, 

vascular resistance, and intracellular signal transduction in endothelial cells and VSMCs 

[64]. It inhibits endothelial nitric oxide (NO) production, regulates vascular tone, and 

maintains systemic blood and cardiac dynamics under stress [65–68]. In addition, THBS1-

CD47 signaling regulates thrombosis/hemostasis, immune responses, and mitochondrial 

function [69]. In VSMCs, THBS1-mediated CD47 activation stimulates Nox1-derived 

reactive oxygen species production, which inhibits VSMC-dependent vasorelaxation and 

induces vascular dysfunction [70]. It also enhances fluid-phase phagocytosis of LDL by 

macrophages and causes foam cell formation, a key characteristic of atherogenesis (Fig. 2a). 

In macrophages, THBS1-induced Nox1 activation stimulates dephosphorylation of actin-

binding protein cofilin leading to cytoskeletal rearrangements and increased LDL uptake 

[71]. LIM-kinases and testicular protein kinases are known to cause cofilin inactivation 

by phosphorylating it at Ser-3 residue. On the other hand, slingshot protein phosphatases 

(SSH) dephosphorylate cofilin to induce its activation and regulate actin polymerization 

[72]. Contrary to the effects of THBS1 on cofilin activation in macrophages, VSMC-specific 

deletion of Thbs1 in mice reduced cofilin phosphorylation via upregulating SSH1 protein 

expression, improved mechanotransduction, restored elastic lamina smooth muscle cell 

connections and decreased thoracic aortic aneurysm formation, suggesting the detrimental 

role of Thbs1 in the pathogenesis of thoracic aortic aneurysm [73]. In another study, 

Yamashiro et al. reported upregulated Thbs1 expression in VSMCs following mechanical 

stress and demonstrated that Thbs1 via binding to cell surface integrin αvβ1 aids in 

the maturation of the focal adhesion-actin complex, reduces small GTPase Rap2 activity, 

promotes nuclear shutting of Yes-associated protein and stimulates downstream signaling 

[74]. Deletion of Thbs1 in mice inhibited this signaling cascade, led to impaired aortic 

remodeling in response to transverse aortic constriction-induced pressure overload and 

inhibited neointima formation upon complete left carotid artery (LCA) ligation [74]. These 

studies indicate the important role of Thbs1 in the pathogenesis of vascular pathologies via 

dysregulating actin cytoskeleton remodeling. It has been shown that exposure of disturbed 

flow to endothelial cells causes endothelial-to-mesenchymal transition (EndoMT), which 

promotes atherosclerosis development [75, 76]. Elevated Thbs1 levels are also linked 

with EndoMT following complete LCA ligation suggesting the potential role of Thbs1 in 

EndoMT-mediated atherogenesis [77]. A recent study by Singla et al. reported that THBS1 

inhibits lymphangiogenesis by CD47-mediated mechanisms and lymphatic endothelial 

cell-specific Cd47 deletion promotes arterial lymphatic vessel formation and attenuates 
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atherosclerosis [78]. These data suggest the role of Thbs1-Cd47 axis in reducing removal of 

cholesterol from the arterial wall via adventitial lymphatics and promoting atherogenesis.

In addition to serving as a receptor for THBS1, CD47 binds with signal regulatory protein 

α (SIRPα) present on phagocytic cells including macrophages and dendritic cells [79]. 

CD47 is ubiquitously expressed on viable cells and interacts with phagocyte SIRPα to 

prevent the efferocytic removal of live cells [80]. However, the surface expression of 

CD47 downregulates on apoptotic cells allowing efferocytosis of those cells by phagocytes 

and inhibits necrosis-induced inflammation. This CD47-SIRPα signaling is an important 

immune checkpoint that helps to maintain tissue integrity and homeostasis [81]. Recently, 

Singla et al. demonstrated the differential effects of myeloid cell-specific Sirpa and Cd47 
deficiencies on atherosclerosis development [82]. Loss of myeloid cell Sirpa signaling 

stimulated efferocytosis, enhanced lipid efflux, decreased cholesterol accumulation, and 

attenuated oxidized LDL-induced inflammation in macrophages. Further, it inhibited 

atherosclerotic lesion formation and necrotic core formation in hypercholesterolemic mice. 

Conversely, deletion of Cd47 in myeloid cells impaired efferocytosis and cholesterol efflux, 

augmented cellular inflammation, and promoted plaque formation [82] (Fig. 2b). Thus, 

interaction triangle of Thbs1-Cd47-Sirpα has several pathogenic consequences that promote 

atherogenesis and severity of disease. Thbs1 also mediates its effects by interaction with cell 

surface receptor Cd36 [83]. Thbs1 through Cd36-mediated signaling enhances proliferation 

of VSMCs via upregulating the expression of cell cycle promoter cyclin A. Ablation of 

Cd36 in VSMCs significantly decreases cell proliferation and neointimal hyperplasia in 

injured carotid arteries of Apoe−/−/Cd36−/− mice compared with Apoe−/− mice [84].

4.1.2 Thrombospondin 5 /cartilage oligomeric matrix protein 
(COMP): Hedbom et al. reported the presence of COMP in bovine and rodent cartilaginous 

tissue [85]. Later, its expression was detected in cultured human VSMCs and also found 

localized in SMCs present in the medial layer of non-atherosclerotic arteries as well 

as in intimal SMCs of human atherosclerotic and restenotic arteries [86]. It aids in the 

maintenance of VSMC contractile phenotype and mediates protective effects against injury-

induced VSMC dedifferentiation and neointima formation in Sprague-Dawley rats through 

interaction with α7β1 integrin [49]. Comp expression was also found in both inflammatory 

and/or fibrous atherosclerotic plaques in mice [87]. Additionally, Riessen et al. reported that 

VSMCs adhere strongly to COMP-coated surfaces, and it aids in the migration of VSMCs 

[86]. These observations suggest the possible role of COMP in vasculogenesis and vascular 

diseases like atherosclerosis via regulating SMC migration and adhesion. Hultman et al. 

in their recent study showed significantly increased COMP expression in atherosclerotic 

plaques from symptomatic patients compared with lesions from asymptomatic patients [88]. 

Further, COMP levels were positively associated with plaque lipid- and CD68-positive 

areas, but negatively with collagen, elastin, and SMC contents. A study has demonstrated 

elevated circulating levels of COMP in patients with coronary heart disease compared with 

control patients and observed a positive correlation between COMP levels and coronary 

artery calcium score, suggesting serum COMP levels can serve as a screening biomarker 

for coronary calcification [89]. Sandstedt et al. reported the presence of COMP neoepitope, 

a highly conserved sequence across several species, in carotid arteries of atherosclerotic 
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patients. COMP neoepitope levels in plasma and endarterectomy samples were found 

significantly increased in comparison to control subjects. They also detected its presence in 

SMCs, endothelial cells, and foam cells in carotid stenosis and suggested that degradation of 

COMP and generation of a specific COMP fragment COMP neoepitope may be associated 

with atherosclerosis progression [90]. These findings indicate an association of arterial 

COMP expression with plaque vulnerability in humans.

Contrarily, Fu et al. reported that Comp deficiency in mice leads to increased plaque size 

accompanied by increased calcification. Apoe−/−/Comp−/− mice fed with a chow diet for 

12 months had enhanced atherosclerotic calcification in the innominate arteries than Apoe 
null control mice. Furthermore, microarray profiling of wild-type and Comp knockout 

macrophages revealed that Comp-deficient macrophages have atherogenic and osteogenic 

characteristics. The authors concluded that Comp deficiency aggravates atherosclerotic 

calcification by switching macrophage phenotype toward the atherogenic and osteogenic 

type via integrin β3 activation [91]. Additional analysis demonstrated significantly 

decreased COMP expression in aortic samples of aortic aneurysm patients compared 

with controls [92]. COMP along with blood flow fine-tunes endothelial homeostasis, as 

it inhibits disturbed flow-induced endothelial activation by interacting with integrin α5. 

Under normal as well as pathological conditions including partially ligated carotid arteries 

mouse models, increased endothelial cell activation was observed in the aortic arch of 

Comp−/− mice compared with control mice. Moreover, Comp-derived peptidomimetics 

(CCPep24) mimicking a specific Comp-integrin α5 interaction, protected against endothelial 

cell activation and atherogenesis in vivo [93]. Further, Du et al. also reported Comp as a 

novel endogenous inhibitor of vascular calcification employing two different rat models of 

vascular calcification. They revealed that its inhibitory effect is exerted partially through the 

direct binding of its C-terminal domain to bone morphogenetic protein-2 (Bmp-2), which 

prevents Bmp-2 binding to its receptor and consequently inhibits Bmp-2-induced osteogenic 

signaling [94]. COMP also plays a catalytic function in collagen-microfibril assembly as 

it brings collagen molecules together, and aids in the formation of mature fibrils [95]. 

It has been observed that the size of inflammatory lesions significantly decreases with 

defective collagen assembly [96]. Having a role in the assembly of collagen fibers, COMP 

reduced expression accordingly affects the structure and growth of atherosclerotic lesions 

and its elevated levels with respect to collagen lead to the impairment of fibrillogenesis 

[97]. Consistently, Bond et al. showed larger plaques with higher collagen content in 

brachiocephalic arteries of Comp-deficient Apoe−/− mice [87]. The changes in morphology 

in brachiocephalic artery plaques in mice lacking Comp could be a consequence of altered 

collagen metabolism [87]. Consequently, the risk of rupturing the atherosclerotic plaque 

increases with the degradation of collagen fibers in the vessel wall. Thus, COMP stands to 

be a capable molecule in collagen fibrillogenesis and shows a significant anti-atherogenic 

effect.

4.2. CCN Family

This family of matricellular proteins got its acronym of CCN from the first three discovered 

members of the family known as Connective Tissue Growth factor, Cysteine-Rich 

Protein and Nephroblastoma Overexpressed Gene. It consists of 6 multifunctional proteins 
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named CCN1 to CCN6 [98]. CCN proteins regulate various cellular processes including 

cell adhesion, migration, chemotaxis, cell survival [99], skeletal formation and further 

development [99, 100], and cell proliferation [101]. These proteins drive angiogenesis by 

manipulating cell communication network, which integrate most of growth factors and 

proteins toward new vessel formation [102]. CCN1 induces its cellular effects by binding 

to cell surface receptors including syndecan 4 [103], αMβ2 and α6β1 [104], CCN2 binds 

to heparan sulfate proteoglycan [105], tropomyosin-related kinase A [106], LRP-1 [107]; 

CCN3 acts by binding to notch [108] and integrins (α6β1 and αvβ5). One of the important 

functions of CCNs appears to be as an adaptor molecule, binding growth factors, such as 

vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β) and 

shuttling them near cell surface via second binding partners, namely integrins or heparin 

sulfate proteoglycans. CCNs may directly bind to cell surface and initiate intracellular 

signaling cascades, which are critical for cellular growth and mobility during vascular 

development and aid in the progression of vascular diseases such as atherosclerosis and 

restenosis [109].

Earlier studies have shown upregulated CCN1 expression during inflammation, tissue repair, 

and wound healing [110]. CCN1 is considered to be an important player in inflammatory 

diseases including rheumatoid arthritis, bacterial and viral infections, vascular injury, 

and colon inflammation [111]. A case-control study was done to evaluate serum levels 

of CCN1 in rheumatoid arthritis patients, and then examined correlation among serum 

CCN1 levels, carotid intima-media thickness, and predisposition to subclinical carotid 

atherosclerosis. Serum CCN1 levels were found significantly elevated in rheumatoid arthritis 

patients compared with healthy controls and observed positively correlated with carotid 

intima-media thickness [112]. Similarly, a significant positive correlation between CCN1 

expression and myocardial infarct size was found among ST-elevation MI patients [113]. 

Additionally, CCN1 levels were determined in type 2 diabetic patients and related to the 

occurrence of peripheral artery disease. The results demonstrated that patients with more 

advanced peripheral artery disease had significantly higher CCN1 levels and these levels 

were positively associated with disease severity [114]. Further, it has been shown associated 

with fibroblast migration and monocyte adhesion [110, 115], myocardial angiogenesis and 

remodeling of the vascular bed following myocardial injury [116].

CCN1 expression in normal endothelial cells, VSMCs and fibroblasts is very low [117], 

however, in atherosclerotic plaques particularly in neovascularized regions, its expression 

is highly elevated [118]. Additional studies reported increased CCN1 levels in human 

arteriosclerotic carotid and coronary arteries as well as arteriosclerotic aortas of Apoe-

deficient mice [115, 119]. In a rat carotid artery injury model, rapid elevation in 

the expression of this protein was observed in the media and neointima regions, and 

Ccn1 knockdown suppressed balloon injury-induced neointima formation [120]. These 

observations are further supported by the findings that CCN1 immunoreactivity is present 

in the heart tissues of patients who died of sudden cardiac death and revealed that 

CCN1 expression significantly associates with myocardial ischemia, interstitial edema 

and atheromatosis of coronary arteries [121]. Further, immunological studies identified 

elevated CCN1 expression in neointimal lesions and suggested a possible role of CCN1 

in lysophosphatidic acid-induced vascular neointima formation [122]. Zhoa et al showed 
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predominant expression of Ccn1 in Apoe−/− mice aortic foamy macrophages and reported 

worsened hyperlipidemia, enhanced systemic inflammation, and augmented atherosclerosis 

in Ccn1-treated Apoe−/− mice compared with control mice. Additionally, Ccn1 treatment 

impaired macrophage reverse cholesterol transport capacity as well as reduced the 

expression of proteins associated with cholesterol clearance including ABCG5, ABCG8, 

liver X receptor α, cholesterol 7α-hydrolase and LDL receptor in mouse liver and 

exacerbated hepatic lipid accumulation [123].

Disturbed blood flow-induced CCN1 expression in endothelial cells has been shown to 

regulate endothelial cell functional phenotypes. CCN1-α6β1 mediates shear stress-induced 

NF-κβ activation and expression of atheroprone genes in endothelial cells. Activation of 

NF-κβ by CCN1/α6β1 works through a positive-feedback loop and enhances the production 

of CCN1 and α6β1 [124]. Besides, a mutation in Ccn1 gene that prevents binding of 

Ccn1 with its receptor integrin α6β1 attenuates partial left carotid artery ligation-stimulated 

atherosclerosis in Apoe−/− mice. During atherosclerosis development, Ccn1 also regulates 

tumor necrosis factor-α (TNF-α)-induced vascular endothelial cell apoptosis via p53 and 

NF-κβ activation [125]. Thus, CCN1 is a critical pathophysiological regulator mediating the 

endothelial dysfunction induced by disturbed blood flow and can be targeted for therapeutic 

restoration of endothelial function to prevent atherosclerosis [126].

4.3. Secreted phosphoprotein 1 (SPP1)

Secreted Phosphoprotein 1 is also called as Osteopontin. It exists both as a component of 

the ECM and a soluble cytokine. It regulates bone formation and ECM mineralization. It 

is considered as a strong predictor of calcification, biomineralization, vascular diseases like 

atherosclerosis and is also a prognostic indicator for inflammatory heart diseases [127, 128]. 

SPP1 interacts with cell surface integrins [αv (β1, β3, β5, β6)] and modulates a variety of 

biological processes such as migration, cell adhesion and survival, ECM remodeling and 

regulates vascular calcification [129, 130]. It is also highly expressed in cancer models and 

has shown a possibility of enhancing cancer cell survival [131].

Previous studies have investigated the role of SPP1 in atherosclerosis and examined the 

effects of its overexpression/deficiency on atherosclerotic lesion formation [132, 133]. 

Elevated SPP1 levels were observed in patients with coronary artery disease (CAD) [134]. 

In a pilot study, plasma SPP1 concentrations were found significantly higher in patients 

with confirmed presence of rupture plaque in comparison to healthy individuals [135]. 

A significant association was also detected between plasma SPP1 levels and increased 

risks of adverse outcomes after ischemic stroke [136]. SPP1 expression is localized in 

atherosclerotic lesions, especially in macrophages- and foam cell-positive areas, suggesting 

its role in the development and progression of atherosclerosis and vascular remodeling [133, 

137, 138]. Under normal physiological circumstances, the circulating/tissue SPP1 levels are 

low but enough to maintain normal arterial physiology [139, 140].

It is now well known that SPP1 acts as a physiological inhibitor of vascular calcification. 

Vascular cell types comprising endothelial cells, VSMCs, and macrophages are the major 

source of SPP1 in the arterial wall [141]. Upregulation of Spp1 was observed in response 

to ischemic injury in the murine model of hindlimb ischemia [142], that in turn promotes 
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cell adhesion, proliferation, migration, and survival assisting in the healing process [143, 

144]. Matsui et al. using Spp1 knockout mice on Apoe null background showed reduced 

atherosclerotic lesion areas in female heterozygous (Spp1+/−) and homozygous (Spp1−/−) 

mice compared with wild-type (Spp1+/+) mice. However, no differences in atherosclerosis 

were observed in male mice demonstrating the sex-specific role of Spp1 in atherosclerotic 

lesion formation. Additionally, significantly increased vascular calcification was observed 

with Spp1 deletion in male 60-week-old mice indicating an inhibitory effect of Spp1 on 

vascular calcification [145]. Altogether, these findings suggest that SPP1 plays a promoting 

effect on atherosclerosis development and an inhibitory effect in vascular calcification. 

Chiba et al. examined the effects of Spp1 overexpression in hematopoietic cells on 

atherosclerotic lesion formation and reported that Spp1 overexpression in lymphoid tissues 

associates with an increase in aortic lesion size in atherogenic diet-fed mice. Further, 

they showed significantly higher expression of Spp1 in lesional foamy macrophages of 

Spp1 transgenic mice compared with such macrophages in control mice [133]. Additional 

experiments revealed that higher Spp1 levels in atherosclerotic lesions were not due to 

the deposition of serum Spp1, but mainly due to production of Spp1 by infiltrating 

macrophages. Consistently, Isoda et al. showed that global overexpression of Spp1 in 

atherogenic diet-fed mice results in larger atherosclerotic lesions compared with control 

non-transgenic mice [138].

In diabetic vascular disease, Spp1 secretion was also observed to increase with high glucose 

concentrations in the rat aortic SMCs in vitro [146]. SPP1 also regulates the recruitment of 

inflammatory cells and adhesion or migration of foam cells by binding to its receptors such 

as integrins (avb3, avb1, avb5, and a4b1) or the splice variant of CD44 v3-v6, AT1, or AT2 

[147, 148]. A recent study by Yu et al. has reported that Nox4-induced Spp1 expression 

in VSMCs is partially responsible for AngII-stimulated aortic aneurysm and atherosclerosis 

[149]. Collectively, SPP1 seems to exert an important role in the formation of atherosclerotic 

plaque, enhances vascular inflammation, and participates in vasculopathy by increasing 

proliferation of endothelial and VSMCs [150].

4.4. Roof plate-specific spondins (RSPOs)

RSPOs get their name due to the discovery of RSPO1 in mouse roof plate of neural tube 

during development. In vertebrates, four types of RSPOs namely RSPO1–4 are identified 

[151]. RSPOs serve as ligands for various receptors including leucine-rich repeat containing 

G-protein coupled receptors 4–6 [151, 152], ZNRF3/RNF43 [153] and heparan sulfate 

proteoglycan. RSPOs play various physiological and pathophysiological roles. RSPOs 

potently bind with leucine-rich repeat-containing G protein-coupled receptors (LGRs) and 

prevent the degradation of Wnt receptors, thereby stimulate Wnt-stimulated signaling 

[154]. Wnt signaling is pivotal for developmental processes, including cell proliferation, 

differentiation and tissue patterning. The cardiovascular system in healthy adults has little 

Wnt activity, however, this signaling pathway reactivates during heart or blood vessel 

pathological conditions [155]. Wnt signaling has gained interest as a potential therapeutic 

target because of its higher expression in various pathologies [155]. Various studies reported 

a protective role for Wnt signaling in cholesterol trafficking and its accumulation in tissues, 

even the arterial wall [156–158].
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The role of RSPO2 in atherosclerosis development has been recently reported by Singla 

et al. [159]. Elevated RSPO2 expression was observed in various cell types present in 

the different layers of human and mouse atherosclerotic arteries including medial SMCs, 

intraplaque macrophages and adventitial fibroblasts. Using in vitro and in vivo experiments, 

the authors revealed the inhibitory role of RSPO2 on VEGFC/VEGFR3-mediated 

lymphangiogenesis. Further, RSPO2 limited the activation of AKT-eNOS signaling via 

LGR4-mediated mechanisms. NO signaling has been shown critical for lymphangiogenesis 

and maintenance of lymphatic function [160], therefore RSPO2 via suppressing NO 

signaling in lymphatic endothelial cells prevented arterial lymphangiogenesis and impaired 

arterial cholesterol removal that in turn led to increased atherosclerotic lesion formation 

[159] (Fig. 3). Interestingly, perivascular application of LGR4-extracellular domain peptide 

suppressed atherosclerotic lesion formation and increased arterial lymphatic vessel density 

in hypercholesterolemic mice following partial left carotid artery ligation. Moreover, 

the authors demonstrated that RSPO2 inhibited Wnt-β-catenin signaling in lymphatic 

endothelial cells via diminishing NO-mediated nuclear translocation of β-catenin [159] 

(Fig. 3). On contrary, Carmon et al. reported the induction of Wnt signaling following 

RSPO2 exposure in other cell types like MDCK, HEK293T and HeLa cells, suggesting the 

cell-specific effects of RSPO2 treatment on Wnt-β-catenin pathway [161]. Future studies 

are needed to better understand the roles of RSPOs in regulating atherosclerotic lesion 

formation, underlying mechanisms, and RSPOs’ cell-specific effects during atherogenesis.

4.5. Vitronectin (VTN)

VTN is synthesized in the liver and secreted into the plasma. It serves as a ligand 

for integrins αvβ1, αvβ5, αvβ3 and αIIbβ3 [162]. Like other matricellular proteins, it 

has a crucial role in various biological processes such as adhesion, angiogenesis and 

cell migration [163]. It also regulates processes including coagulation, blood fibrinolysis, 

complement-depended immune responses, pericellular proteolysis, etc. [164–167]. It is 

found to be accumulated in atherosclerotic plaque [164–167] and mediates platelet 

aggregation and adhesion at the vascular injury sites [168]. In contrast, reduced levels of 

VTN in airways of asthmatic and chronic pulmonary disease patients, contributes to the 

airways remodeling as seen in obstructive airway disorder [169].

Previous data suggest that the liver is a major site of VTN biosynthesis [170]. Normal 

plasma concentration of VTN ranges from 200 to 400 μg/mL and it constitutes 0.2–0.5% 

of total plasma protein [171, 172]. Expression of VTN is considered to be related to the 

development of atherosclerosis. Guettier et al. reported the presence and accumulation 

of VTN in atherosclerotic plaques [166]. It was speculated that VTN accumulation in 

atherosclerotic plaques resulted from its diffusion from plasma, where it is released either 

by activated platelets through damaged endothelium or synthesized by cells involved in 

atherosclerotic plaque formation [173]. VTN triggers adhesion and aggregation of platelets 

at the sites of injury in blood vessels, hence considered as a contributor of atherosclerosis 

and thrombosis [174]. It is prominent player in the development of aortic inflammation and 

its expression is a useful indicator in the determination of plaque burden and stability [175]. 

Its role was further verified by quantifying the plasma levels of VTN in patients suffering 

from CAD, and increased VTN levels were detected in these patients. The plasma level of 
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VTN showed a positive correlation with the severity of the disease [176, 177]. Based on the 

experimental and clinical evidence, it is now established that VTN plays a very essential 

role in establishing the initial response to tissue injury and is thus considered as a significant 

biomarker of atherosclerosis [178].

VTN has been shown to be involved in adhesion and migration of SMCs, neural crest 

cells, and keratinocytes [179, 180]. Migration of SMCs is a contributor to the intimal 

thickening during atherogenesis. Interestingly, chemotactic and haptotactic activity of VTN 

are mediated by its receptor αVβ3 in cultured SMCs [179]. Further, Dufourcq et al. reported 

that treatment with neutralizing anti-Vtn antibody inhibits VSMC migration and suppresses 

neointima formation after vascular injury [181]. Although, in rabbits VTN was reported 

to be localized in atherosclerotic arteries and its role was highlighted in regard to the 

abnormalities in platelets like platelet activation & aggregation in CAD [182, 183]. Recent 

findings by Chakravarty et al. have shown a reciprocal relationship of VTN with cholesterol 

load and unveiled its multi-functional role beyond adhesion function. They reported that 

the inflammation and plaque progression is associated with systemic deficiency of Vtn in 

Apoe−/− mice. Imbalance in its levels facilitates the trafficking of the inflammatory cells to 

the plaque microenvironment, and decreased Vtn expression due to high cholesterol load and 

aortic inflammation leads to the formation of advanced necrotic atheroma [175].

4.6. Tenascins (TN)

This family of matricellular proteins comprises of four large glycoproteins namely tenascin 

W (TNW), tenascin C (TNC), tenascin R (TNR) and tenascin X (TNX) [184]. TNC 

expression is stimulated by various growth factors, mechanical stress and cytokines. Even 

having significant structural homology, these four members exhibit distinct expression 

patterns. TNW is mostly restricted to the skeletal system during remodeling or development 

phases; TNC is expressed in multiple cells and tissues depending on types of stimuli; 

TNR is restricted to the central nervous system (CNS) and whereas TNX is expressed 

in connective tissues [185]. These proteins function via interacting with receptors integrin 

α8β1 [186], IgCAM/contactin [187], myelin associated glycoprotein [188] and heparan 

sulphate proteoglycan [189].

Among all the four members, TNC is the most studied protein and reported to have a 

role in various CVD including the promotion of cardiac fibrosis, myocardial hypertrophy 

[190], cardiac dysfunction [191], and vascular diseases by showing atherogenic effects 

via induction of TLR4-dependent foam cell formation [192]. Significantly elevated levels 

of TNC were found in serum samples of CAD patients in comparison to non-CAD 

patients, and a positive correlation between TNC levels and severity of atherosclerosis was 

observed [193, 194]. Recently, Gholipour et al. reported increased TNC levels in exosomes 

isolated from CAD patients than non-CAD patients [195]. In a prospective observational 

study, higher plasma TNC levels predicted overall and cardiovascular mortality, and were 

associated with higher occurrence of cardiovascular events in chronic kidney disease 

patients [196]. Tnc expression was found increased with progression of atherosclerosis in 

atheroprone Apoe−/− mice [197]. Balloon catheter-induced vascular injury has also been 

shown to upregulate Tnc expression specifically in neointimal lesions [198]. Moreover, 
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lipopolysaccharide (LPS) treatment induces Tnc expression in THP-1 macrophages in vitro 
in a dose- and time-dependent manner and it augments LPS-induced foam cell formation 

[199]. Besides, TNC produced by oxidized LDL-stimulated macrophages increases foam 

cell formation through TLR4 and scavenger receptor CD36 [192].

TNC expression was specifically detected in the macrophage-rich areas of atherosclerotic 

plaques [200]. TNC can act as damage-associated molecular patterns to activate 

macrophages and fibroblasts and induce inflammatory cytokine expression through TLR-4 

receptor [201, 202]. Wang et al. demonstrated a higher expression of Tnc and annexin 

II in atherosclerotic plaque and their interaction facilitated macrophage migration and 

VEGF expression via Akt, NF-κB and ERK1/2 pathway [203]. In diabetic-acute MI 

patients, increased TNC expression in coronary artery atherosclerotic lesions was found 

to be associated with increased TGF-β, macrophage accumulation and TUNEL-positive 

apoptotic cells [204]. Wallner et al. reported minimal and random TNC expression in 

fibrotic but lipid-poor atherosclerotic plaques. In contrast, all advanced stage plaques with 

an organized lipid core or ruptured intimal surface has elevated expression of TNC, which 

was preferentially concentrated around the lipid core, shoulder regions, and ruptured area of 

the plaques but not in the fibrous cap. Further, TNC expression was found to be associated 

with the degree of inflammation present, but not with plaque size [200]. Contrary to 

this, Wang et al. reported the atheroprotective role of Tnc utilizing atheroprone Apoe−/− 

mice, in which they showed that Tnc gene deletion leads to upregulation of eotaxin, 

a chemokine that promotes migration and activation of eosinophils and plasma eotaxin 

elevation correlates with atherosclerosis development [205]. They unveiled a protective role 

for Tnc in atherosclerosis and suggested its potential to reduce atherosclerosis, in part by 

modulating Vcam-1 expression.

4.7. Galectins

Galectins is a family of β-galactoside-binding lectins that have emerged as crucial 

modulators of inflammatory processes [206]. They are involved in intercellular signaling, 

cell-cell and cell-to-matrix adhesion, apoptosis, angiogenesis, and innate and adaptive 

immunity [207]. Galectins are coded by the genes named Lgals. Till date, fifteen different 

types of galectins have been identified, out of which only two have been included 

in matricellular family namely galectin 1 (Gal1) and Gal3. Both Gal1 and Gal3 play 

important roles in regulating immune responses by serving as damage-associated molecular 

patterns [208, 209]. These proteins have been linked to various diseases such as cornea 

proliferative vitreoretinopathy [210, 211], Fuch’s endothelial corneal dystrophy [212], age-

related macular degeneration [213], diabetic retinopathy [214–216].

Gal1 plays an essential role in cardiovascular pathophysiology by moderating acute and 

chronic inflammatory responses [217]. For instance, patients suffering from MI, heart 

failure, or Chagas cardiomyopathy have increased GAL1 expression in cardiomyocytes 

[218]. Lgals1-deficient mice after acute MI exhibited enhanced cardiac inflammation and 

worsened ventricular remodeling [219]. Additionally, circulating GAL1 levels associate with 

the severity of CAD and subsequent occurrence of major adverse cardiovascular events in 

patients with CAD [220]. Moreover, upregulated GAL1 expression has been reported to 
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associate with stroke outcome in large artery atherosclerotic stroke [221]. Gal1 and Gal3 

are the predominant galectins observed in atherosclerotic plaques and have specific spatial 

and temporal intraplaque expression patterns during atherosclerosis progression [222]. 

GAL1 serves as an adapter between cells and ECM and modulates adhesion, migration 

and proliferation of SMCs. Moiseeva et al. demonstrated increased GAL1 expression in 

proliferating SMCs [223]. Moreover, GAL1 fusion protein stimulated serum-induced DNA 

synthesis in human SMCs grown on plastic or endogenous ECM, and increased SMC 

adhesion to ECM. It affected SMC adhesion by interacting with β1 integrin present on 

cell surface and inducing outside-in signaling [223]. VSMCs-deficient in Lgals1 exhibited 

greater motility but adhered slower on fibronectin than wild-type control cells. Likewise, 

their migration was inhibited by a redox-insensitive but activity-preserved Gal1 (CSLgal1) 

in a glycan-dependent manner [224]. The authors concluded that Gal1 restricts VSMC 

migration by modulating cell-matrix interaction and focal adhesion turnover, which limits 

neointimal formation post vascular injury.

Interestingly, Roldán-Montero et al. reported a protective role of Gal1 in pathological 

vascular disorders through modulation of lipid uptake by macrophages, alterations in 

mitochondrial function and phenotypic switch of VSMCs. The authors observed reduced 

expression of Gal1 in advanced human atherosclerosis and abdominal aortic aneurysm. They 

showed that treatment with recombinant Gal1 prevent both atherosclerosis and abdominal 

aortic aneurysm in mice, which indicate it as a novel therapeutic target for attenuating the 

severity of chronic vascular pathologies [225].

5. Conclusions

Atherosclerotic vascular diseases are responsible for one fourth of deaths worldwide. 

The investigations into its pathogenesis, therapeutics and role of various endogenous 

factors regulating distinct aspects of atherosclerotic lesion formation are of great medical 

importance. Discoveries made during the last two decades have significantly advanced 

our understanding of the roles of various matricellular proteins in atherosclerosis. The 

elevated levels of these proteins significantly correlate with atherosclerosis development 

and are thus considered as potential biomarkers with considerable diagnostic value. 

However, some studies have even reported atheroprotective roles of these matricellular 

proteins. Experimental loss-of-function and overexpression studies have demonstrated 

that vascular injury via dysregulating the expression of matrix proteins contribute to 

atherosclerotic lesion formation. However, atherosclerosis being a complex inflammatory 

disease, the mechanisms stimulated/inhibited by these proteins in plaque formation needs 

future investigations. Further and extensive research is needed to understand the exact 

mechanisms by which various matricellular proteins promote endothelial cell activation, 

neointima formation and atherosclerotic plaque development. Performing studies using 

cell-specific knockout mice, gene overexpression and rescue experiments may reveal cell 

type-specific mechanisms involved in the disease development. This information will aid 

in discovering new treatment modalities for patients with atherosclerotic disease. Since 

THBS1 is a highly studied matricellular protein for its role in the pathogenesis of vascular 

pathologies, targeted therapies to block signaling stimulated by THBS1 may be tested as 

a potential therapeutic approach for atherosclerosis. For instance, TAX2, a CD47-derived 
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cyclic peptide that targets THBS1 and selectively blocks THBS1:CD47 interaction can 

be evaluated for anti-atherogenic effects [226]. However, the shorter half-life of TAX2 

in circulation remained an issue for its therapeutic use. Utilization of function-blocking 

anti-THBS1 monoclonal antibodies has also been considered as therapeutic strategy. C6.7 

anti-Thbs1 antibody has been demonstrated to facilitate reendothelialization and decrease 

neointimal lesion formation in balloon-injured rat arteries [56]. Blocking THBS1:CD47 

interaction using CD47 soluble receptor or CD47-blocking antibodies can also be viable 

therapeutic approach for the treatment of atherosclerosis. Recombinant human CD47 

peptide that specifically binds and prevents THBS1’s effects, has been shown to improve 

vasorelaxation [227]. Further pharmacological studies are warranted to evaluate its effects in 

resistance vessels. Besides, integrins serve as receptors for various matricellular proteins and 

inhibitors blocking the integrins’ receptor function can also be evaluated for their efficacy 

in attenuating atherosclerotic lesion formation. Additional studies identifying the functional 

domains of matricellular proteins and cell surface binding partners will help in designing 

therapeutic peptidic inhibitors and blocking antibodies with longer half-life. Clearly, future 

investigations are required to better understand the role of matricellular proteins in the 

pathogenesis of atherosclerosis and whether inhibition of matricellular proteins-stimulated 

pathways in arterial wall truly represents a therapeutic target in patients with atherosclerotic 

vascular disease.
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Abbreviations

ECM extracellular matrix

CVD cardiovascular disease

MI myocardial infarction

VSMCs vascular smooth muscle cells

SMCs smooth muscle cells

LDL low-density lipoprotein

VLDL very-low-density lipoprotein

THBS thrombospondin

SPARC secreted protein, acidic and rich in cysteine

COMP cartilage oligomeric matrix protein

LRP low density lipoprotein-related receptor

CD cluster of differentiation
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PDGF platelet-derived growth factor

SIRPα signal regulatory protein α

BMP-2 bone morphogenetic protein-2

VEGF vascular endothelial growth factor

TGF-β transforming growth factor-β

TNF-α tumor necrosis factor α

SPP1 secreted phosphoprotein 1

CAD coronary artery disease

RSPOs roof plate-specific spondins

LGRs leucine-rich repeat-containing G protein-coupled receptors

YAP yes-associated protein

EndoMT endothelial-to-mesenchymal transition

NO nitric oxide

VTN vitronectin

TN tenascin

LPS lipopolysaccharide

VCAM-1 vascular cell adhesion molecule-1

Gal Galectin.
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Highlights

• Matricellular proteins are secreted non-structural proteins that play important 

roles in the maintenance of tissue homeostasis.

• The elevated levels of matricellular proteins correlate with atherosclerosis 

development.

• Matricellular proteins stimulate multiple steps of atherogenesis ranging from 

endothelial cell activation to plaque vulnerability.

• Integrins serve as receptors for various matricellular proteins. Inhibiting 

integrins’ receptor function may be a viable therapeutic strategy to suppress 

atherogenesis.

• THBS1 is a highly studied matricellular protein for its role in the 

pathogenesis of vascular pathologies and targeted therapies to prevent 

THBS1-induced signaling may serve as a potential therapeutic approach for 

atherosclerosis.

Pervaiz et al. Page 30

Matrix Biol. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Role of matricellular proteins in the development of atherosclerosis.
Matricellular proteins play roles in various stages of atherosclerosis development, which 

include: 1. Endothelial damage - Damage to endothelial cells induces endothelial cell 

inflammation and promotes adhesion and transmigration of monocytes across intima. 2. 

Lipoprotein entry into subendothelial space - Leaky intima promotes the transport of plasma 

LDL to the subendothelial space, where LDL particles undergo oxidative and acetylated 

modifications. 3. Leukocyte recruitment- Endothelial cells with increased expression of 

adhesion molecules release chemo-attractants which attract monocytes and T lymphocytes. 

4. Foam cell formation- Monocytes differentiate into macrophages and engulf native and 

modified LDL and become foam cells. 5. Plaque progression-Contractile VSMCs in the 

media dedifferentiate into a synthetic state and migrate into the intima and subendothelial 

space to form a fibrous cap. 6. Necrotic core formation-Accumulation and coalescence of 

lipids lead to cell apoptosis and necrosis. Failure to remove apoptotic cells results in the 

formation of lipid-rich necrotic core.
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Figure 2: 
(A) THBS1 via CD47 activation induces foam cell formation in macrophages. THBS1 

binds with CD47 receptors in macrophages, stimulates receptor-independent macropinocytic 

internalization of native LDL (nLDL) and modified LDL (mLDL), and contributes to 

foam cell formation. Modulation of THBS1/CD47 signaling may work as therapeutic 

target for treating atherosclerosis. THBS1 secreted in response to mechanical stress, 

binds to VSMC integrin αvβ1 which helps in the maturation of the focal adhesion–

actin complex, mediating activation of nuclear shuttling of YAP and ultimately leading 

to neointima formation. THBS1 targeted therapies using THBS1-blocking antibodies or 

integrin receptor function inhibitors may also serve as a potential therapeutic target for 
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treating atherosclerosis. (B) Differential effects of myeloid cell-Sirpa and -Cd47 deletion 
on macrophage efferocytosis and atherosclerosis. Loss of Sirpa signaling in macrophages 

stimulates efferocytosis, reduces cholesterol accumulation, promotes lipid efflux, and 

suppresses atherosclerosis. Conversely, myeloid cell-Cd47 deletion inhibits efferocytosis, 

impairs cholesterol efflux, augments cellular inflammation, and promotes plaque formation.
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Figure 3: RSPO2 inhibits lymphangiogenesis and contributes to atherosclerosis development.
RSPO2 via binding to LGR4 receptors on lymphatic endothelial cells (LEC) hinders VEGF-

C-stimulated AKT and eNOS activation, leading to impaired NO production and reduces 

lymphatic vessel formation. It also inhibits activation of the canonical Wnt-β-catenin 

pathway in LEC in a NO-dependent manner, thus decreasing lymphatic vessel-mediated 

LDL drainage from the arterial wall and promoting atherosclerosis.
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Table 1:

Studies investigating the role of matricellular proteins in atherosclerosis.

Protein Role Study 
type

Cell/animal 
model type

Diet// concentration References

THBS1 • Promotes the migration and 
proliferation of SMCs

In vitro Human aortic 
SMCs

5 μg/mL [228]

In vitro Bovine 
pulmonary 
artery SMCs

100 nM [229]

• Decreases cAMP/cGMP levels by 
inhibiting endothelial cell NO 
production

In vitro Bovine aortic 
endothelial cells

2.2 nM [64, 67, 
230, 231]

In vitro Human 
umbilical vein 
endothelial cells

100 pM [231]

• Blocks NO-stimulated VSMC 
adhesion

In vitro Human aortic 
SMCs

2.2 nM [64]

• Induces oxidative stress

• Inhibits VSMC-dependent 
vasorelaxation

In vitro Human aortic 
SMCs

2.2 nM [70, 232, 
233]

Rat aortic SMCs 2.2 nM

• Thbs1 deletion prevents leptin-
induced atherosclerosis

• Deletion blocks leptin-induced 
vascular inflammation

• Deletion inhibits SMC 
dedifferentiation

In vivo Apoe−/− and 
Apoe−/−/
Thbs1−/− mice

Normocholesterolemic 
chow diet
Murine recombinant 
leptin (5 μg/g body 
weight, 3 weeks before 
sacrifice)

[58]

• In the early stage, lack of Thbs1 
reduces plaque area

• In the advanced stage, Thbs1 loss 
enhances plaque necrosis

In vivo Apoe−/− and 
Apoe−/−/
Thbs1−/− mice

Normocholesterolemic 
chow diet (6 months and 
9 months)

[57]

• Thbs1 deletion in mice promotes 
maladaptive remodeling in 
response to pressure overload via 
inhibiting Thbs1/integrin β1/YAP 
signaling

• Thbs1 deletion inhibits neointima 
formation upon carotid artery 
ligation

In vivo Thbs1−/− mice Normal chow diet (3 
weeks)

[74]

COMP • Facilitates VSMC adhesion and 
migration

In vitro Human arterial 
SMCs

20 μg/mL [86]

• Reduced COMP levels exacerbate 
VSMC calcification

In vitro Bovine aortic 
SMCs

COMP overexpressed by 
using adeno associated 
virus and silenced by 
using SiRNA

[94]

• COMP blocks BMP-2-mediated 
osteogenic signaling

• Maintains VSMC contractile 
phenotype

In vitro Rat aortic SMCs Comp overexpressed by 
using adeno associated 
virus and silenced by 
using SiRNA

[49]
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Protein Role Study 
type

Cell/animal 
model type

Diet// concentration References

• Comp mediates its protective 
effects via integrin α7β1

• Lack of Comp induces aging-
related vascular dysfunction, 
stiffness and senescence

In vivo Comp−/− mice Regular chow diet and 
CaCl2

[234]

• Comp deletion augments 
atherosclerosis

In vivo Apoe−/− and 
Comp−/−/
Apoe−/− mice

High fat diet and 
periadventitial collar 
injury

[87]

CCN1 • Promotesneovascularization In vitro Human 
umbilical vein 
endothelial cells

1, 10 & 100 ng/ mL [235]

• CCN1 overexpression promotes 
endothelial cell apoptosis in the 
presence of TNF-α

In vitro Human coronary 
arterial 
endothelial cells

CCN1 overexpression 
was done by treating 
cells with 0.5 μg 
of mouse CCN1 
cDNA in the presence 
of Lipofectamine® 

(Invitrogen). CCN1 
silencing was done by 
using SiRNA

[125]

• Supports VSMC adhesion

• Enhances proliferation and 
migration of VSMCs

In vitro Rat aortic 
VSMCs

0.5–20 μg/mL [120]

• Reduces reverse cholesterol 
transport

In vitro Murine 
macrophages

1.25, 2.5, 5, and 10 
ng/mL

[123]

• Triggers macrophage M1 
phenotype

In vitro Splenic 
macrophage cell 
line I-13.35

10 μg/mL [236]

• Upregulated levels in 
atherosclerotic aortas of Apoe−/− 

mice

• Promotes atherosclerosis

In vivo Apoe−/− mice Regular chow diet and 
intraperitoneal injections 
of CCN1 (10 μg/day/kg 
body weight, 4 weeks)

[123]

• Promotes neovascularization In vivo C57BL/6 wild 
type mice

Regular chow diet [235]

• Elevated Ccn1 expression in 
atherosclerotic arteries

In vivo Apoe−/− mice High fat diet (8 weeks 
and 16 weeks)

[125]

• Overexpressed in VSMCs of 
atherosclerotic arteries

In vivo Sprague–Dawley 
rats

Standard lab diet [120]

RSPO2 • Suppresses lymphangiogenesis 
and inhibits Wnt-β-catenin 
pathway in lymphatic endothelial 
cells

• Blockade of perivascular Rspo2-
Lgr4 signaling promotes arterial 
lymphangiogenesis and reduces 
atherosclerosis

In vitro Human dermal 
lymphatic 
endothelial cells

100 ng/mL [159]

In vivo Apoe−/− mice Western diet and 
periadventitial Lgr4-ECD 
(Rspo2’s decoy receptor)

Osteopontin • Expression associates with plaque 
burden

Clinical Human aorta 
samples

- [237]
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Protein Role Study 
type

Cell/animal 
model type

Diet// concentration References

• Plasma levels are higher in CAD 
patients and patients with calcified 
arteries

Clinical Human blood 
samples

- [238]

• Deficiency reduces atherogenesis In vivo Apoe−/−/Ldlr−/−/
Spp1−/− triple 
knockout mice

High fat diet [239]

• Deletion reduces atherosclerosis

• Deletion stimulates vascular 
calcification.

In vivo Apoe−/−/Spp1−/− 

mice (36-week-
old)

Normal chow diet [145]

Vitronectin • Serum levels were elevated in 
CAD patients

Clinical Human blood 
samples

- [177]

• Promotes VSMC migration In vitro Human aortic 
SMCs

[179]

Tenascin C • TNC expression correlates with 
macrophage infiltration

Clinical human coronary 
and inteinal 
mammary 
arteries

- [200]

• TNC polymorphisms correlate 
with atherosclerosis/CAD

Clinical Hman aorta 
samples and 
CATHGEN 
cardiovascular 
study

- [240]

• Deletion in mice promotes mast 
cell migration

In vivo Apoe−/−/Tnc−/− 

mice
High fat diet [205]

Galectin 1 • Circulating levels correlate the 
severity of CAD

• Higher LGAL1 concentrations 
are found older patients with 
hypertension, diabetes, chronic 
kidney disease, and heart failure.

• Predicts incidence of major 
adverse cardiovascular events

Clinical Human blood 
samples

- [220]

• Lgal1 deletion aggravates 
atherosclerosis

In vivo pAAV/D377Y-
mPCSK9 
injected 
Lgals1−/− mice

High fat diet [225]

• Stimulates monocyte migration In vitro Human 
peripheral blood 
mononuclear 
cells

10 μg/mL [241]
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