Table 5.
Features | Classifiers | Evaluation metrics | Delta | Theta | Alpha | Beta |
---|---|---|---|---|---|---|
GT+PDC features | KNN | Sensitivity | 99.52 ± 0.61 | 98.31 ± 0.52 | 92.85 ± 0.83 | 95.30 ± 2.13 |
Specificity | 97.82 ± 1.77 | 95.91 ± 4.01 | 94.32 ± 0.79 | 99.82 ± 0.79 | ||
Accuracy | 82.00 ± 4.40 | 87.83 ± 2.67 | 88.54 ± 2.76 | 84.37 ± 3.58 | ||
LDA | Sensitivity | 94.83 ± 1.75 | 99.66 ± 1.044 | 99.32 ± 1.38 | 99.83 ± 0.75 | |
Specificity | 93.00 ± 4.44 | 95.62 ± 3.56 | 97.87 ± 3.46 | 98.61 ± 2.49 | ||
Accuracy | 77.00 ± 7.71 | 77.83 ± 7.26 | 78.08 ± 6.59 | 66.58 ± 7.39 | ||
NB | Sensitivity | 97.18 ± 1.87 | 97.12 ± 1.0 | 85.71 ± 16.07 | 96.98 ± 2.10 | |
Specificity | 96.28 ± 2.17 | 96.33 ± 3.01 | 85.18 ± 1.51 | 99.23 ± 0.77 | ||
Accuracy | 82.70 ± 2.52 | 82.47 ± 2.07 | 83.75 ± 1.91 | 83.10 ± 2.11 | ||
DT | Sensitivity | 92.71 ± 7.10 | 89.30 ± 9.23 | 93.91 ± 11.12 | 99.80 ± 0.86 | |
Specificity | 91.28 ± 6.20 | 81.84 ± 8.09 | 91.14 ± 4.51 | 96.34 ± 2.03 | ||
Accuracy | 85.95 ± 4.15 | 89.12 ± 3.68 | 89.62 ± 2.24 | 86.00 ± 2.74 | ||
SVM | Sensitivity | 91.27 ± 6.20 | 99.27 ± 0.13 | 95.25 ± 4.27 | 91.53 ± 6.47 | |
Specificity | 90.13 ± 6.81 | 97.23 ± 1.81 | 94.12 ± 5.91 | 90.19 ± 9.28 | ||
Accuracy | 83.29 ± 5.93 | 91.66 ± 6.72 | 92.78 ± 7.86 | 86.08 ± 10.94 |